Skip to main content

Affinity Chromatography with Immobilized Dyes

  • Chapter
Molecular Interactions in Bioseparations

Abstract

Affinity chromatography is a very attractive concept for protein purification in that it exploits the one property that distinguishes each protein, namely, its ability to complex one or a small number of molecules (bioligands) with high affinity. Unfortunately, this attractive concept has several practical limitations that restrict its usefulness. Firstly, a bioligand must be covalently attached (immobilized) to the Chromatographic matrix in a manner which does not seriously diminish the affinity of the biofunctional site of the protein for the bioligand. Such attachment often requires execution of some adroit chemistry requiring either technical skills beyond that of a typical investigator or else adequate financial resources to purchase such a product. Secondly, a given immobilized bioligand will contribute to the purification of only a single or at best a small number of related proteins. Thus, a different affinity column must be available for each of the purified proteins required by an investigator. Thirdly, crude protein mixtures likely contain enzymes which can catalyze the hydrolysis of immobilized ligands, rendering them ineffective. Accordingly, affinity chromatography is commonly performed late in a purification scheme, where the concentrations of such hydrolytic enzymes are minimized by prior purification steps. Relegation of affinity chromatography to a late step in purification diminishes its selective potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adinolfi, A., and Hopkinson, D. A., 1978, Blue Sepharose chromatography of human alcohol dehydrogenase: Evidence for interlocus and interallelic differences in affinity characteristics, Ann. Hum. Genet. 41:399.

    Article  PubMed  CAS  Google Scholar 

  • Biellmann, J. F., Samama, J. P., Branden, C. I., and Eklund, H., 1979, X-ray studies of the binding of Cibacron blue F3GA to liver alcohol dehydrogenase, Eur. J. Biochem. 102:107.

    Article  PubMed  CAS  Google Scholar 

  • Bohme, H., Kopperschlager, G., Schultz, J., and Hofmann, E., 1972, Affinity chromatography of phosphofructo-kinase using Cibacron blue F3G-A, J. Chromatogr. 69:209.

    Article  PubMed  CAS  Google Scholar 

  • Burton, S. J., Stead, C. V., and Lowe, C. R., 1988, Design and applications of biomimetic anthraquinone dyes: II. The interaction of C.I. reactive blue 2 analogues bearing terminal ring modifications with horse liver alcohol dehydrogenase, J. Chromatogr. 455:201.

    Article  CAS  Google Scholar 

  • Bruton, S. J., Stead, C. V., and Lowe, C. R., 1990, Design and applications of biomimetic anthraquinone dyes: III. Anthraquinone-immobilized C.I. reactive blue 2 analogues and their interaction with horse liver alcohol dehydrogenase and other adenine nucleotide-binding proteins, J. Chromatogr. 508:109.

    Article  Google Scholar 

  • Clonis, Y. D., 1988, The applications of reactive dyes in enzyme and protein downstream processing, in: CRC Critical Reviews in Biotechnology, Vol. 7 (G. G. Stewart, and I. Russell, eds.), CRC Press, Boca Raton, Florida, pp. 263–279.

    Google Scholar 

  • Clonis, Y. D., Atkinson, T., Bruton, C. J., and Lowe, C. R., 1987a, Reactive Dyes in Protein and Enzyme Technology, Macmillan, Basingstoke, U.K.

    Google Scholar 

  • Clonis, Y. D., Stead, C. V., and Lowe, C. R., 1987b, Novel cationic triazine dyes in protein purification, Biotechnol. Bioeng. 30:621.

    Article  PubMed  CAS  Google Scholar 

  • Dean, P. D. G., and Watson, D. H., 1979, Protein purification using immobilized triazine dyes, J. Chromatogr. 165:301.

    Article  PubMed  CAS  Google Scholar 

  • Easterday, R. L., and Easterday, I. M., 1974, Affinity chromatography of kinases and dehydrogenases on Sephadex and Sepharose dye derivative, in: Immobilized Biochemicals and Affinity Chromatography (R. B. Dunlop, ed.) (Plenum Press, New York), pp. 123–133.

    Chapter  Google Scholar 

  • Haeckel, R., Hess, B., Lauterborn, W., and Wuster, K., 1968, Purification and allosteric properties of yeast pyruvate kinase, Hoppe-Seyler’s Z. Physiol. Chem. 349:699.

    Article  PubMed  CAS  Google Scholar 

  • Hogg, P. J., and Winzor, D. J., 1985, Effects of solute multivalency in quantitative affinity chromatography: Evidence for cooperative binding of horse liver alcohol dehydrogenase to blue Sepharose, Arch. Biochem. Biophys. 240:70.

    Article  PubMed  CAS  Google Scholar 

  • Kopperschlager, G., Bohme, H. J., and Hofmann, E., 1982, Cibacron blue F3G-A and related dyes as ligands in affinity chromatography, in: Advances in Biochemical Engineering, Vol. 25 (A. Fiechter, ed.), Springer-Verlag, Berlin, pp. 101–138.

    Google Scholar 

  • Lamkin, G. E., and King, E. E., 1976, Blue Sepharose: A reusable affinity chromatography medium for purification of alcohol dehydrogenase, Biochem. Biophys. Res. Commun. 72:560.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.C., and Stellwagen, E., 1986, Zonal Chromatographic analysis of the interaction of alcohol dehydrogenase with blue-Sepharose, J. Chromatogr. 376:149.

    PubMed  CAS  Google Scholar 

  • Liu, Y. C., and Stellwagen, E., 1987, Accessibility and multivalency of immobilized Cibacron blue F3GA, J. Biol. Chem. 262:583.

    PubMed  CAS  Google Scholar 

  • Lowe, C. R., Glad, M., Larsson, P. O., Ohlson, S., Small, D. A. P., Atkinson, T., and Mosbach, K., 1981, High-performance liquid affinity chromatography of proteins on Cibacron blue F3G-A bonded silica, J. Chromatogr. 215:303.

    Article  CAS  Google Scholar 

  • Lowe, C. R., Burton, S. J., Pearson, J. C., and Clonis, Y. D., 1986, Design and application of bio-mimetic dyes in biotechnology, J. Chromatogr. 376:121.

    PubMed  CAS  Google Scholar 

  • Lowe, C. R., Burton, S. J., Burton, N., Stewart, D. J., Purvis, D. R., Pitfield, I., and Eapen, S., 1990, New developments in affinity chromatography, J. Mol. Recog. 3:117.

    Article  CAS  Google Scholar 

  • Robinson, J. B., Jr., Strottmann, J. M., and Stellwagen, E., 1981, Prediction of neutral salt elution profiles for affinity chromatography, Proc. Natl. Acad. Sci. U.S.A. 78:2287.

    Article  PubMed  CAS  Google Scholar 

  • Roschlau, P., and Hess, B., 1971, Affinity chromatography of yeast pyruvate kinase with cibacronblau bound to Sephadex G-200, Hoppe-Seyler’s Z. Physiol. Chem. 353:441.

    Article  Google Scholar 

  • Roy, S. K., and Nishikawa, A. H., 1979, Large-scale isolation of equine liver alcohol dehydrogenase on a blue agarose gel, Biotechnol. Bioeng. 21:775.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, L., and Vestling, C., 1974, Rapid purification of lactate dehydrogenase from rat liver and hepatoma: A new approach, Arch. Biochem. Biophys. 160:279.

    Article  PubMed  CAS  Google Scholar 

  • Scawen, M. D., and Atkinson, T., 1987, Large-scale dye-ligand chromatography, in: Reactive Dyes in Protein and Enzyme Technology (Y. D. Clonis, T. Atkinson, C. J. Bruton, and C. R. Lowe, eds.), Macmillan, Basingstoke, U.K., pp. 51–86.

    Google Scholar 

  • Scopes, R. K., 1986, Strategies for enzyme isolation using dye-ligand and related adsorbents, J. Chromatogr. 376:131.

    PubMed  CAS  Google Scholar 

  • Small, D. A. P., Lowe, C. R., Atkinson, T., and Bruton, C. J., 1982, Affinity labelling of enzymes with triazine dyes: Isolation of a peptide in the catalytic domain of horse-liver alcohol dehydrogenase using Procion blue MX-R as a structural probe, Eur. J. Biochem. 128:119.

    Article  PubMed  CAS  Google Scholar 

  • Staal, G., Vissar, J., and Veeger, C., 1969, Purification and properties of glutathione reductase of human erythrocytes, Biochim. Biophys. Acta 185:39.

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen, E., 1990, Chromatography on immobilized reactive dyes, in: Methods in Enzymology, Vol. 182 (M. P. Deutscher, ed.), Academic Press, San Diego, California, pp. 343–357.

    Google Scholar 

  • Swart, A. C. W., and Hemker, H. C., 1970, Separation of blood coagulation factors II, VII, IX, and X by gel filtration in the presence of dextrane blue, Biochim. Biophys. Acta 222:692.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stellwagen, E. (1993). Affinity Chromatography with Immobilized Dyes. In: Ngo, T.T. (eds) Molecular Interactions in Bioseparations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1872-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1872-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1874-1

  • Online ISBN: 978-1-4899-1872-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics