Skip to main content

Intestinal Rings and Isolated Intestinal Mucosal Cells

  • Chapter
Models for Assessing Drug Absorption and Metabolism

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 8))

Abstract

Intestinal rings and isolated intestinal mucosal cells have been employed for over 25 years in the examination of biologic problems in the fields of nutrition (Del Castillo and Muniz, 1991; Fleisher et al., 1989; Gore and Hoinard, 1993; Shaw et al., 1983; Westergaard and Dietschy, 1976), pharmaceutics (Kajii et al., 1985; Meadows and Dressman, 1990; Osiecka et al., 1987; Porter et al., 1985; Tsuji et al., 1986, 1987), cell biology (Weiser, 1973a, b), and metabolism and biochemistry (Grafstrom et al., 1979; Kelley and Chen, 1985; Koster et al., 1984; Sepulveda et al., 1982; Stern, 1966). Of particular interest here is the utility of these relatively simple in vitro models for characterizing, within defined limits, the absorptive and metabolic properties of intestinal tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agar, W. T., Hird, F. J. R., and Sidhu, G. S., 1954, The uptake of amino acids by the intestine, Biochim. Biophys. Acta 14:80–84.

    Article  PubMed  CAS  Google Scholar 

  • Albers, T., and Moore, R., 1994, Isolation temperatures affect distribution of polarized membrane proteins in isolated intestinal epithelial cells, Gastroenterology 106:A218.

    Google Scholar 

  • Barker, S. B., and Summerson, W. H., 1941, The colorimetric determination of lactic acid in biological material, J. Biol. Chem. 138:535–554.

    CAS  Google Scholar 

  • BreMiller, R. A., 1961, Attempt to separate cells of the gastric mucosa, Gastroenterology 40:798–802.

    Google Scholar 

  • Dahlquist, A., 1961, Methods Enzymol. 8:584–591.

    Article  Google Scholar 

  • Del Castillo, J. R., 1987, The use of hyperosmolar, intracellular-like solutions for the isolation of epithelial cells from guinea-pig small intestine, Biochim. Biophys. Acta 901:201–208.

    Article  PubMed  Google Scholar 

  • Del Castillo, J. R., and Muniz, R., 1991, Neutral amino acid transport by isolated small intestinal cells from guinea pigs, Am. J. Physiol. 261:G1030–G1036.

    PubMed  Google Scholar 

  • Fleisher, D., Sheth, N., Griffin, H., McFadden, M., and Aspacher, G., 1989, Nutrient influences on rat intestinal phenytoin uptake, Pharm. Res. 6:332–337.

    Article  PubMed  CAS  Google Scholar 

  • Glauert, A. M. (ed.), 1975, Practical Methods in Electron Microscopy, North-Holland, Amsterdam.

    Google Scholar 

  • Gore, J., and Hoinard, C., 1993, Linolenic acid transport in hamster intestinal cells is carrier-mediated, J. Nutr. 123:66–73.

    PubMed  CAS  Google Scholar 

  • Grafstrom, R., Moldeus, P., Andersson, B., and Orrenius, S., 1979, Xenobiotic metabolism by isolated rat small intestinal cells, Med. Biol. 57:287–293.

    PubMed  CAS  Google Scholar 

  • Harber, D. S., Stern, B. K., and Reilly, R. W., 1964, Removal and dissociation of epithelial cells from the rodent gastrointestinal tract, Nature 203:319–320.

    Article  Google Scholar 

  • Harrison, D. D., and Webster, H. L., 1969, The preparation of isolated intestinal crypt cells, Exp. Cell Res. 55:257–260.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, F., Owen, R., and Bisseil, D. M., 1982, Characterization of isolated epithelial cells from rat small intestine, Am. J. Physiol. 242:G147–G155.

    PubMed  CAS  Google Scholar 

  • Huang, K. C., 1965, Uptake of L-tyrosine and 3-O-methylglucose by isolated intestinal epithelial cells, Life Sci. 4:1201–1206.

    Article  PubMed  CAS  Google Scholar 

  • Hulsmann, W. C., Van den Berg, J. W. O., and De Jonge, H. R., 1974, Methods Enzym. 32:665–673.

    Article  CAS  Google Scholar 

  • Humason, G. L. (ed.), 1972, Animal Tissue Techniques, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Kajii, H., Horie, T., Hayashi, M., and Awazu, S., 1985, Fluorescence study on the interaction of salicylate with rat small intestinal epithelial cells: Possible mechanism for the promoting effects of salicylate on drug absorption in vivo, Life Sci. 37:523–530.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, M. J., and Chen, T. S., 1985, Action of 5-thio-D-glucose on D-glucose metabolism: Possible mechanism for diabetogenic effect, J. Pharmacol. Exp. Ther. 232:760–763.

    PubMed  CAS  Google Scholar 

  • Kimmich, G. A., 1990, Methods Enzymol. 192:324–340.

    Article  PubMed  CAS  Google Scholar 

  • Koster, A. S., Borm, P. J. A., Dohmen, M. R., and Noordhoek, J., 1984, Localization of biotransformational enzymes along the crypt-villus axis of the rat intestine. Evaluation of two cell isolation procedures, Cell Biochem. function 2:95–101.

    Article  CAS  Google Scholar 

  • Leppert, P. S., and Fix, J. A., 1994, Use of everted intestinal rings for in vitro examination of oral absorption potential, J. Pharm. Sci. 83:976–981.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, D. M., and Burston, D., 1984, Uptake of a series of neutral dipeptides including L-alanyl-L-alanine, glycylglycine and glycylsarcosine by hamster jejunum in vitro, Clin. Sci. 67:541–549.

    PubMed  CAS  Google Scholar 

  • Meadows, K. C., and Dressman, J. B., 1990, Mechanism of acyclovir uptake in rat jejunum, Pharm. Res. 7:299–303.

    Article  PubMed  CAS  Google Scholar 

  • Osiecka, I., Porter, P. A., Borchardt, R. T., Fix, J. A., and Gardner, C. R., 1985, in vitro drug absorption models. I. Brush border membrane vesicles, isolated mucosal cells and everted intestinal rings: Characterization and salicylate accumulation, Pharm. Res. 6:284–293.

    Article  Google Scholar 

  • Osiecka, I., Cortese, M., Porter, P. A., Borchardt, R. T., Fix, J. A., and Gardner, C. R., 1987, Intestinal absorption of a-methyldopa: in vivo mechanistic studies in rat small intestinal segments, J. Pharmacol. Exp. Ther. 242:443–449.

    PubMed  CAS  Google Scholar 

  • Porter, P. A., Osiecka, I., Borchardt, R. T., Fix, J. A., Frost, L., and Gardner, C., 1985, in vitro drug absorption models. II. Salicylate, cefoxitin, a-methyldopa and theophylline uptake in cells and rings: Correlation with in vivo bioavailability, Pharm. Res. 6:293–298.

    Article  Google Scholar 

  • Rosenberg, L., Downing, S., and Segal, L., 1962, Extracellular space estimation in rat kidney slices using 14C-saccharides and phlorizin, Am. J. Physiol. 202:800–804.

    PubMed  CAS  Google Scholar 

  • Sepulveda, F. V., Burton, K. A., and Brown, P. D., 1982, Relation between sodium-coupled amino acid and sugar transport and sodium/potassium pump activity in isolated intestinal epithelial cells, J. Cell. Physiol. 111:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R. D., Li, B. U. K., Hamilton, J. W., Shug, A. L., and Olsen, W. A., 1983, Carnitine transport in rat small intestine, Am. J. Physiol. 245:G376–G381.

    PubMed  CAS  Google Scholar 

  • Stern, B. K., 1966, Some biochemical properties of suspensions of intestinal epithelial cells, Gastroenterology 51:855–867.

    PubMed  CAS  Google Scholar 

  • Tsuji, A., Hirooka, H., Tamai, I., and Terasaki, T., 1986, Evidence for a carrier-mediated transport system in the small intestine available for FK089, a new cephalosporin antibiotic without an amino group, J. Antibiot. 34:1592–1597.

    Article  Google Scholar 

  • Tsuji, A., Hirooka, H., Terasaki, T., Tamai, I., and Nakashima, E., 1987, Saturable uptake of cefixime, a new oral cephalosporin without an α-amino group, by the rat intestine, J. Pharm. Pharmacol. 39:272–277.

    Article  PubMed  CAS  Google Scholar 

  • Weiser, M. M., 1973a, Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation, J. Biol. Chem. 248:2536–2541.

    PubMed  CAS  Google Scholar 

  • Weiser, M. M., 1973b, Intestinal epithelial cell surface membrane glycoprotein synthesis. II. Glycosyltransferases and endogenous acceptors of the undifferentiated cell surface membrane, J. Biol. Chem. 248:2542–2548.

    PubMed  CAS  Google Scholar 

  • Westergaard, H., and Dietschy, J. M., 1976, The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell, J. Clin. Invest. 58:97–108.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fix, J.A. (1996). Intestinal Rings and Isolated Intestinal Mucosal Cells. In: Borchardt, R.T., Smith, P.L., Wilson, G. (eds) Models for Assessing Drug Absorption and Metabolism. Pharmaceutical Biotechnology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1863-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1863-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1865-9

  • Online ISBN: 978-1-4899-1863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics