Skip to main content

Calcium Regulation of Ion Channels

  • Chapter

Abstract

It is well established that intracellular Ca ions modulate cellular membrane potential and thus excitability by affecting the gating of ion channels in the cell membrane. One of the targets for Ca ions are Ca2+ channels themselves. Certain types of voltage-gated Ca2+ channels exhibit Ca2+-dependent inactivation which limits or termintes Ca2+ entry into the cell during membrane depolarisation. Inactivation may not develop significantly during short depolarizations as they occur in the course of a neuronal action potential but may be of importance when the membrane is depolarized for longer time such as during a burst of action potentials. Inactivation of Ca2+ channels is complex and involves also voltage-dependent processes. Its nature has long been debated and is still not completely elucidated, although new insights into the mechanism of Ca2+-dependent inactivation came from experiments with cloned Ca2+ channels. In the first part of this chapter we will discuss basic features of Ca2+ channel inactivation and their importance for complex activity patterns. The second part of the chapter will concentrate on neuronal Ca2+-activated K+ and Cl channels. While neuronal Ca2+-activated K+ channels have been extensively studied over the last decades comparatively little is known about Ca2+-activated Cl channels in neurons. We will discuss the various influences of these channels on neuronal excitability. In the third part of the chapter we will review the properties of Ca2+-activated nonselective (CAN) cation channels in the nervous system and discuss the physiological functions that have been attributed to this channels. The maintained depolarization induced by activation of these channels is an important process that underlies a variety of physiological functions in many different types of neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abia A, Lobaton CD, Moreno A & Garcia-Sancho J (1986) Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+ channels. Biochim Biophys Acta 856, 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Adams WB & Levitan IB (1985) Voltage and ion dependencies of the slow currents which mediate bursting in Aplysia neurone R15. J Physiol (Lond) 360, 69–93.

    CAS  Google Scholar 

  • Ahlijanian MK, Westenbroek RE & Catterall WA (1990) Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 4, 819–832.

    Article  PubMed  CAS  Google Scholar 

  • Andrade R (1991) Cell excitation enhances muscarinic cholinergic responses in rat association cortex. Brain Res 548, 81–93.

    Article  PubMed  CAS  Google Scholar 

  • Arakawa O, Nakahiro M & Narahashi T (1991) Mercury modulation of GABA-activated chloride channels and non-specific cation channels in rat dorsal root ganglion neurons. Brain Res 551, 58–63.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D & Eckert R (1987) Voltage activated calcium channels must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci USA 84, 2518–2522.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D & Kaiman D (1988) The role of protein phosphorylation in the response of dihydropyridine-sensitive calcium channels to memgrane depolarization in mammalian pituitary tumor cells. In: Calcium and Ion Channel Modulation (Grinnell A, Armstrong C, Jackson M, eds), pp215–245, New York: Plenum Press

    Chapter  Google Scholar 

  • Armstrong DL (1989) Calcium channel regulation bycalcineurin, a Ca2+-activated phosphatase in mammalian brain. Trends Neurosci 12, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Bader CR, Bertrand D, Schwartz EA (1982) Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol (Lond) 331, 253–284.

    CAS  Google Scholar 

  • Barrett JN, Magleby KL & Pallotta BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol (Lond) 331, 211–230.

    CAS  Google Scholar 

  • Bean BP, Nowycky MC & Tsien RW (1984) b-Adrenergic modulation of calcium channels in frog ventricular heart cells. Nature 307, 371–375.

    Article  PubMed  CAS  Google Scholar 

  • Bechern M & Pott L (1985) Removal of Ca current inactivation in dialysed guinea-pig atrial cardioballs by Ca chelators. Pflügers Arch 404, 10–20.

    Article  Google Scholar 

  • Bevan S, Gray PTA & Ritchie JM (1984) A calcium-activated cation-selective channel in rat cultured Schwann cell. Proc R Soc B222, 349–355.

    Google Scholar 

  • Birnbaumer L, Campbell KP, Catterall WA, Harpold MM, Hofmann F, Home WA, Mori Y, Schwartz A, Snutch TP, Tanabe T, et al (1994) The naming of voltage-gated calcium channels. Neuron 13, 505–506.

    Article  PubMed  CAS  Google Scholar 

  • Blatz AL & Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323, 718–720.

    Article  PubMed  CAS  Google Scholar 

  • Brehm P & Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203–1206.

    Article  PubMed  CAS  Google Scholar 

  • Brum G, Osterrieder W & Trautwein W (1984) Beta-adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflügers Arch 401, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Byerly L & Hagiwara S (1982) Calcium currents in internally perfused nerve cell bodies of Lymnaea stagnalis. J Physiol 322, 503–528.

    PubMed  CAS  Google Scholar 

  • Cachelin AB, DePeyer JE, Kokubun S & Reuter H (1983) Calcium channel modulation by 8-bromo-cyclic AMP in cultured heart cells. Nature 304, 462–464.

    Article  PubMed  CAS  Google Scholar 

  • Capiod T & Ogden DC (1988) Analysis by voltage-clamp and single channel recording of noradrenalin action on isolated guinea pig hepatocytes. In: Gastrointestinal and hepatric secretions: mechanisms and control, (Davison & Shaffer, eds), pp. 74–79, University press, Calgary.

    Google Scholar 

  • Carbone E & Lux HD (1984b) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310, 501–502.

    Article  PubMed  CAS  Google Scholar 

  • Castle NA, Strong PN (1986) Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel. FEBS Lett 209, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Cavalié A, Pelzer D & Trautwein W (1986) Fast and slow gating behavior of single Ca2+ channels in cardiac cells. Relation to activation and inactivation of calcium-channel current. Pflügers Arch 406, 241–258.

    Article  PubMed  Google Scholar 

  • Chad J (1989) Inactivation of calcium channels. Comp Biochem Physiol 93, 95–105.

    Article  CAS  Google Scholar 

  • Chad JE & Eckert R (1986) An enzymatic mechanism for calcium current inactivation in dialyzed helix neurones. J Physiol (Lond) 378, 31–51.

    CAS  Google Scholar 

  • Chay TR (1986) On the effect of the intracellular calcium-sensitive K+ channel in the bursting pancreatic beta-cell. Biophys J 50, 765–777.

    Article  PubMed  CAS  Google Scholar 

  • Chicchi GG, Gimenez-Gallego G, Ber E, Garcia ML, Winquist R & Cascieri MA (1988) Purification and characterization of a unique, potent inhibitor of apamin binding from Leiurus quinquestriatus hebraeus venom. J Biol Chem 263, 10192–10197.

    PubMed  CAS  Google Scholar 

  • Choi DW (1990) Cerebral hypoxia — some new approaches and unanswered questions. J Neurosei 10, 2493–2501.

    CAS  Google Scholar 

  • Choi DW (1990) Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab Rev 2, 105–147.

    PubMed  CAS  Google Scholar 

  • Congar P, Keubejzgek X, Ben-Ari Y & Crépel V (1997) A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J Neurosci 17, 5366–5379.

    PubMed  CAS  Google Scholar 

  • Connor JA (1993) Intracellular calcium mobilized by inositol 1,4,5-triphosphate: intracellular movements and compartmentalization. Cell Calcium 14, 185–200.

    Article  PubMed  CAS  Google Scholar 

  • Cook DI, Poronnik P & Young JA (1990) Characterization of a 25-pS non-selective cation channel in a cultured secretory epithelial cell line. J Memb Biol 114, 37–52.

    Article  CAS  Google Scholar 

  • Currie KPM & Scott RH (1992) Calcium-activated currents in cultured neurones from rat dorsal root ganglia. Br J Pharmacol 106, 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Currie KPM, Swann K, Galione A & Scott RH (1992) Activation of Ca2+-dependent currents in cultured rat dorsal root ganglion neurones by a sperm factor and cyclic ADP-ribose. Mol Biol Cell 3, 1415–1425.

    PubMed  CAS  Google Scholar 

  • de Leon M, Wang Y, Jones L, Perez-Reyes E, Wei X, Soong TW, Snutch TP & Yue DT (1995) Essential Ca2+ binding motif for Ca2+-sensitive inactivation of L-Type Ca2+ channels. Science 270, 1502–1506.

    Article  PubMed  Google Scholar 

  • Doroshenko PA, Kostyuk PG & Martynyuk AE (1982) Intracellular metabolism of adenosine 3′,5′-cyclic mono-phosphate and calcium inward current in perfused neurons of Helix pomatia. Neuroscience 7, 2125–2134.

    Article  PubMed  CAS  Google Scholar 

  • Eckert R & Chad J (1984) Inactivation of Ca channels. ProgBiophys Mol Biol 44 215–267.

    CAS  Google Scholar 

  • Eliot LS, Kandel ER, Siegelbaum SA & Blumenfeld H (1993) Imaging terminals of Aplysia sensory neurons demonstrates role of enhanced Ca2+ influx in presynaptic facilitation. Nature 361, 634–637.

    Article  PubMed  CAS  Google Scholar 

  • Evans MG & Marty A (1986) Calcium-dependent chloride currents in isolated cells from rat lacrimal glands. J Physiol (Lond) 378, 437–460.

    CAS  Google Scholar 

  • Fenwick EM, Marty A & Neher E (1982) Sodium and calcium channels in bovine chromaffin cells. J Physiol (Lond) 331, 599–635.

    CAS  Google Scholar 

  • Finn AL, Gaido ML, Dillard M & Brautigan DL (1992) Regulation of an epithelial chloride channel by direct phosphorylation and dephosphorylation. Am J Physiol 263, C172–175.

    PubMed  CAS  Google Scholar 

  • Frizzell RA & Halm DR (1990) Chloide channels in epithelial cells. Curr Top in membranes and transport 37, 247–282.

    Article  CAS  Google Scholar 

  • Fryer MW & Zucker RW (1993) Ca2+-dependent inactivation of Ca2+ current in Aplysia neurons: kinetic studies using photolabile Ca2+ chelators. J Physiol (Lond) 464, 501–528.

    CAS  Google Scholar 

  • Gögelein H & Pfannmüller B (1989) The non-selective cation channel in the basolateral membrane of rat exocrine pancreas. Pflügers Arch 431, 287–298.

    Article  Google Scholar 

  • Gögelein H, Dahlem D, Englert HC & Lang HJ (1990) Flufenamic acid, mefenamic acid and niflumic acid inhibit single non-selective cation channels in the rat exocrine pancreas. FEBS Lett 268, 79–82.

    Article  PubMed  Google Scholar 

  • Goh JW, Kelly ME, Pennefather PS, Chicchi GG, Cascieri MA, Garcia ML & Kaczorowski GJ (1992) Effect of charybdotoxin and leiurotoxin I on potassium currents in bullfrog sympathetic ganglion and hippocampal neurons. Brain Res 591, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Golowasch J, Kirkwood A & Miller C (1986) Allosteric effects of Mg2+ on the gating of Ca2+-activated K channels from mammalian skeletal muscle. J Exp Biol 124, 5–13.

    PubMed  CAS  Google Scholar 

  • Gorman AL & Thomas MV (1978) Changes in the intracellular concentration of free calcium ions in a pacemaker neuron, measured with the metallochromic indicator Dye Arsenazo III. J Physiol (Lond) 275, 357–376.

    CAS  Google Scholar 

  • Gutnick MJ, Lux HD, Swandulla D & Zucker H (1989) Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones. J Physiol (Lond) 412, 197–220.

    CAS  Google Scholar 

  • Gutnick MJ, Lux HD, Swandulla D & Zucker H (1989) Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones. J Physiol (Lond) 412, 197–220.

    CAS  Google Scholar 

  • Györi J, Kiss T, Shcherbatko AD, Belan PV, Tepikin AV, Osipenko ON & Salánki J (1991) Effects of Ag+ on membrane permeability of perfused Helix pomaita neurons. J Physiol (Lond) 442, 1–13.

    Google Scholar 

  • Haack JA & Rosenberg RI (1994) Calcium-dependent inactivation of L-type calcium channels in planar lipid bilayers. Biophys J 66, 1051–1060.

    Article  PubMed  CAS  Google Scholar 

  • Hadley RW & Hume JR (1987) An intrinsic potential-dependent inactivation mechanism associated with calcium channels in guinea-pig myocytes. J Physiol (Lond) 389, 205–222.

    CAS  Google Scholar 

  • Hallani M, Lynch JW & Barry PH (1998) Characterization of calcium-activated chloride channels in patches excised from the dendritic knob of mammalian olfactory receptor neurons. J Membr Biol 161, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell JV (1990) K+ channels in the central nervous system. In: Potassium channels Structure, Classification, Function and Therapeutic Potential (Cook NS, ed), pp348–381. Chichester: John Wiley & Sons.

    Google Scholar 

  • Hardie RC & Minke B (1993) Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16, 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Harms L, Finta EP, Tschopl M & Illes P (1992) Depolarization of rat locus ceruleus neurons by adenosine 5′-triphosphate. Neuroseience 48, 941–952.

    Article  CAS  Google Scholar 

  • Hasuo H & Gallagher JP (1990) Facilitatory action of muscarine on the slow afterdepolarization of rat dorsolateral septal nucleus neurons in vitro. Neurosci Lett 112, 234–238.

    Article  PubMed  CAS  Google Scholar 

  • Hasuo H, Phelan KD, Twery MJ & Gallagher JP (1990) A calcium-dependent slow afterdepolarization recorded in rat dorsolateral septal nucleus neurons in vitro. J Neurophysiol 64, 1838–1846.

    PubMed  CAS  Google Scholar 

  • Haylett DG & Jenkinson DH (1990) Calcium-activated potassium channels. In: Potassium channels Structure, Classification, Function and Therapeutic Potential (Cook NS, ed), pp348–381. Chichester: John Wiley & Sons.

    Google Scholar 

  • Hescheler J & Trautwein W (1988) Modification of L-type calcium current by intracellularly applied trypsin in guinea-pig ventricular myocytes. J Physiol (Lond) 404, 259–274.

    CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes. Sunderland, MA: Sinauer.

    Google Scholar 

  • Hogg RC, Wang Q, Large WA (1994) Effects of Cl channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol 111, 1333–1341.

    Article  PubMed  CAS  Google Scholar 

  • Hugues M, Romey G, Duval D, Vincent JP & Lazdunski M (1982) Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 79, 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  • Hume RI, Thomas SA (1989) A calcium-and voltage-dependent chloride current in developing chick skeletal muscle. J Physiol (Lond) 417, 241–261.

    CAS  Google Scholar 

  • Hussy N (1992) Calcium-activated chloride channels in cultured embryonic Xenopus spinal neurons. Neurophysiol 68, 2042–2050.

    CAS  Google Scholar 

  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP & Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94, 11651–11656.

    Article  PubMed  CAS  Google Scholar 

  • Jobling P, McLachlan EM & Sah P (1993) Calcium induced calcium release is involved in the afterhyperpolarization in one class of guinea pig sympathetic neurone. J Auton Nerv Syst 42, 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Kameyama M, Hescheler J, Hofmann F & Trautwein W (1986) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Kameyama M, Hofmann F & Trautwein W (1985) On the mechanism of beta-adrenergic regulation of the Ca2+ channel in giunea pig heart. Pflügers Arch 405, 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Kass RS & Sanguinetti MC (1984) Inactivation of calcium channel current in the calf cardiac Purkinje fiber. J Gen Physiol 84, 705–726.

    Article  PubMed  CAS  Google Scholar 

  • Keizer J & Maki LW (1992) Conditional probability analysis for a domain model of Ca2+-inactivation of Ca2+ channels. Biophys J 63, 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk PG, Veselovsky NS & Fedulova SA (1981) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons II. calcium current. Neuroseience 6, 2431–2437.

    Article  CAS  Google Scholar 

  • Kuba K & Nishi S (1976) Rhythmic hyperpolarizations and depolarizations of sympathetic ganglion cells induced by caffeine. J Neurophysiol 39, 547–563.

    PubMed  CAS  Google Scholar 

  • Lancaster B & Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55, 1268–1282.

    PubMed  CAS  Google Scholar 

  • Lang DG & Ritchie AK (1990) Tetraethylammonium ion sensitivity of a 35-pS Ca2+-activated K+ channel in GH3 cells that is activated by thyrotropin-releasing hormone. Pflugers Arch 416, 704–709.

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Marban E & Tsien RW (1985) Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol (Lond) 364, 395–411.

    CAS  Google Scholar 

  • Levy S (1992) Effect of intracellular injection of inositol trisphosphate on cytosolic calcium and membrane currents in Aplysia neurons. J Neurosci 12, 2120–2129.

    PubMed  CAS  Google Scholar 

  • Lewis CA, Ahmed Z & Faber DS (1989) Characteristics of glycine-activated conductances in cultured medullary neurons from embryonic rat. Neurosci Lett 96, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA (1987) Bursting of calcium-activated cation-selective channels is associated with neurite regeneration in a mammalian central neuron. Neurosci Lett 82, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Logsdon NJ, Kang J, Togo JA, Christian EP & Aiyar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272, 32723–32726.

    Article  PubMed  CAS  Google Scholar 

  • Lotshaw DP, Levitan ES & Levitan IB (1986) Fine tuning of neuronal electrical activity: Modulation of soveral ionic channels by intracellular messengers in a single identified nerve cell. J Exp Biol 124, 307–322.

    PubMed  CAS  Google Scholar 

  • Marty A (1981) Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 291, 497–500.

    Article  PubMed  CAS  Google Scholar 

  • Marty A (1989) The physiological role of calcium-dependent channels. Trends Neurosci 12, 420–424.

    Article  PubMed  CAS  Google Scholar 

  • Marunaka Y & Eaton DC (1990) Effects of insulin and phosphatase on a Ca2+-dependent Cl channel in a distal nephron cell line. J Gen Physiol 95, 773–789.

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML (1985) A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. J Physiol (Lond) 364, 217–239.

    CAS  Google Scholar 

  • McCann JD, Welsh MJ (1990) Regulation of Cl and K+ channels in airway epithelium. Annu Rev Physiol 52, 115–135.

    Article  PubMed  CAS  Google Scholar 

  • Meech RW (1974) The sensitivity of Helix aspersa neurones to injected calcium ions. J Physiol (Lond) 237, 259–277.

    CAS  Google Scholar 

  • Mentrard D, Vassort G & Fischmeister R (1984) Calciummediated inactivation of the calcium conductance in cesi-umloaded frog heart cells. J Gen Physiol 83, 105–131.

    Article  PubMed  CAS  Google Scholar 

  • Miledi R (1982) A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond B Biol Sci 215, 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Moczydlowski E, Latorre R & Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313, 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Mudrick LA & Heinemann U (1990) Quisqualate-induced changes in extracellular sodium and calcium concentrations persist in the combined presence of NMDA and non-NMDA receptor antagonists in rat hippocampal slices. Neurosci Lett 116, 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Müller TH, Swandulla D & Lux HD (1989) Activation of three types of membrane currents by various divalent cations in identified molluscan pacemaker neurons. J Gen Physiol 94, 997–1014.

    Article  PubMed  Google Scholar 

  • Müller W & Connor JA (1991) Cholinergic input uncouples Ca2+ changes from K+ conductance activation and amplifies Ca2+ changes in hippocampal neurons. Neuron 6, 901–905.

    Article  PubMed  Google Scholar 

  • Neely A, Olcese R, Wei X, Birnbaumer L & Stefani E (1994) Ca2+-dependent inactivauon of a cloned cardiac Ca2+ channel a, subunit (alc) expressed in Xenopus oocytes. Biophys J 66, 1895.

    Article  PubMed  CAS  Google Scholar 

  • Neher E & Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells, J Physiol (Lond) 450, 273–301.

    CAS  Google Scholar 

  • Nilius B, Hess P, Lansman JB & Tsien RW (1985) Anovel type of cardiac calcium channel in ventricular cells. Nature 316, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Nohmi M & Kuba K (1984) (+)-Tubocurarine blocks the Ca2+-dependent K+-channel of the bullfrog sympathetic ganglion cell. Brain Res 301, 146–148.

    Article  PubMed  CAS  Google Scholar 

  • Nussinowitch I (1988) Growth hormone releasing factor evokes rhythmic hyperpolarizing currents in rat anterior pituitary cells. J Physiol (Lond) 395, 303–318.

    Google Scholar 

  • Osmanovic SS & Shefner SA (1993) Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro. J Physiol (Lond) 469, 89–109.

    CAS  Google Scholar 

  • Owen DG, Segal M & Barker JL (1986) Voltage-clamp analysis of a Ca2+-and voltage-dependent chloride conductance in cultured mouse spinal neurons. Neurophysiol 55, 1115–1135.

    CAS  Google Scholar 

  • Pallotta BS, Magleby KL & Barrett JN (1981) Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293, 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Park YB (1994) Ion selectivity and gating of small conductance Ca2+-activated K+ channels in cultured rat adrenal chromaffin cells. J Physiol (Lond) 481, 555–570.

    CAS  Google Scholar 

  • Partridge LD Cytoplasmic Ca2+ activity regulation as measured by a calcium-activated current, Brain Res in press.

    Google Scholar 

  • Partridge LD & Swandulla (1988) Calcium-activated nonspecific cation channels. Trends Neurosci 11, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Partridge LD & Swandulla D (1987) Single Ca-activated cation channels in bursting neurons of Helix. Pflügers Arch 410, 627–631.

    Article  PubMed  CAS  Google Scholar 

  • Partridge LD, Swandulla D & Müller TH (1990) Modulation of calcium-activated non-specific cation currents by cyclic AMPdependent phosphorylation of neurons of Helix. J Physiol (Lond) 429, 131–145.

    CAS  Google Scholar 

  • Partridge LD, Swandulla D & Müller TH (1992) Regulation of non-specific cation channels by intracellular calcium and cAMPdependent membrane phosphorylation in burster neurons of Helix. In: Epilepsy and Inhibition (Speckmann E & Gutnick M, eds), Munich: Urban and Schwarzenberg.

    Google Scholar 

  • Pennefather P, Lancaster B, Adams PR & Nicoll RA (1985) Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Acad Sci USA 82, 3040–3044.

    Article  PubMed  CAS  Google Scholar 

  • Poronnik P, Ward MC & Cook DI (1992) Intracellular Ca2+ release by flufenamic acid and other blockers of the non-selective cation channel. FEBS Lett 296, 245.

    Article  PubMed  CAS  Google Scholar 

  • Puro DG (1991) A calcium-activated, calcium-permeable ion channel in human retinal glial cells — modulation by basic fibroblast growth factor. Brain Res 548, 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Razani-Boroujerdi S & Partridge LD (1993) Activation and modulation of calcium-activated non-selective cation channels from embryonic chick sensory neurons. Brain Res 623, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart PH, Chung S & Levitan IB (1989) A family of calcium-dependent potassium channels from rat brain. Neuron 2, 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart PH, Chung S, Martin BL, Brautigan DL & Levitan IB (1991) Modulation of calcium-activated potassium channels from rat brain by protein kinase and phosphatase 2A. J Neurosci 11, 1627–1635.

    PubMed  CAS  Google Scholar 

  • Reuter H (1974) Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials ionic currents and tension in mammalian cardiac muscle. J Physiol (Lond) 142, 429–451.

    Google Scholar 

  • Reuter H (1983) Calcium channel modulation of neurotransmitters, enzymes and drugs. Nature 301, 569–574.

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM, Jacobs RA & Hudspeth A (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10, 3664–3684.

    PubMed  CAS  Google Scholar 

  • Rod MR & Auer RN (1992) Combination therapy with nimodipine and dizocilpine in a rat model of transient fore-brain ischemia. Stroke 23, 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Romey G & Lazdunski M (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem Biophys Res Commun 118, 669–674.

    Article  PubMed  CAS  Google Scholar 

  • Sah P & McLachlan EM (1991) Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron 7, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Sah P & McLachlan EM (1992) Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J Neurophysiol 68, 1834–1841.

    PubMed  CAS  Google Scholar 

  • Sah P (1996) Ca2+-activated K+ currents in neurones: types, physiological, roles and modulation. Trends Pharmacol Sci 19, 150–154.

    CAS  Google Scholar 

  • Sargent Jones L & Lewis DV (1988) A calcium-activated, nonselective cationic conductance in Aplysia silent neurons. Brain Res Bull 20, 607–609.

    Article  Google Scholar 

  • Sawada M, Ichinose M & Maeno T (1990) Activation of a non-specific cation conductance by intracellular injection of inositol 1,3,4,5-tetrakisphosphate into identified neurons of Aplysia. Brain Res 512, 333–338.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer P & Lazdunski M (1991) K+ efflux pathways and neurotransmitter release associated to hippocampal ischemia — effects of glucose and of K channel blockers. Brain Res 539, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Scherubl H, Kleppisch T, Zink A, Raue F, Krautwurst D & Hescheler J (1993) Major role of dihydropyridine-sensitive Ca2+ channels in Ca2+-induced calcitonin secretion. Am J Physiol 264, E354–E360.

    PubMed  CAS  Google Scholar 

  • Sham JSK (1997) Ca2+ release-induced inactivation of Ca2+ current in rat ventricular myocytes: evidence for lacal Ca2+ signalling. J Physiol (Lond) 500, 285–295.

    CAS  Google Scholar 

  • Sheng M, McFadden G & Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571–582.

    Article  PubMed  CAS  Google Scholar 

  • Sherman A, Keizer J & Rinzel J (1990) Domain model for Ca2+-inactivation of Ca2+ channels at low channel density. Biophys J 58, 985–995.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö BK & Bengtsson F (1989) Calcium fluxes, calciumantagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression: a unifying hypothesis. J Cerebral Blood Flow and Metabolism 9, 127–140.

    Article  Google Scholar 

  • Smart TG (1997) Single calcium-activated potassium channels recorded from cultured rat sympathetic neurones. J Physiol (Lond) 389, 337–360.

    Google Scholar 

  • Standen NB & Stanfield PR (1982) A binding-site model for calcium channel inactivation that depends on calcium entry. Proc R Soc Lond (B) 217, 101–110.

    Article  CAS  Google Scholar 

  • Storm JF (1987) Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol (Lond) 385, 733–759.

    CAS  Google Scholar 

  • Takeuchi S, Marcus DC & Wangemann P (1992) Ca2+-activated non-selective cation maxi-K+ and Cl channels in apical membrane of marginal cells of stria vascularis. Hearing Res 61, 86–92.

    Article  CAS  Google Scholar 

  • Tsien RW & Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6, 715–760.

    Article  PubMed  CAS  Google Scholar 

  • Uneyama H, Munakata M & Akaike N (1993) Caffeine response in pyramidal neurons freshly dissociated from rat hippocampus. Brain Res 604, 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Vogalis F, & Goyal RK (1997) Activation of small conductance Ca2+-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol (Lond) 502, 497–508.

    Article  CAS  Google Scholar 

  • Yang CR, Phillips IM & Renaud LP (1992) Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am J Physiol 263, R1333–1338.

    PubMed  CAS  Google Scholar 

  • Yarom Y, Sugimori M & Llinas R (1985) Ionic currents and firing patterns of mammalian vagal motoneurons in vitro. Neuroscience 16, 719–737.

    Article  PubMed  CAS  Google Scholar 

  • Yazenian B & Byerly L (1989) Voltage-independent Ba-permeable channel activated in Lymnaea, neurons by internal perfusion or patch excision. J Mem Biol 107, 63–75.

    Article  Google Scholar 

  • Yoshizaki K, Hoshino T, Sato M, Koyano H, Nohmi M, Hua SY & Kuba K (1995) Ca2+-induced Ca2+ release and its activation in response to a single action potential in rabbit otic ganglion cells. J Physiol (Lond) 486, 177–187.

    CAS  Google Scholar 

  • Young DB & Vanvliet BN (1992) Migraine with aura — a vicious cycle perpetuated by potassium-induced vasoconstriction. Headache 32, 24–34.

    Article  PubMed  CAS  Google Scholar 

  • Zeilhofer HU, Müller TH & Swandulla D (1996): Calcium channel types contributing to excitatory and inhibitory synaptic transmission between individual hypothalamic neurons. Pflügers Arch 432, 248–257.

    Article  PubMed  CAS  Google Scholar 

  • Zong X & Hofmann F (1996) Ca2+-dependent inactivation of the class C L-Type Ca2+ channel is a property of the a, subunit. FEBS Lett 378, 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Hatt H & Keil TA (1991) A calcium-activated nonspecific cation channel from olfactory receptor neurons of the silkmoth Antheraea polyphemus. J Exp Biol 161, 455–468.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swandulla, D., Zeilhofer, H.U. (1998). Calcium Regulation of Ion Channels. In: Verkhratsky, A., Toescu, E.C. (eds) Integrative Aspects of Calcium Signalling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1901-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1901-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1903-8

  • Online ISBN: 978-1-4899-1901-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics