Skip to main content

Biorecognition in Molecularly Imprinted Polymers

Concept, Chemistry, and Application

  • Chapter

Abstract

It seems appropriate to subdivide the field of affinity chromatography into a bioselective and a chemoselective one. Bioselective affinity chromatography is based upon defined biological-type recognition systems between immobilized ligands and biomolecules (proteins, nucleic acids, low-molecular-weight biomolecules, etc.). The interaction between the ligand and the biomolecule is of a rather complex nature involving different types of noncovalent interactions (such as van der Waals forces, hydrophobic interactions, hydrogen bonding, dipole-dipole interactions, charge-transfer interactions, and Coulombic interactions). For a highly selective interaction, the orientation in space of the functional groups acting as binding sites is an important factor. This orientation facilitates a highly cooperative combination of interactions. In addition to the orientation of the functional groups, an exact steric fit of the two complementary compounds considerably improves selectivity (shape selectivity).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, L. I., and Mosbach, K., 1990, Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions, J. Chromatogr. 516:313–322.

    Article  Google Scholar 

  • Braco, L., Dabulis, K., and Klibanov, A. M., 1990, Production of abiotic receptors by molecular imprinting of proteins, Proc. Natl. Acad. Sci. U.S.A. 87:274–277.

    Article  PubMed  CAS  Google Scholar 

  • Breslow, R., Chmielewski, J., Foley, D., and Johnson, B., 1988, Optically active amino acid synthesis by artificial transaminase enzymes, Tetrahedron 44:5515–5524.

    Article  CAS  Google Scholar 

  • Cram, D. J., 1988, Molecular hosts and guests, and their complexes, Angew. Chem. Int. Ed. Engl. 27:1009–1014.

    Article  Google Scholar 

  • Damen, J., and Neckers, D. C., 1980, Stereoselective syntheses via a photochemical template effect, J. Am. Chem. Soc. 102:3265–3267.

    Article  CAS  Google Scholar 

  • Dickey, F. H., 1949, Preparation of specific adsorbents, Proc. Natl. Acad. Sci. U.S.A. 35:227–229.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, Y., Matsutani, K., and Kikuchi, K., 1985, Formation of a specific coordination cavity for a chiral amino acid by template synthesis of a polymer Schiff base cobalt(III) complex, J. Chem. Soc. Chem. Commun. 1985: 415–417.

    Article  Google Scholar 

  • Lauer, M., Böhnke, H., Grotstollen, R., Salehnia, M., and Wulff, G., 1985, Zur Chemie von Haftgruppen IV. Über eine ausserordentliche Erhöhung der Reaktivität von Arylboronsäuren durch Nachbargruppen, Chem. Ber. 118:246–260.

    Article  CAS  Google Scholar 

  • Lehn, J. M., 1988, Supramolecular chemistry—molecules, supermolecules, and molecular functional units, Angew. Chem. Int. Ed. Engl. 27:89–114.

    Article  Google Scholar 

  • Morihara, K., Kurihara, S., and Suzuki, J., 1988, Footprint catalysis. I. A new method for designing “tailor-made” catalysts with substrate specificity: Silica (alumina) catalysts for butanolysis of benzoic anhydride, Bull. Chem. Soc. Jpn. 61:3991–3998.

    Article  CAS  Google Scholar 

  • Murakami, Y., 1983, Functionalized cyclophanes as catalysts and enzyme models, Top. Curr. Chem. 115:107–155.

    Article  CAS  Google Scholar 

  • Sarhan, A., and El-Zahab, M. A., 1987, Racemic resolution of mandelic acid on polymers with chiral cavities. Enzyme-analogue stereospecific conversion of configuration, Makromol. Chem. Rapid Commun. 8:555–561.

    Article  CAS  Google Scholar 

  • Schwyzer, R., 1970, Organization and read-out of biological information in polypeptides, Proceedings of the Fourth International Congress on Pharmacology, Vol. 5, pp. 196–209: Chem. Abstracts 1971, 74: 38232.

    CAS  Google Scholar 

  • Seilergren, B., Lepistö, M., and Mosbach, K., 1988, Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and Chromatographic studies on the nature of recognition, J. Am. Chem. Soc. 110:5853–5860.

    Article  Google Scholar 

  • Shea, K. J., and Sasaki, D. Y., 1989, On the control of microenvironment shape of functionalized network polymers prepared by template polymerization, J. Am. Chem. Soc. 111:3442–3444.

    Article  CAS  Google Scholar 

  • Shea, K. J., Thompson, E. A., Pandey, S. D., and Beauchamps, P S., 1980, Template synthesis of macromolecules. Synthesis and chemistry of functionalized macroporous polydivinylbenzene, J. Am. Chem. Soc. 102:3149–3155.

    Article  CAS  Google Scholar 

  • Wulff, G., 1986, Molecular recognition in polymers prepared by imprinting with templates, in: Polymeric Reagents and Catalysts (W. T. Ford, ed.), ACS Symposium Series 308, American Chemical Society, Washington, D.C., pp. 186–230.

    Chapter  Google Scholar 

  • Wulff, G., 1989, Main-chain chirality and optical activity in polymers consisting of C—C-chains, Angew. Chem. Int. Ed. Engl. 28:21–37.

    Article  Google Scholar 

  • Wulff, G., and Dhal, P.K., 1987, Design of vinyl functional copolymers with main chain chirality through chemical modification, Makromol. Chem. 188:2847–2856.

    Article  CAS  Google Scholar 

  • Wulff, G., and Gimpel, J., 1982, Über den Einfluss der Flexibilität der Haftgruppen auf die Racemattrennungs-fáhigkeit, Makromol. Chem. 183:2469–2477.

    Article  CAS  Google Scholar 

  • Wulff, G., and Haarer, J., 1991, The preparation of defined chiral cavities for the racemic resolution of free sugars, Makromol. Chem. 192:1329–1338.

    Article  CAS  Google Scholar 

  • Wulff, G., and Kirstein, G., 1990, Measuring the optical activity of chiral imprints in insoluble highly cross-linked polymers, Angew. Chem. Int. Ed. Engl. 29:684–686.

    Article  Google Scholar 

  • Wulff, G., and Lohmar, E., 1979, Specific binding effects in chiral microcavities of crosslinked polymers, Isr. J. Chem. 18:279–284.

    CAS  Google Scholar 

  • Wulff, G., and Minárik, M., 1986, Enzyme-analogue built polymers XX. Pronounced effect of temperature on racemic resolution using template-imprinted polymeric sorbents, J. High Resolut. Chromatogr. Commun. 9:607–608.

    Article  CAS  Google Scholar 

  • Wulff, G., and Minárik, M., 1988, Tailor-made sorbents. A modular approach to chiral separation, in: Chromatographic Chiral Separations (M. Zief and L. J. Crane, eds.), Marcel Dekker, New York, pp. 15–52.

    Google Scholar 

  • Wulff, G., and Minárik, M., 1990, Template imprinted polymers for h. p. l. c. separation of racemates, J. Liq. Chromatogr. 13:2987–3000.

    Article  CAS  Google Scholar 

  • Wulff, G., and Sarhan, A., 1972, Use of polymers with enzyme-analogous structures for the resolution of racemates, Angew. Chem. Int. Ed. Engl. 11:341.

    CAS  Google Scholar 

  • Wulff, G., and Sarhan, A., 1982, Models of the receptor sites of enzymes, in: Chemical Approaches to Understanding Enzyme Catalysis: Biomimetic Chemistry and Transition-State Analogs (B. S. Green, Y. Ashani, and D. Chipman, eds.), Elsevier, Amsterdam, pp. 106–118.

    Google Scholar 

  • Wulff, G., and Schauhoff, S., 1991, Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements, J. Org. Chem. 56:395–399.

    Article  CAS  Google Scholar 

  • Wulff, G., and Vesper, W., 1978, Enzyme-analogue built polymers VIII. On the preparation of Chromatographic sorbents with chiral cavities for racemic resolution, J. Chromatogr. 167:171–186.

    Article  CAS  Google Scholar 

  • Wulff, G., and Vietmeier, J., 1989, Enzyme-analogue built polymers 26. Enantioselective synthesis of amino acids using polymers possessing chiral cavities obtained by an imprinting procedure with template molecules, Makromol. Chem. 190:1727–1735.

    Article  CAS  Google Scholar 

  • Wulff, G., Sarhan, A., and Zabrocki, K., 1973, Enzyme-analogue built polymers and their use for the resolution of racemates, Tetrahedron Lett. 44:4329–4332.

    Article  Google Scholar 

  • Wulff, G., Vesper, W., Grobe-Einsler, R., and Sarhan A., 1977, Enzyme-analogue built polymers, IV On the synthesis of polymers containing chiral cavities, and their use for the resolution of racemates, Makromol. Chem. 178:2799–2816.

    Article  CAS  Google Scholar 

  • Wulff, G., Schulze, I., Zabrocki, K., and Vesper, W., 1980, Bindungsstellen im Polymer mit unterschiedlicher Zahl der Haftgruppen, Makromol. Chem. 181:531–544.

    Article  CAS  Google Scholar 

  • Wulff, G., Kemmerer, R., Vietmeier, J., and Poll, H.-G., 1982, Chirality of vinyl polymers. The preparation of chiral cavities in synthetic polymers, Nouv. J. Chim. 6:681–687.

    CAS  Google Scholar 

  • Wulff, G., Lauer, M., and Böhnke, H., 1984, Rapid proton transfer as cause of an unusually large neighboring effect, Angew. Chem. Int. Ed. Engl. 23:741–742.

    Article  Google Scholar 

  • Wulff, G., Heide, B., and Helfmeier, G., 1986a, Molecular recognition through the exact placement of functional groups on rigid matrices via a template approach, J. Am. Chem. Soc. 108:1089–1091.

    Article  CAS  Google Scholar 

  • Wulff, G., Oberkobusch, D., and Minárik, M., 1986b, On the dynamics of embedding in imprinted polymers, in: Design and Synthesis of Organic Molecules Based on Molecular Recognition (G. V. Binst, ed.), Springer-Verlag, Berlin, pp. 229–233.

    Chapter  Google Scholar 

  • Wulff, G., Poll, H.-G, and Minárik, M., 1986c, Racemic resolution on polymers containing chiral cavities, J. Liq. Chromatogr. 9:385–405.

    Article  CAS  Google Scholar 

  • Wulff, G., Heide, B., and Helfmeier, G., 1987a, On the distance accuracy of functional groups in polymers and silicas introduced by a template approach, React. Polym. 6:299–310.

    CAS  Google Scholar 

  • Wulff, G., Kemmerer, R., and Vogt, B., 1987b, Optically active polymers with structural chirality in the main chain prepared through an asymmetric cyclopolymerization, J. Am. Chem. Soc. 109:7449–7457.

    Article  CAS  Google Scholar 

  • Wulff, G., Vietmeier, J., and Poll, H.-G., 1987c, Influence of the nature of the crosslinking agent on the performance of imprinted polymers in racemic resolution, Makromol. Chem. 188:731–740.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wulff, G. (1993). Biorecognition in Molecularly Imprinted Polymers. In: Ngo, T.T. (eds) Molecular Interactions in Bioseparations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1872-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1872-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1874-1

  • Online ISBN: 978-1-4899-1872-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics