Skip to main content

Fluorescence Lifetime Imaging and Spectroscopy in Photobiology and Photomedicine

  • Chapter
Fluorescence Microscopy and Fluorescent Probes

Abstract

Time-resolving fluorescence imaging has become a valuable tool in photobiology and medical diagnostics1. Its techniques include two-dimensional laser scanning microscopy with signal detection in pre-selected time windows2 as well as fluorescence microscopy and spectroscopy using pulsed laser excitation and time-gated image intensifying units3–6. In addition, experimental systems working in the frequency domain become more and more promising. In this case, the excitation light and the voltage of the image intensifier are modulated with a certain phase shift. This shift may be selected such that the detection of fluorescent components with specific lifetimes is enhanced, whereas other components are suppressed. The method has been applied to measure the distribution of specific markers7, 8 and of natural fluorophores9 in various cellular environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Schneckenburger, Time-resolved fluorescence imaging, J. Photochem. Photobiol. B:Biol. 24:63 (1994).

    Google Scholar 

  2. E.P. Buurman, R. Sanders, A. Draijer, H.C. Gerritsen, J.J.F. van Veen, P.M. Houpt and Y.K. Levine, Fluorescence lifetime imaging using a confocal laser scanning microscope, Scanning 14:155 (1992).

    Article  Google Scholar 

  3. X.F. Wang, T. Uchida, D.M. Coleman and S. Minami, A two-dimensional imaging system using a gated image intensifier, Appl. Spectrosc. 45:360 (1991).

    Article  CAS  Google Scholar 

  4. R. Cubeddu, G. Canti, P. Taroni and G. Valentini, Time-gated fluorescence imaging for diagnosis of tumours in a murine model, Photochem. Photobiol 57:480 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. M. Kohl, J. Neukammer, U. Sukowski, H. Rinneberg, D. Wöhrle, H.-J. Sinn and E.A. Friedrich, Delayed observation of laser-induced fluorescence for imaging of tumours, Appl. Phys. B56:131 (1993).

    Google Scholar 

  6. H. Schneckenburger, K. König, T. Dienersberger and R. Hahn, Time-gated microscopic imaging and spectroscopy in medical diagnosis and photobiology, Opt. Eng. 33:2600 (1994).

    Article  Google Scholar 

  7. C.G. Morgan, A.C. Mitchell and J.G. Murray, Prospects for confocal imaging based on nanosecond fluorescence decay time, J Microsc. 165:49 (1992).

    Article  Google Scholar 

  8. T.W.J. Gadella, Jr, T.M. Jovin and R.M. Clegg, Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale, Biophys. Chem. 48:221 (1993).

    Article  CAS  Google Scholar 

  9. J.R. Lakowicz, H. Szmacinski, K. Nowaczyk and M.L. Johnson, Fluorescence lifetime imaging of free and protein-bound NADH, Natl. Acad. Sci. USA 89:1271 (1992).

    Article  CAS  Google Scholar 

  10. R. Sanders, Fluorescence lifetime as a contrast mechanism in confocal imaging, Doctoral Thesis, University of Utrecht (NL), ISBN 90-393-0648-6 (1995).

    Google Scholar 

  11. H. Schneckenburger, M.H. Gschwend, R. Sailer, A. Rück and W.S.L. Strauß, Time-resolved pH dependent fluorescence of hydrophilic porphyrins in solution and in cultivated cells, J. Photochem. Photobiol. B:Biol. 27:251 (1995).

    Article  CAS  Google Scholar 

  12. W. Halle, W.-E. Siems, K.D. Jentzsch, E. Teuscher and E. Göres, Die in vitro kultivierte Aorten-Endothelzelle in der Wirkstofforschung-zellphysiologische Charakterisierung und Einsatzmöglichkeiten der Zellinie BKEz-7, Pharmazie 39:77 (1984).

    PubMed  CAS  Google Scholar 

  13. H. Schneckenburger, W. Strauß, A. Rück, H.K. Seidlitz and J.M. Wessels, Microscopic fluorescence spectroscopy and diagnosis, Opt. Eng. 31:995 (1992).

    Article  CAS  Google Scholar 

  14. S. Andersson-Engels et al., Fluorescence imaging and joint measurements of tissue, Photochem. Photobiol. 53:807 (1991).

    PubMed  CAS  Google Scholar 

  15. K. König and H. Schneckenburger, Laser-induced autofluorescence for medical diagnosis, J. Fluoresc. 4:17(1994).

    Article  Google Scholar 

  16. B. Kjeldstad, A. Johnsson, B. Sandberg, Influence of pH on porphyrin production in Propionibacterium acnes, Arch. Dermatol Res. 276:396 (1984).

    Article  CAS  Google Scholar 

  17. J.-M. Salmon, E. Kohen, P. Viallet, J.G. Hirschberg, A.W. Wouters, C. Kohen and B. Thorell, Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types, Photochem. Photobiol. 36:585 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. T. Galeotti, G.D.V. van Rossum, D.H. Mayer, B. Chance, On the fluorescence of NAD(P)H in whole cell preparations of tumours and normal tissues, Eur. J. Biochem. 17:485 (1979).

    Article  Google Scholar 

  19. P. Galland and H. Senger, The role of flavins as photoreceptors, J. Photochem. Photobiol. B:Biol. 1:277(1988).

    Article  CAS  Google Scholar 

  20. H. Schneckenburger and K. König, Fluorescence decay kinetics and imaging of NAD(P)H and flavins as metabolic indicators, Opt. Eng. 31:1447 (1992).

    Article  CAS  Google Scholar 

  21. R.-J. Paul and H. Schneckenburger, Oxygen concentration and the oxydation-reduction state of yeast: Determination of free/bound NADH and flavins by time-resolved spectroscopy, Naturwissenschaften, in press.

    Google Scholar 

  22. M.H. Gschwend, W.S.L Strauß, H. Schneckenburger, R. Steiner, Time-resolved fluorescence microscopy for probing mitochondrial metabolites, Proc. SPIE, Vol. 2628 (in press).

    Google Scholar 

  23. W.S.L. Strauß, R. Sailer, H. Schneckenburger, N. Akgün, V. Gottfried, L. Chetwer, S. Kimel, Photodynamic efficacy of naturally occurring porphyrins in endohelial cells in vitro and microsvasculature in vivo, submitted to J. Photochem. Photobiol.B:Biol..

    Google Scholar 

  24. J. Moan, S. Sommer, Action spectra for hematporphyrin derivative and Photofrin II with respect to sensitization of human cells in vitro to photosensitization, Photochem. Photobiol. 40:631 (1981).

    Article  Google Scholar 

  25. H. Schneckenburger and W. Schmidt, Time-resolved chlorophyll fluorescence of spruce needles after different light exposure, J. Plant Physiol., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schneckenburger, H., Gschwend, M.H., König, K., Sailer, R., Strauß, W.S.L. (1996). Fluorescence Lifetime Imaging and Spectroscopy in Photobiology and Photomedicine. In: Slavík, J. (eds) Fluorescence Microscopy and Fluorescent Probes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1866-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1866-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1868-0

  • Online ISBN: 978-1-4899-1866-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics