Skip to main content

Introduction

Principles of Calcium Signalling

  • Chapter
Integrative Aspects of Calcium Signalling
  • 92 Accesses

Abstract

Like the ancient Queen Mab, calcium, drawn by a team of atomic forces, rushes into the cells and magic begins (Figure 1). Muscles start to contract, transporters start to transport commodities, enzymes begin their alchemical transformation of waste into gold and genes give birth to new molecules. When calcium is absent life is impossible and when there is too much of it, cells die. The roles for this most ubiquitous and almighty ion are endless and almost everything seem to be under its influence. This central and fundamental place of calcium had become known to physiologists for more than a hundred years ago, starting with the experiments of Sydney Ringer at UCL (Ringer, 1883) and, since then, millions of experiments helped to establish and refine the theory of intracellular Ca2+ as a universal signalling molecule.

O, then, I see Queen Mab hath been with you. She is the fairies’ midwife, and she comes In shape no bigger than an agate-stone On the fore-finger of an alderman, Drawn with a team of little atomies

(Shakespeare, Romeo & Juliet)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alford S, Frengueli B G, Schoefield J G & Collingridge G L (1993) Characterization of Ca2+ signals induced in hippocampal CAl neurons by the synaptic activation of NMDA receptors. J Physiol Lond 469, 693–716.

    PubMed  CAS  Google Scholar 

  • Babcock D F, Herrington J, Goodwin P C, Park Y B & Hille B (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cel. Biol 136, 833–844.

    Article  CAS  Google Scholar 

  • Baimbridge K G, Celio M R & Rogers J H (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Belan P, Gerasimenko O, Petersen O H & Tepikin A V (1997) Distribution of Ca2+ extrusion sites on the mouse pancreatic acinar cell surface. Cell Calcium 22, 5–10.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P & Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28, 131–8.

    Article  PubMed  CAS  Google Scholar 

  • Berridge M (1997) The AM and FM of calcium signalling. Nature 386, 759–760.

    Article  PubMed  CAS  Google Scholar 

  • Berridge M J (1995) Capacitative calcium entry. Biochemical J 312, 1–12.

    CAS  Google Scholar 

  • Bezprozvanny I (1996) Inositol (1,4,5)-trisphosphate receptors: functional properties, modulation, and role in calcium wave propagation. Soc Gen Physiol Ser 51, 75–86.

    PubMed  CAS  Google Scholar 

  • Blaustein M P, Goldman W F, Fontana G, Krueger B K, Santiago E, Steel T D, Weiss D N & Yarowsky P J (1991) Physiological role of the sodium-calcium exchanger in nerve and muscle. Ann N Y A cad Sci 639, 254–274.

    Article  CAS  Google Scholar 

  • Burnashev N (1996) Calcium permeability of glutamate gated channels in the central nervous system. Current Opinion Neurobiol 6, 311–317.

    Article  CAS  Google Scholar 

  • Campbell A (1985) Intracellular Calcium — Its universal role as regulator. John Wiley & Sons: Chichester.

    Google Scholar 

  • Carafoli E, Garcia Martin E & Guerini D (1996) The plasma membrane calcium pump: recent developments and future perspectives. Experientia 52, 1091–100.

    Article  PubMed  CAS  Google Scholar 

  • Chay T R (1996) Modeling slowly bursting neurons via calcium store and voltage-independent calcium current. Neural Comput 8, 951–978.

    Article  PubMed  CAS  Google Scholar 

  • Clapham D E (1995) Calcium signaling. Cell 80, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Clapham D E (1996) TRP is cracked but is CRAC TRP. Neuron 16, 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  • Clementi E & Meldolesi J (1996) Pharmacological and functional properties of voltage-independent Ca2+ channels. Cell Calcium 19, 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Cobbold P H, Sanchez-Bueno A & Dixon C J (1991) The hepatocyte calcium oscillator. Cell Calcium 12, 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin A C (1996) Facilitation of Ca2+ current in excitable cells. Trends Neurosci 19, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Elliot E, Malouf A & Catterall W (1995) Role of calcium channel subtypes in calcium transients in hippocampal CA3 neurons. J Neurosci 15, 6433–44.

    Google Scholar 

  • Franklin J L & Johnson E M J (1992) Supression of programmed neuronal death by sustained elevation of cyto-plasmic calcium. Trends Neurosci 15, 501–508.

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C & Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77, 699–729.

    PubMed  CAS  Google Scholar 

  • Friel D D (1995) [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophys J 68, 1752–1766.

    Article  PubMed  CAS  Google Scholar 

  • Furuichi T, Kohda K, Miyawaki A & Mikoshiba K (1994) Intracellular channels. Current Opinion Neurobiol 4, 294–303.

    Article  CAS  Google Scholar 

  • Garaschuk O, Yaari Y & Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol Lond 502, 13–30.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko O V, Gerasimenko J V, Tepikin A V & Petersen O H (1996) Calcium transport pathways in the nucleus. Pflugers Arch 432, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A & Greenberg M E (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Biel M & Flockerzi V (1994) Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci 17, 399–418.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M & Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  • Huguenard J R (1996) Low threshold calcium currents in central nervous system. Annu Rev Physiol 58, 329–348.

    Article  PubMed  CAS  Google Scholar 

  • Ichas F, Jouaville L S & Mazat J P (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89, 1145–53.

    Article  PubMed  CAS  Google Scholar 

  • Irving A J, Collingridge G L & Schoefield J G (1992) Interactions between Ca2+ mobilizing mechanisms in cultured rat cerebellar granule cells. J Physiol Lond 456, 667–680.

    PubMed  CAS  Google Scholar 

  • Kasai H (1993) Cytosolic Ca2+ gradients, Ca2+ binding proteins and synaptic plasticity. Neurosci Res 16, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Kasai H & Augustine G J (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348, 735–738.

    Article  PubMed  CAS  Google Scholar 

  • Khodakhah K & Ogden D (1993) Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues. Proc Natl Acad Sci USA 90, 4976–80.

    Article  PubMed  CAS  Google Scholar 

  • Kirischuk S, Voitenko N, Kostyuk P & Verkhratsky A (1996) Calcium signalling in granule neurones studied in cerebellar slices. Cell Calcium 19, 59–71.

    Article  PubMed  CAS  Google Scholar 

  • Komuro H & Rakic P (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk P G & Verkhratsky A N (1995) Calcium signalling in the Nervous System. John Wiley & Sons, Ltd.: Chichester.

    Google Scholar 

  • Lechleiter J, Girard S, Clapham D & Peralta E (1991) Subcellular patterns of calcium release determined by G-protein-specific residues of muscarinic receptors. Nature 350, 505–508.

    Article  PubMed  CAS  Google Scholar 

  • Llano I, DiPolo R & Marty A (1994) Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12, 663–73.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan D H, Rice W J & Green M N (1997) The mechanism of Ca2+ transport by Sarco(Endo)plasmic reticulum Ca2+-ATPase. J Biol Chem 272, 28815–28818.

    Article  PubMed  CAS  Google Scholar 

  • Marks A R (1997) Intracellular calcium-release channels: regulators of cell life and death. Amer J Physiol 272, H597–605.

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Inooka G, Li Y, Miyashita Y & Kasai H (1993) Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J 12, 3017–3022.

    PubMed  CAS  Google Scholar 

  • Meissner G (1994) Ryanodine receptor/Ca2+ release channels and their regulation by endogeneous effectors. Annu Rev Physiol 56, 485–508.

    Article  PubMed  CAS  Google Scholar 

  • Mogami H, Nakano K, Tepikin AV& Petersen O H (1997) Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Murphy S N & Miller R J (1989) Two distinct quisqualate receptors regulate Ca2+ homeostasis in hippocampal neurons in vitro. Mol Pharmacol 35, 671–680.

    PubMed  CAS  Google Scholar 

  • Nathanson M H, Padfield P J, O’Sullivan A J, Burgsthaler A D & Jamieson J D (1992) Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J Biol Chem 267, 18118–18121.

    PubMed  CAS  Google Scholar 

  • Parekh A, Fleig A & Penner R (1997) The store-operated calcium current ICRAC: Nonlinear activation by InsP3 and dissociation from calcium release. Cell 89, 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Parekh A B & Penner R (1997) Store depletion and calcium influx. Physiol Rev 77, 901–30.

    PubMed  CAS  Google Scholar 

  • Paschen W (1996) Disturbances of calcium homeostasis within the endoplasmic reticulum may contribute to the development of ischemic-cell damage. Med Hypothes 47, 283–288.

    Article  CAS  Google Scholar 

  • Patel S, Morris S A, Adkins C E, O’Beirne G & Taylor C W (1997) Ca2+-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2+ mobilization. Proc Natl Acad Sci USA 94, 11627–32.

    Article  PubMed  CAS  Google Scholar 

  • Petersen C C H, Toescu E C & Petersen O H (1991) Different patterns of receptor-activated cytoplasmic Ca2+ oscillations in single pancreatic acinar cells: dependence on the receptor type, agonist concentration and intracellular Ca2+ buffering. EMBO J 10, 527–533.

    PubMed  CAS  Google Scholar 

  • Petersen O H, Petersen C C H & Kasai H (1994) Calcium and hormone action. Annu Rev Physiol 56, 297–319.

    Article  PubMed  CAS  Google Scholar 

  • Prentki M, Glennon M C, Thomas A P, Morris R L, Matschinky FM & Corkey B E (1988) Cell-specific patterns of oscillating free Ca2+ in carbamylcholine-stimulated insulinoma cells. J Biol Chem 263, 11044–11047.

    PubMed  CAS  Google Scholar 

  • Putney J W, Jr. (1990) Capacitative calcium entry revisited. Cell Calcium 11, 611–624.

    Article  PubMed  CAS  Google Scholar 

  • Rao A & Craig A M (1997) Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Reuter H (1996) Diversity and function of presynaptic calcium channels in the brain. Current Opinion Neurobiol 6, 331–7.

    Article  CAS  Google Scholar 

  • Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol Lond 4, 29–42.

    PubMed  CAS  Google Scholar 

  • Seymour Laurent K J & Barish M E (1995) Inositol 1, 4, 5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine-and caffeine-induced calcium release in cultured mouse hippocampal neurons. J Neurosci 15, 2592–608.

    Google Scholar 

  • Shmigol A, Kirischuk S, Kostyuk P & Verkhratsky A (1994) Different properties of caffeine-sensitive Ca2+ stores in peripheral and central mammalian neurones. Pflugers Arch 426, 174–6.

    Article  PubMed  CAS  Google Scholar 

  • Shmigol A, Svichar N, Kostyuk P & Verkhratsky A (1996) Gradual caffeine-induced Ca2+ release in mouse dorsal root ganglion neurons is controlled by cytoplasmic and luminal Ca2+. Neuroscience 73, 1061–7.

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth T J (1997) Intracellular Ca2+ signalling in secretory cells. J Exp Biol 200, 303–314.

    PubMed  CAS  Google Scholar 

  • Smith J B (1996) Calcium homeostasis in smooth muscle cells. New Horiz 4, 2–18.

    PubMed  CAS  Google Scholar 

  • Smith S J & Augustine G J (1988) Calcium ionis, active zones and synaptic transmitter release. Trends Neurosci 11, 458–464.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo A P & Somlyo A V (1994) Signal transduction and regulation in smooth muscle. Nature 372, 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Striggow F & Ehrlich B E (1996) Ligand-gated calcium channels inside and out. Current Opinion Cell Biol 8, 490–5.

    Article  PubMed  CAS  Google Scholar 

  • Sutko J L & Airey J A (1996) Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev 76, 1027–71.

    PubMed  CAS  Google Scholar 

  • Tepikin A V, Voronina S G, Gallacher D V & Petersen O H (1992) Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J Biol Chem 267, 14073–14076.

    PubMed  CAS  Google Scholar 

  • Toescu E, Moller T, Kettenmann H & Verkhratsky A (1998) Long-term activation of store-operated Ca2+ entry in mouse microglial cells. Neuroscience (in press).

    Google Scholar 

  • Toescu E C (1995) Temporal and spatial heterogeneities of Ca2+ signalling: mechanisms and physiological roles. Amer J Physiol 269, G173–G185.

    PubMed  CAS  Google Scholar 

  • Toescu E C (1998) Intraneuronal Ca2+ stores act mainly as a “Ca2+ sink” in cerebellar granule neurons. NeuroReport 9, in press.

    Google Scholar 

  • Toescu E C, Lawrie A M, Petersen O H & Gallacher D V (1992) Spatial and temporal distribution of agonist-evoked cytoplasmic Ca2+ signals in exocrine acinar cells analysed by digital image microscopy. EMBO J 11, 1623–1629.

    PubMed  CAS  Google Scholar 

  • Tse A, Tse F W, Aimers W & Hille B (1993) Rythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotrophs. Science 260, 82–84.

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky A, Orkand R K & Kettenmann H (1998) Glial calcium: Homeostasis and signalling function. Physiol Rev 78, 99–141.

    PubMed  CAS  Google Scholar 

  • Verkhratsky A & Shmigol A (1996) Calcium-induced calcium release in neurones. Cell Calcium 19, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Werth J L & Thayer S A (1994) Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci 14, 348–356.

    PubMed  CAS  Google Scholar 

  • Woods N M, Cuthbertson K S R & Cobbold P H (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319, 600–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toescu, E.C., Verkhratsky, A. (1998). Introduction. In: Verkhratsky, A., Toescu, E.C. (eds) Integrative Aspects of Calcium Signalling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1901-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1901-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1903-8

  • Online ISBN: 978-1-4899-1901-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics