Skip to main content

Regulation of InsP3R by Ca2+ and Cytosolic Ca2+ Dynamics

  • Chapter
Integrative Aspects of Calcium Signalling

Abstract

Hormonal stimulation leads to the generation of second messenger inositol(1,4,5)-trisphosphate (InsP3) and release of calcium (Ca2+) from intracellular calcium stores due to activation of inositol(1,4,5)-trisphosphate receptor (InsP3R). InsP3-induced Ca2+ release is widely utilized by multiple cell types and constitutes one of the major steps in calcium signaling pathway. The activity of InsP3R receptor is under tight control in the cell and its most important regulatory mechanisms is the feedback effect exerted by cytosolic Ca2+. Modulation of the InsP3R by Ca2+ has been demonstrated in permeabilized cell preparations, using isolated microsomal vesicles and in planar lipid bilayer experiments with reconstituted InsP3R. These studies demonstrated the bell-shaped Ca2+ dependency of InsP3R activity, manifested within the effective physiological range of cytosolic Ca2+ concentrations. In the first part of this chapter we describe the initial discovery of InsP3R modulation by cytosolic Ca2+, the progress of our understanding of Ca2+ feedback on the InsP3R and some recent suggestions regarding the variability in Ca2+ regulation of different InsP3R isoforms. In the second part of the chapter we will relate the InsP3R modulation by cytosolic Ca2+ to the complex spatiotemporal behaviour of Ca2+ signaling in cells, manifested as cytosolic Ca2+ waves and oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allbritton, NL, Meyer T & Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258, 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  • Amundson J & Clapham D (1993) Calcium waves. Curr Opinion Neurobiol 3, 375–382.

    Article  CAS  Google Scholar 

  • Atri A, Amundson J. Clapham D & Sneyd J (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J 65, 1727–1739.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I (1994) Theoretical analysis of calcium wave propagation based on inositol (1,4,5)-trisphosphate (InsP3) receptor functional properties. Cell Calcium 16, 151–166.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I & Ehrlich BE (1994a) Inositol (l, 4, 5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J Gen Physiol 104, 821–856.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I & Ehrlich BE (1994b) The InsP3 receptor: functional properties and regulation. In Handbook of Membrane Channels: Molecular and Cellular Physioloy, (ed. C. Peracchia), pp. 511–526. Academic Press, Orlando.

    Google Scholar 

  • Bezprozvanny I. & Ehrlich BE (1995) The inositol 1,4,5-trisphosphate (InsP3) receptor. J Membrane Biol 145, 205–216.

    Article  CAS  Google Scholar 

  • Bezprozvanny I. Watras J & Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Bokkala S & Joseph SK (1997) Angiotensin II-induced down-regulation of inositol trisphosphate receptors in WB rat liver epithelial cells. Evidence for involvement of the proteasome pathway. J Biol Chem 272, 12454–61.

    Article  PubMed  CAS  Google Scholar 

  • Bugrim AE, Zhabotinsky AM, & Epstein IR (1997) Calcium waves in a model with a random spatially discrete distribution of Ca2+ release sites. Biophys J 73, 2897–2906.

    Article  PubMed  CAS  Google Scholar 

  • Camacho P & Lechleiter JD (1993) Increase frequency of calcium waves in Xenopus laevis oocytes that express a calcium ATPase. Science 260, 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Cameron AM, Steiner JP, Roskams AJ, Ali SM, Ronnett GV & Snyder SH (1995) Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83, 463–72.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE & Sneyd J (1995) Intracellular calcium waves. Adv Second Messenger Phosphoprotein Res. 30, 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Cooley JW & Dodge FA (1966) Digital computer solutions for excitation and propagation of the nerve impulse. Biophys J 6, 583–602.

    Article  PubMed  CAS  Google Scholar 

  • Danoff, S. K., Danoff, C. D. Ferris CD, Donath C, Fischer GA, Munemitsu S, Ullrich A, Snyder SH & Ross CA (1991) Inositol 1,4,5-trisphosphate receptors: Distinct neuronal and nonneuronal forms derived by alternative splicing differ in phosphorylation. Proc Natl Acad Sci USA 88, 2951–2955.

    Article  PubMed  CAS  Google Scholar 

  • De Young, G. W., & Keizer J (1992) A single pool IP3-receptor-based model for agonist stimulated Ca2+ oscillations. Proc Natl Acad Sci USA 89, 9895–9899.

    Article  PubMed  Google Scholar 

  • Ehrenstein G & Fitzhugh R (1986) A channel model for development of thefertilization membrane in see urchin eggs. In: Ionic Channels in Cells and Model Systems. (Ratorre R, ed), pp 421–430. New York: Plenum Press.

    Chapter  Google Scholar 

  • Finch EA, Turner TJ & Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1, 445–464.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi T, Kohda K, Miyawaki A & Mikoshiba K (1994) Intracellular channels. Curr Opinion Neurobiol 4, 294–303.

    Article  CAS  Google Scholar 

  • Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, & Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342, 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Goldbeter A, Dupont G, & Berridge M (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87, 1461–1465.

    Article  PubMed  CAS  Google Scholar 

  • Gyorke S, & Fill M (1993) Ryanodine receptor adaptation: control mechanism of Ca-induced Ca release in heart. Science 260, 807–809.

    Article  PubMed  CAS  Google Scholar 

  • Hagar RE & Ehrlich BE (1998) Comparison of the single channel properties of the type I and type III InsP3 receptors. Biophysical J 74 pt 2, A323.

    Google Scholar 

  • Hall JD, Betarbet S, & Jaramillo F (1997) Endogeneous buffers limit the spred of free calcium in hair cells, Biophys J 73, 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  • Harootunian AT, Kao JPY, Paranjape S & Tsien RY (1991) Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science 251, 75–78.

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1959) Can a nerve propagate a subthreshold disturbance? J Physiol (Lond) 148, 80–84.

    Google Scholar 

  • Iino M. (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95, 1103–1122.

    Article  PubMed  CAS  Google Scholar 

  • Iino M & Endo M (1992) Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca release. Nature 360, 76–78.

    Article  PubMed  CAS  Google Scholar 

  • Ilyin V & Parker I (1994) Role of cytosolic Ca2+ in inhibition of InsP3-evoked Ca2+ release in Xenopus oocytes. J Physiol (Lond) 477, 503–509.

    CAS  Google Scholar 

  • Issa NP & Hudspeth AJ (1994) Clustering of Ca2+ channels and Ca2+-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci USA 91, 7578–7582.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF (1991) The path of calcium in cytosolic calcium oscillations — a unifying hypothesis. Proc Natl Acad Sci USA 88, 9883–9887.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe L (1993) Classes and mechanisms of calcium waves. Cell Calcium 14, 736–745.

    Article  PubMed  CAS  Google Scholar 

  • Joseph SK, Boehning D, Pierson S & Nicchitta CV (1997) Membrane insertion, glycosylation, and oligomerization of inositol trisphosphate receptors in a cell-free translation system. J Biol Chem 272, 1579–88.

    Article  PubMed  CAS  Google Scholar 

  • Kasai H (1995) Pancreatic calcium waves and secretion. In: Calcium Waves, Gradients and Oscillations. (Bock GR & Ackrill K, eds), pp 104–120. Chichester, England: Wiley.

    Google Scholar 

  • Kaznacheyeva E, Lupu VD & Bezprozvanny I (1998) Single-channel properties of inositol (1,4,5)-trisphosphate receptor heterologously expressed in HEK-293 cells. J Gen Physiol submitted.

    Google Scholar 

  • Keizer J & De Young DW (1994) Simplification of a realistic model of IP3-induced Ca2+ oscillations. Cell Calcium 14, 397–410.

    Article  Google Scholar 

  • Kume S, Muto A, Aruga J, Nakagawa T, Michikawa T, Furuichi T, Nakade S, Okano H & Mikoshiba K (1993) The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Cell 73, 555–570.

    Article  PubMed  CAS  Google Scholar 

  • Kupferman R, Mitra PP, Hohenberg PC & Wang SS (1997) Analytical calculation of intracellular calcium wave characteristics. Biophys J 72, 2430–44.

    Article  PubMed  CAS  Google Scholar 

  • Lechleiter J, Girard S, Peralta E & Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Lechleiter JD & Clapham DE (1992) Molecular mechanisms of intracellular calcium excitability in X-Laevis oocytes. Cell 69, 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Li Y & Rinzel J (1994) Evaluations for InsP3 receptor-mediated [Ca2+] oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol 166, 461–473.

    Article  PubMed  CAS  Google Scholar 

  • Luther R (1906) Propagation of chemical reactions in space. Z Electmchem. 12, 596–599.

    Article  CAS  Google Scholar 

  • Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M & Mikoshiba K (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266, 1109–1116.

    PubMed  CAS  Google Scholar 

  • Markin VS & Chizmadzhev YA (1967) Excitation propagation in a simple model of the nerve fiber. Biophysica. 12, 900–907.

    CAS  Google Scholar 

  • Markin VS, Pastushenko VF, & Chizmadzhev YA (1987) Theory of Excitable Media. New York: Wiley and Sons.

    Google Scholar 

  • Meissner G, Darling E & Eveleth J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+ and adenine nucleotides. Biochemistry 25, 236–244.

    Article  PubMed  CAS  Google Scholar 

  • Meyer T & Stryer L (1962) Calcium spiking. Ann Rev Biophys Biophys Chem 20, 153–174.

    Article  Google Scholar 

  • Michikawa T, Hamanaka H, Otsu H, Yamamoto A, Miyawaki A, Furuichi T, Tashiro Y, & Mikoshiba K (1994) Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-trisphosphate receptor. J Biol Chem 269, 9184–9.

    PubMed  CAS  Google Scholar 

  • Mignery G, Sudhof TC, Takei K & De Camilli P (1989) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342, 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Mignery GA, Newton CL, Archer BT, & Sudhof TC. (1990) Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. J Biol Chem 265, 12679–12685.

    PubMed  CAS  Google Scholar 

  • Mignery GA, & Sudhof TC (1990) The ligand binding site and transduction mechanism in the inositol-1,4,5-triphosphate receptor. EMBO J 9, 3893–3898.

    PubMed  CAS  Google Scholar 

  • Miyawaki A, Furuichi T, Ryou Y, Yoshikawa S, Nakagawa T, Saitoh T & Mikoshiba K (1991) Structure-function relationships of the mouse inositol 1,4,5-trisphosphate receptor. Proc Natl Acad Sci USA 88, 4911–4915.

    Article  PubMed  CAS  Google Scholar 

  • Murray JD (1989) Mathematical Biology. Berlin: Springer.

    Book  Google Scholar 

  • Nagumo J, Arimoto S, & Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50, 2061–2072.

    Article  Google Scholar 

  • Nakagawa T, Okano H, Furuichi T, Aruga J & Mikoshiba K (1991a) The subtypes of the mouse Inositol 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sci USA 88, 6244–6248.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Shiota C, Okano H & Mikoshiba K (1991b) Differential localization of alternative spliced transcripts encoding inositol 1,4,5-trisphosphate receptors in mouse cerebellum and hippocampus — insitu hybridization study. J. Neurochem 57, 1807–1810.

    Article  PubMed  CAS  Google Scholar 

  • Othmer HG, & Tang Y (1993) Oscillations and waves in a model of InsP3-controlled calcium dynamics. In Experiemntal and theoretical advances in biological pattern formation, (ed. H. G. Othmer), pp. 277–299. Plenum Press, New York.

    Chapter  Google Scholar 

  • Parker I & Ivorra I (1990) Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+. Proc Natl Acad Sci USA 87, 260–264.

    Article  PubMed  CAS  Google Scholar 

  • Parker I & Yao Y (1991) Regenerative release of calcium from functionally discrete subcellular stores by inositol triphosphate. Proc. Royal Soc. B (London) 246, 269–295.

    Article  CAS  Google Scholar 

  • Parker I & Yao Y (1996) Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol (Lond) 491, 663–668.

    CAS  Google Scholar 

  • Parker I, Yao Y & Ilyin V (1996) Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol triphosphate. Biophys J 70, 222–237.

    Article  PubMed  CAS  Google Scholar 

  • Parker I, Zang WJ & Wier WG (1996) Ca2+ sparks involving multiple Ca2+ release sites along Z-lines in rat heart cells. J Physiol (Lond) 497, 31–38.

    CAS  Google Scholar 

  • Parys JB & Bezprozvanny I (1995) The inositol trisphosphate receptor of Xenopus oocytes. Cell Calcium 18, 353–363.

    Article  PubMed  CAS  Google Scholar 

  • Perez PJ, Ramos-Franco J, Fill M & Mignery GA (1997) Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J Biol Chem 272, 23961–9.

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH (1995) Local calcium spiking in pancreatic pancreatic acinar cells. In: Calcium: Waves, Gradients and Oscillations. (Bock GR & Ackrill K, eds), pp 85–103. Wiley, Chichester, England.

    Google Scholar 

  • Ramos-Franco J, Perez P, Caenepeel S, Mignery S & Fill M (1998) Distinct calcium regulation patterns of type 1 and type 2 inositol 1,4,5-trisphosphate receptors channels. Biophysical J 74 pt 2, A61.

    Google Scholar 

  • Rinzel J & Keller JB (1973) Traveling wave solution of a nerve conduction equation. Biophys J 13, 1313–1337.

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM (1993) Spatial calcium buffering in hair cells. Nature 363, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM (1994) Localization of cacium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14, 3246–3262.

    PubMed  CAS  Google Scholar 

  • Sienaert I, De Smedt H, Parys JB, Missiaen L, Vanlingen S, Sipma H & Casteels R (1996) Characterization of a cytosolic and a luminal Ca2+ binding site in the type I inositol 1,4,5-trisphosphate receptor. J Biol Chem 271, 27005–27012.

    Article  PubMed  CAS  Google Scholar 

  • Sienaert I, Missiaen L, Desmedt H, Parys JB, Sipma H & Casteels R (1997) Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5,-trisphosphate receptor. J Biol Chem 272, 25899–25906.

    Article  PubMed  CAS  Google Scholar 

  • Sneyd J & Attri A (1993) Curvature dependence of a model for calcium wave propagation. Physica D 65, 365–372.

    Article  CAS  Google Scholar 

  • Supattapone S, Worley PF, Baraban JM & Snyder SH (1988) Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem 263, 1530–1534.

    PubMed  CAS  Google Scholar 

  • Tang Y & Othmer HG (1996) Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics. Biophys J 70, 264–263.

    Article  Google Scholar 

  • Tse A, Tse W & Hille B (1994) Calsium homeostasis in identified rat gonadotrophs. J Physiol (Lond) 477, 511–525.

    CAS  Google Scholar 

  • Valdivia HH, Kaplan JH, Ellis-Davies GC & Lederer WJ (1995) Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 267, 1997–2000.

    Article  PubMed  CAS  Google Scholar 

  • Vassilakos A, Michalak M Lehrman MA & Williams DB (1998) Oligosaccharide binding characteristics of the molecular chaperons, calnexin and calreticulin. Biochemistry (in press).

    Google Scholar 

  • Wagner J & Keizer J (1994) Effect of rapid buffer of Ca2+ diffusion and Ca2+ oscillations. Biophys J 67, 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Wakui MB, Potter VL & Petersen OH (1989) Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. Nature 339, 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Wang SSH & Thompson SH (1995) Local positive feedback by calcium in the propagation of intracellular calcium waves. Biophys J 69, 1683–1697.

    Article  PubMed  CAS  Google Scholar 

  • Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman ML & Williams DB (1995) The molecular chaperone calnexin binds Glc 1 Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270, 4697–4704.

    Article  PubMed  CAS  Google Scholar 

  • Wojcikiewicz RJ, Furuichi T, Nakade S, Mikoshiba K & Nahorski SR (1994) Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem 269, 7963–7969.

    PubMed  CAS  Google Scholar 

  • Wojcikiewicz RJH (1995) Type I, II, and III inositol 1, 4, 5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 270, 11678–11683.

    Article  PubMed  CAS  Google Scholar 

  • Winfree JD (1987) When Time Breaks Down: The Three Dimensional Dynamics of Electrochemical Waves and Cardiac Arrythmias. Prinston NJ: Prinston University Press.

    Google Scholar 

  • Wussling MH, Scheufler K, Schmerling S & Drygalla V (1997) Velocity-curvature relationship of colliding spherical calcium waves in rat cardiac myocytes. Biophys J 73, 1232–1242.

    Article  PubMed  CAS  Google Scholar 

  • Wussling MH & Salz H (1996) Nonlinear propagation of spherical calcium waves in rat cardiac myocytes. Biophys J 70, 1144–1153.

    Article  PubMed  CAS  Google Scholar 

  • Yagodin S, Holtzclaw LA & Russell JT (1995) Subcellular calcium oscillators and calcium influx support agonist-induced calcium waves in cultured astrocytes. Mol Cel Bioch 149/150, 137–144.

    Article  Google Scholar 

  • Yagodin SV, Holtzclaw L, Sheppard CA & Russell JT (1994) Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. J Neurobiol 25, 265–280.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, Ryo Y, Furuichi T & Mikoshiba K (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308, 83–88.

    PubMed  CAS  Google Scholar 

  • Yao Y, Choi J & Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol (Lond) 482, 533–53.

    CAS  Google Scholar 

  • Yao Y, & Parker I (1992) Potentiation of inositol trisphosphate-induced Ca2+ mobilization in Xenopus oocytes by cytosolic Ca2+. J Physiol (Lond) 458, 319–338.

    CAS  Google Scholar 

  • Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T & Mikoshiba K (1992) Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster. J Biol Chem 267, 16613–16619.

    PubMed  CAS  Google Scholar 

  • Zhang BX, Zhao H & Muallem S (1993) Ca2+-dependent kinase and phosphatase control inositol 1,4,5-trisphosphate-mediated Ca2+ release. J Biol Chem 268, 10997–11001.

    PubMed  CAS  Google Scholar 

  • Zykov VS (1980) Analytical evaluation of the dependence of the spead of an excitation wave in a two-dimensional excitable medium on the curvature of its front. Biophys J 25, 906–911.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Markin, V.S., Bezprozvanny, I. (1998). Regulation of InsP3R by Ca2+ and Cytosolic Ca2+ Dynamics. In: Verkhratsky, A., Toescu, E.C. (eds) Integrative Aspects of Calcium Signalling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1901-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1901-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1903-8

  • Online ISBN: 978-1-4899-1901-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics