Skip to main content

Ca2+ Waves as a Form of Glial Excitability

  • Chapter
Integrative Aspects of Calcium Signalling

Abstract

The major focus of neuroscience research since the initial understanding of the action potential has been on investigating the mechanisms and consequences of neuronal signalling, within a single cell and through networks of interconnected neurones. The electrical impulses passing through brain circuits are the primary mechanism in the CNS that enables the intercellular communication necessary to produce complex behaviour. Evidence that, for example, changes in strength of synaptic connections are involved in memory formation, and that the dysregulation of neuronal signalling is implicated in many forms of degenerative brain disease, provided a compelling basis for the importance of this field. In contrast, glial cells were for many years thought to be important only in the metabolic, physical, and trophic support of neuronal function. However, since the late 1980s a new area of interest within neuroscience has developed, which centres on a slower form of communication and signalling involving non-neuronal cells of the central and peripheral nervous systems: glial Ca2+ waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong RC, Harvath L & Dubois-Dalcq E (1990). Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res 27, 400–407.

    Article  PubMed  CAS  Google Scholar 

  • Barres BA (1991) New roles for glia. J Neurosci 11, 3685–2694.

    PubMed  CAS  Google Scholar 

  • Barres BA & Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260.

    Article  PubMed  CAS  Google Scholar 

  • Barry C, Pearson C & Barbarese E (1996) Morphological organization of oligodendrocyte processes during development in culture and in vivo. Dev Neurosci 18, 233–242.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein M, Lyons SA, Moller T & Kettenmann H (1996) Receptor-mediated calcium signalling in glial cells from mouse corpus callosum slices. J Neurosci Res 46, 152–163.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH & Sakmann B (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566–1570.

    Article  PubMed  CAS  Google Scholar 

  • Camacho P & Lechleiter JD (1995) Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82, 765–771.

    Article  PubMed  CAS  Google Scholar 

  • Charles AC, Dirksen ER, Merrill JE & Sanderson MJ (1993) Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia 7, 134–145.

    Article  PubMed  CAS  Google Scholar 

  • Charles AC (1994) Glia-neuron intercellular calcium signalling. Dev Neurosci 16, 196–206.

    Article  PubMed  CAS  Google Scholar 

  • Cohen RI, Molina-Holgado E & Almazan G (1996) Carbachol stimulates c-fos expression and proliferation in oligodendrocyte progenitors. Mol Brain Res 43, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS & Smith SJ (1990a) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Thomas PG & Smith SJ (1990b) The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes. Glia 3, 322–334.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell AH & Finkbeiner SM (1991) Ca2+ waves in astrocytes. Cell Calcium 12, 195–204.

    Article  Google Scholar 

  • Dani JW, Chernjavsky A & Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Dani JW & Smith SJ (1995) The triggering of astrocytic calcium waves by NMDA-induced neuronal activation. Ciba Found Symposia 188, 195–209.

    CAS  Google Scholar 

  • Dolmetsch RE, Lewis RS, Goodnow CC & Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858.

    Article  PubMed  CAS  Google Scholar 

  • Duffy S & MacVicar BA (1995) Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15, 5635–5550.

    Google Scholar 

  • Enkvist MOK & McCarthy KD (1994) Astroglial gap junction communication is increased by treatment with either glutamate of high K+ concentration. J Neurochem 62, 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Fatatis A & Miller RJ (1996) Sphingosine and sphingosine-1-phosphate differentially modulate platelet-derived growth factor-BB-induced Ca2+ signaling in transformed oligodendrocytes. J Biol Chem 271, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Fatatis A & Miller RJ (1997) Platelet-derived growth factor (PDGF)-induced Ca2+ signaling in the CG4 oligoden-droglial cell line and in transformed oligodendrocytes expressing the beta-PDGF receptor. J Biol Chem 272, 4351–4358.

    Article  PubMed  CAS  Google Scholar 

  • Fay FS, Gilbert SH & Brundage RA (1995) Calcium signalling during chemotaxis. Ciba Foundation Symposia 188, 121–135.

    PubMed  CAS  Google Scholar 

  • Feiguin F, Ferreira A, Kosik KS & Caceres A (1994) Kinesin-mediated organelle translocation revealed by specific cellular manipulations. J Cell Biol 127, 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner S (1992) Calcium waves in astrocytes — filling in the gaps. Neuron 8, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner S (1993) Glial calcium. Glia 9, 83–104.

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, Bayley SA & Blakemore WF (1996) Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp Neurol 137, 263–276.

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Pende M, Scherer, S, Moine M & Wright P (1995) Expression and regulation of kainate and AMPA receptors in uncommitted and committed neural progenitors. Neurochem Res 20, 549–560.

    Article  PubMed  CAS  Google Scholar 

  • Gallo V & Russell JT (1995) Excitatory amino acid receptors in glia: different subtypes for distinct functions? J Neurosci Res 42, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Gallo V, Zhou JM, McBain CJ, Wright P, Knutson PL & Armstrong RC (1996) Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J Neurosci 16, 2659–2670.

    PubMed  CAS  Google Scholar 

  • Giaume C & McCarthy KD (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19, 319–326.

    Article  PubMed  CAS  Google Scholar 

  • Goldman WF, Yarowsky PJ, Juhaszova M, Krueger BK & Blaustein MP (1994) Sodium/calcium exchange in rat cortical astrocytes. J Neurosci 14, 5834–5843.

    PubMed  CAS  Google Scholar 

  • Goldman JE, Zerlin M, Newman S, Zhang L & Gensert JA (1997) Fate determination and migration of progenitors in the postnatal mammalian CNS. Dev Neurosci 19, 42–48.

    Article  PubMed  CAS  Google Scholar 

  • Golovina VA, Bambrick LL, Yarowsky PJ, Krueger BK & Blaustein MP (1996) Modulation of two functionally distinct Ca2+ stores in astrocytes: role of the plasmalemmal Na/Ca exchanger. Glia 16, 296–305.

    Article  PubMed  CAS  Google Scholar 

  • Golovina VA & Blaustein MP (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275, 1643–1648.

    Article  PubMed  CAS  Google Scholar 

  • Hajnòczky G, Robb-Gaspers LD, Seitz MB & Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424.

    Article  PubMed  Google Scholar 

  • Hardy R & Reynolds R (1993) Neuron-oligodendroglial interactions during central nervous system development. J Neurosci Res 36, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Hassinger TD, Atkinson PB, Strecker GJ, Whalen LR, Dudek FE, Kossel AH & Kater SB (1995) Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. J Neurobiol 28, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Hassinger TD, Guthrie PB, Atkinson PB, Bennett MVL & Kater SB (1997) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93, 13268–13273.

    Article  Google Scholar 

  • Hauser KF, Stiene-Martin A, Mattson MP, Elde RP, Ryan SE & Godleske CC (1996) μ-Opioid receptor-induced Ca2+ mobilization and astroglial development: morphine inhibits DNA synthesis and stimulates cellular hypertrophy through a Ca2+-dependent mechanism. Brain Res 720, 191–203.

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth JA, Gibbons SJ, Brorson JR, Philipson LH & Miller RJ (1994) Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J Neurosci 14, 1879–1891.

    PubMed  CAS  Google Scholar 

  • Inagaki N, Goto H, Ogawara M, Nishi Y, Ando S & Inagaki M (1997) Spatial patterns of Ca2+ signals define intra-cellular distribution of a signaling by Ca2+/calmodulin-dependent protein kinase H. J Biol Chem 272, 25195–25199.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14, 736–745.

    Article  PubMed  CAS  Google Scholar 

  • Jafri MS & Keizer J (1995) On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys J 69, 2139–2153.

    Article  PubMed  CAS  Google Scholar 

  • Jahromi BS, Robitaille R & Charlton MP (1992) Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8, 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  • Jalonen TO, Margraf RR, Wielt DB, Charniga CJ, Linne ML & Kimelberg HK (1997) Serotonin induces potassium and calcium currents in rat cortical astrocytes. Brain Res 758, 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G & Liu F (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66, 678–684.

    Google Scholar 

  • Jensen AM & Chiu SY (1990) Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J Neurosci 10, 1165–1175.

    PubMed  CAS  Google Scholar 

  • Jou M-J, Peng T-I & Sheu S-S (1996) Histamine induces oscillations of mitochondrial free Ca2+ concentration in single cultured rat brain astrocytes. J Physiol (Lond) 497, 299–308.

    CAS  Google Scholar 

  • Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P & Lechleiter JD (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Kastritsis CH & McCarthy KD (1993) Oligodendroglial lineage cells express neuroligand receptors. Glia 8, 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Keirstead SA & Miller RF (1995) Calcium waves in dissociated retinal glial (Müller) cells are evoked by release of calcium from intracellular stores. Glia 14, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Kim WT, Rioult MG & Cornell-Bell H (1994) Glutamate-induced calcium signaling in astrocytes. Glia 11, 173–84.

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Scherer S, Moller T & Verkhratsky A (1995) Subcellular heterogeneity of voltage-gated Ca2+ channels in cells of the oligodendrocyte lineage. Glia 13, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Tuschick S, Verkhratsky A & Kettenmann H (1996) Calcium signalling in mouse Bergmann glia cells mediated by alpha 1-adrenoceptors and HI histamine receptors. Eur J Neurosci 8, 1198–1208.

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Kettenmann H & Verkhratsky A (1997) Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ. FASEB J 11, 566–572.

    PubMed  CAS  Google Scholar 

  • Kriegler S & Chiu SY (1993) Calcium signaling of glial cells along mammalian axons. J Neurosci 13, 4229–4245.

    PubMed  CAS  Google Scholar 

  • Kuffler SW & Nicholls JC (1966) The physiology of neuroglial cells. Ergeb Physiol 57, 1–190.

    Article  PubMed  CAS  Google Scholar 

  • Larocca JN, Cervone A & Ledeen RW (1987) Stimulation of phosphoinositide hydrolysis in myelin by muscarinic agonist and potassium. Brain Res 436, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram V & Grinvald A (1986) Ca2+-and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes. Proc Natl Acad Sci USA 83, 6651–6655.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Ram V & Ellisman MH (1995) Axonal activation-induced calcium transients in myelinating Schwann cells, sources and mechanisms. J Neurosci 15, 2628–2637.

    PubMed  CAS  Google Scholar 

  • Lipp P, Huser J, Pott L & Niggli E (1996) Subcellular properties of triggered Ca2+ waves in isolated citrate-loaded guinea-pig atrial myocytes characterized by ratiometric confocal microscopy. J Physiol (Lond) 497, 599–610.

    CAS  Google Scholar 

  • Liu HN & Almazan G (1995) Glutamate induces c-fos proto-oncogene expression and inhibits proliferation in oligodendrocyte progenitors: receptor characterization. Eur J Neurosci 7, 2355–2363.

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Fine RE, Simons E & Johnson RT (1994) Decreasing calreticulin expression lowers the Ca2+ response to bradykinin and increases sensitivity to ionomycin in NG-108-15 cells. J Biol Chem 269, 28635–28639.

    PubMed  CAS  Google Scholar 

  • Liu Q-Y, Schaffner AE, Chang YH, Vaszil K & Barker JL (1997) Astrocytes regulate amino acid receptor current densities in embryonic rat hippocampal neurons. J Neurobiol 33, 848–864.

    Article  PubMed  CAS  Google Scholar 

  • Mack KJ, Kriegler S, Chang S & Chiu S-Y (1994) Transcription factor expression is induced by axonal stimulation and glutamate in the glia of the developing nervous system. Mol Brain Res 23, 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Malcolm C, Grieve A, Ritchie L, Schousboe A & Griffiths R (1996) NMDA receptor-mediated cGMP synthesis in primary cultures of mouse cerebellar granule cells appears to involve neuron-astrocyte communication with NO operating as the intercellular messenger. J Neurosci Res 45, 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Marks PW, Hendey B & Maxfield FR (1991) Attachment to fibronectin or vitronectin makes human neutrophil migration sensitive to alterations in cytosolic free calcium concentration. J Cell Biol 112, 151–158.

    Article  Google Scholar 

  • Mennerick S & Zorumski CF (1994) Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Milner R (1997) Understanding the molecular basis of cell migration; implications for clinical therapy in multiple sclerosis. Clin Sci 92, 113–122.

    PubMed  CAS  Google Scholar 

  • Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  • Newman EA & Zahs KR (1997) Calcium waves in retinal glial cells. Science 275, 844–847.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls D & Akerman K (1982) Mitochondrial calcium transport. Biochim Biophys Acta 683, 57–88.

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S & Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Liu F, Jeftinija KV, Haydon PG & Jeftinija SD (1995) Neuroligand-evoked calcium-dependent release of excitatory amino acids from Schwann cells. J Neurosci 15, 5831–5838.

    PubMed  CAS  Google Scholar 

  • Pasti L, Pozzan T & Carmignoto G (1995) Long-lasting changes of calcium oscillations in astrocytes. J Biol Chem 271, 15203–15210.

    Google Scholar 

  • Pasti L, Volterra A, Pozzan T & Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17, 7817–7830.

    PubMed  CAS  Google Scholar 

  • Pearce B, Cambray-Deakin M, Morrow C, Grimble J & Murphy S (1985) Activation of muscarinic and of alpha 1-adrenergic receptors on astrocytes results in the accumulation of inositol phosphates. J Neurochem 45, 1534–1540.

    Article  PubMed  CAS  Google Scholar 

  • Pende M, Holtzclaw LA, Curtis JL, Russell JT & Gallo V (1994) Glutamate regulates intracellular calcium and gene expression in oligodendrocyte progenitors through the activation of DL-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Proc Natl Acad Sci USA 91, 3215–3219.

    Article  PubMed  CAS  Google Scholar 

  • Pende M, Fisher TL, Simpson PB, Russell JT, Blenis J & Gallo V (1997) Neurotransmitter-and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J Neurosci 17, 1291–1301.

    PubMed  CAS  Google Scholar 

  • Peuchen S, Duchen MR & Clark JB (1996) Energy metabolism of adult astrocytes in vitro. Neuroscience 71, 855–370.

    Article  PubMed  CAS  Google Scholar 

  • Porter JT & McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 13, 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Porter JT & McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 15, 5073–5081.

    Google Scholar 

  • Puro DG, Yuan JP & Sucher NJ (1996) Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium currents. Vis Neurosci 13, 319–326.

    Article  PubMed  CAS  Google Scholar 

  • Reist NE & Smith SJ (1992) Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. Proc Natl Acad Sci USA 89, 7625–7629.

    Article  PubMed  CAS  Google Scholar 

  • Roth BJ, Yagodin SV, Holtzclaw L & Russell JT (1995) A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium 17, 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ (1995) Intercellular waves mediated by inositol trisphosphate. Ciba Foundation Symposia 188, 175–189.

    PubMed  CAS  Google Scholar 

  • Shao Y, Porter JT & McCarthy KD (1994) Neuroligand receptor heterogeneity among astroglia. Perspectives Dev Neurobiol 2, 205–215.

    CAS  Google Scholar 

  • Sheppard CA, Simpson PB, Sharp AH, Nucifora FC, Ross CA, Lange GD & Russell JT (1997) Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes. J Neurochem 68, 2317–2327.

    Article  PubMed  CAS  Google Scholar 

  • Simpson PB, Challiss RAJ & Nahorski SR (1995a) Neuronal Ca2+ stores: activation and function. Trends Neurosci 18, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Simpson PB, Sheppard CA & Russell JT (1995b) Properties of Ca2+ stores in type 1 and type 2 astrocytes. Soc Neurosci Abstr 21, 1129.

    Google Scholar 

  • Simpson PB & Russell JT (1996) Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J Biol Chem 271, 33493–33501.

    Article  PubMed  CAS  Google Scholar 

  • Simpson PB & Russell JT (1997) Role of sarcoplasmic/endoplasmic-reticulum Ca2+-ATPases in mediating Ca2+ waves and local Ca2+-release microdomains in cultured glia. Biochem J 325, 239–247.

    PubMed  CAS  Google Scholar 

  • Simpson PB, Mehotra S, Lange GD & Russell JT (1997) High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 272, 22654–22661.

    Article  PubMed  CAS  Google Scholar 

  • Simpson PB & Russell JT (1998) Role of mitochondrial Ca2+ regulation in neuronal and glial cell signalling. Brain Res Rev 26, (in press).

    Google Scholar 

  • Small RK, Riddle P & Noble M (1987) Evidence for migration of oligodendrocyte-type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature 328, 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ (1994) Neuromodulatory astrocytes. Curr Biol 4, 807–810.

    Article  PubMed  CAS  Google Scholar 

  • Sneyd J, Charles AC & Sanderson MJ (1994) A model for the propagation of intercellular calcium waves. Amer J Physiol 266, C293–C302.

    PubMed  CAS  Google Scholar 

  • Soliven B, Takeda M, Shandy T & Nelson DJ (1993) Arachidonic acid and its metabolites increase Cai in cultured rat oligodendrocytes. Amer J Physiol 264, C632–640.

    PubMed  CAS  Google Scholar 

  • Sparagna GC, Gunter KK, Sheu SS & Gunter TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270, 27510–27515.

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Nelson DJ & Soliven B (1995) Calcium signaling in cultured rat oligodendrocytes. Glia 14, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Valius M & Kazlauskas A (1993) Phospholipase C-γl and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73, 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Van Bockstaele EJ & Colago EEO (1996) Selective distribution of the NMDA-R1 glutamate receptor in astrocytes and presynaptic axon terminals in the nucleus locus coeruleus of the rat brain: an immunoelectron microscopic study. J Comp Nenrol 369, 483–496.

    Article  Google Scholar 

  • Van den Pol AN, Finkbeiner SM & Cornell-Bell, AH (1992) Calcium excitability and oscillations in suprachiasmatic nucleus neurons and glia in vitro. J Neurosci 12, 2648–2664.

    PubMed  Google Scholar 

  • Venance L, Stella N, Glowinski J & Giaume C (1997) Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci 17, 1981–1992.

    PubMed  CAS  Google Scholar 

  • Verkhratsky A & Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol 49, 185–214.

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Pralong WF, Schulz MF, Rougon G, Aubry JM, Pagliusi S, Robert A & Kiss JZ (1996) Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells — a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J Cell Biol 135, 1565–1581.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Tymianski M, Jones OT & Nedergaard M (1997) Impact of cytoplasmic calcium buffering on the spatial and temporal characteristics of intercellular calcium signals in astrocytes. J Neurosci 17, 7359–7371.

    PubMed  CAS  Google Scholar 

  • Wedler FC, Vichnin MC, Ley BW, Tholey G, Ledig M & Copin J-C (1994) Effects of Ca(II) ions on Mn (II) dynamics in chick glia and rat astrocytes: potential regulation of glutamine synthetase. Neurochem Res 19, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Wolswijk G & Noble M (1992). Cooperation between PDGF and FGF converts slowly dividing O-2A adult progenitor cells to rapidly dividing cells with the characteristics of O-2A perinatal progenitor cells. J Cell Biol 118, 889–900.

    Article  PubMed  CAS  Google Scholar 

  • Wood A, Wing MG, Benham CD & Compston DAS (1993) Specific induction of intracellular calcium oscillations by complement membrane attack on oligodendroglia. J Neurosci 13, 3319–3332.

    PubMed  CAS  Google Scholar 

  • Yagodin SV, Holtzclaw L, Sheppard CA & Russell JT (1994) Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. J Neurobiol 25, 265–280.

    Article  PubMed  CAS  Google Scholar 

  • Yano S, Fukunaga K, Ushio Y & Miyamoto E (1994) Activation of Ca2+/calmodulin-dependent protein kinase II and phosphorylation of intermediate filament proteins by stimulation of glutamate receptors in cultured cortical astrocytes. J Biol Chem 269, 5428–5439.

    PubMed  CAS  Google Scholar 

  • Yokote K, Mori S, Siegbahn A, Ronnstrand L, Wernstedt C, Heldin C-H & Claesson-Welsh L (1996) Structural determinants in the platelet-derived growth factor a-receptor implicated in modulation of chemotaxis. J Biol Chem 271, 5101–5111.

    Article  PubMed  CAS  Google Scholar 

  • Zanotti S & Charles A (1997) Extracellular calcium sensing by glial cells: low extracellular calcium induces intracellular calcium release and intercellular signaling. J Neurochem 69, 594–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simpson, P.B. (1998). Ca2+ Waves as a Form of Glial Excitability. In: Verkhratsky, A., Toescu, E.C. (eds) Integrative Aspects of Calcium Signalling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1901-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1901-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1903-8

  • Online ISBN: 978-1-4899-1901-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics