Skip to main content

Part of the book series: Mathematical Concepts and Methods in Science and Engineering ((MCSENG,volume 46))

  • 692 Accesses

Abstract

For a function u(x) = u(x 1,..., x n ) the differential equation

$$ \sum\limits_n^{i = 1} {{u_{{x_i}{x_i}}}} : = \Delta u = 0 $$
((L))

is called the Laplace equation (in ℝn). Its solutions are called harmonic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hellwig, G., Partial Differential Equations, Teubner, Stuttgart, Germany, 1977.

    MATH  Google Scholar 

  2. Kellogg, O. D., Foundation of Potential Theory, Springer, Berlin, Germany, 1929.

    Book  Google Scholar 

  3. Folland, G. B., Introduction to Partial Differential Equations, Princeton University Press, Princeton, New Jersey, 1976.

    MATH  Google Scholar 

  4. Colton, D., and Kress, R., Integral Equations Methods in Scattering Theory, John Wiley, New York, New York, 1983.

    Google Scholar 

  5. Kress, R., Linear Integral Equations, Springer-Verlag, Berlin, Germany, 1989.

    Book  MATH  Google Scholar 

  6. Mikhlin, S. G., Mathematical Physics, an Advanced Course, North-Holland, Amsterdam, Netherlands, 1970.

    MATH  Google Scholar 

  7. Burago, Y. D., Maz’ya, V. G., and Sapozhnikova, V. D., On the Theory of Simple and Double Layer Potential for Domains with Irregular Boundaries, Boundary Value Problems and Integral Equations, Edited by V. I. Smirnov, Consultants Bureau, New York, New York, 1968.

    Google Scholar 

  8. Gunter, N. M., Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der Mathematischen Physik, Teubner, Stuttgart, Germany, 1957.

    Google Scholar 

  9. Smirnov, V. I., A Course in Higher Mathematics, Vol. IV, Pergamon Press, Oxford, England, 1964.

    Google Scholar 

  10. Jaswon, M. A., and Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, New York, New York, 1977.

    MATH  Google Scholar 

  11. Serrin, J., Mathematical Principles of Classical Fluid Mechanics, Handbuch der Physik IX, Springer, Berlin, Germany, 1959.

    Google Scholar 

  12. Bassanini, P., Casciola, C., Lancia, M. R., and Piva, R., A Boundary Integral Formulation for the Kinetic Field in Aerodynamics. Part I, European Journal of Mechanics B/Fluids, Vol. 10, pp. 605–627, 1991.

    MathSciNet  MATH  Google Scholar 

  13. Bassanini, P., Casciola, C., Lancia, M. R., and Piva, R., A Boundary Integral Formulation for the Kinetic Field in Aerodynamics. Part II, European Journal of Mechanics B/Fluids, Vol. 11, pp. 69–92, 1992.

    MathSciNet  MATH  Google Scholar 

  14. Weyl, H., The Method of Orthogonal Projections in Potential Theory, Duke Mathematics Journal, Vol. 7, pp. 411–444, 1940.

    Article  MathSciNet  Google Scholar 

  15. Batchelor, G. K., Fluid Dynamics, Cambridge University Press, Cambridge, England, 1991.

    Google Scholar 

  16. Milne-Tomson, L. M., Theoretical Hydrodynamics, Macmillan & Co., London, England, 1968.

    Google Scholar 

  17. Martensen, E., Potentialtheorie, Teubner, Stuttgart, Germany, 1968.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bassanini, P., Elcrat, A.R. (1997). Laplace Equation. In: Theory and Applications of Partial Differential Equations. Mathematical Concepts and Methods in Science and Engineering, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1875-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1875-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1877-2

  • Online ISBN: 978-1-4899-1875-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics