Skip to main content

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 8))

Abstract

Pharmaceutical companies are investing time and money in the development of alternatives to injectable formulations for the systemic delivery of therapeutics. Alternative delivery systems offer enormous market potential and increased patient compliance. The nasal route has proved effective and acceptable for several therapeutics. In fact, several biotechnology nasal products are currently in the U.S. market, including DDAVP (desmopressin acetate, Rhone-Poulenc Rorer), Synarel (narelin acetate, Syntex), Diapid (lypressin, Sandoz), and Syntocinon (oxytocin, Sandoz). Intranasal administration of therapeutics offers many advantages over other routes of administration. Therapeutics administered nasally avoid gastrointestinal degradation and first-pass metabolism associated with oral administration. In addition, the high vascularity of the nasal mucosa allows rapid absorption of some compounds. However, bioavailability of nasally administered therapeutics is normally low, making this route acceptable for only a few potent therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aceto, A., Di Ilio, C., Angelucci, S., Longo, V., Gervasi, P. G., and Federici, G., 1989, Glutathione transferase in human nasal mucosa, Arch. Toxicol. 63:427–431.

    Article  PubMed  CAS  Google Scholar 

  • Artigas, J., Aruffo, C., Sampaolo, S., Cruz-Sanchez, F., Ferszt, R., and Cervos-Navarro, J., 1987, Lucifer yellow as a morphofunctional tracer of the blood-brain barrier, in: Stroke and Microcirculation (J. Cervos-Navarro and R. Ferszt, eds.), Raven Press, New York, pp. 238–243.

    Google Scholar 

  • Audus, K. L., Guillot, F. L., and Braughler, J. M., 1991, Evidence for 21-aminosteroid association with the hydrophobic domains of brain microvessel endothelial cells, Free Radical Biol. Med. 11:361–371.

    Article  CAS  Google Scholar 

  • Bronner, C., Landry, Y., Fonteneau, P., and Kuhry, J., 1986, A fluorescent hydrophobic probe used for monitoring the kinetics of exocytosis phenomena, Biochemistry 25:2149–2154.

    Article  PubMed  CAS  Google Scholar 

  • Carstens, S., Danielsen, G., Guldhammer, B., and Frederiksen, O., 1993, Transport of insulin across rabbit nasal mucosa in vitro induced by didecanoyl-L-α-phosphatidylcholine, Diabetes 42:1032–1040.

    Article  PubMed  CAS  Google Scholar 

  • Corbo, D. C., Huang, Y. C., and Chien, Y. W., 1990, Characterization of the barrier properties of mucosal membranes, J. Pharm. Sci. 79:202–206.

    Article  PubMed  CAS  Google Scholar 

  • Cremaschi, D., Rossetti, C., Draghetti, M. T., Manzoni, C., and Aliverti, V., 1990, Active transport of polypeptides in rabbit respiratory nasal mucosa, J. Controlled Release 13:319–320.

    Article  Google Scholar 

  • Cremaschi, D., Rossetti, C., Draghetti, M. T., Manzoni, C., and Aliverti, V., 1991, Active transport of polypeptides in rabbit nasal mucosa: Possible role in the sampling of potential antigens, Pflügers Arch. 419:425–432.

    Article  PubMed  CAS  Google Scholar 

  • Fong, P., Illsely, N. P., Widdicombe, J. H., and Verkman, A. S., 1988, Chloride transport in apical membrane vesicles from bovine tracheal epithelium: Characterization using fluorescent indicator, J. Membrane Biol. 104:233–239.

    Article  CAS  Google Scholar 

  • Gervasi, P. G., Longo, V., Naldi, F., Panattoni, G., and Ursino, F., 1991, Xenobiotic-metabolizing enzymes in human respiratory nasal mucosa, Biochem. Pharmacol. 41(2):177–184.

    Article  PubMed  CAS  Google Scholar 

  • Gray, T. E., Thomassen, D. G., Mass, M. J., Barrett, J. C., 1983, Quantitation of cell proliferation, colony formation, and carcinogen induced cytotoxicity of rat tracheal epithelial cells grown in culture on 3T3 feeder layers, in vitro 19:559–570.

    Article  PubMed  CAS  Google Scholar 

  • Hersey, S. J., and Jackson, R. T., 1987, Effect of bile salts on nasal permeability in vitro, J. Pharm. Sci. 76:876–879.

    PubMed  CAS  Google Scholar 

  • Higaki, K., Kato, M., Hashida, M., and Sezaki, H., 1988, Enhanced membrane permeability to phenol red by medium-chain glycerides: Studies on the membrane permeability and microviscosity, Pharm. Res. 5:309–312.

    Article  PubMed  CAS  Google Scholar 

  • Holbrook, P. A., Irwin, W. J., Livingstone, C. R., and Dey, M., 1991, A study of the proteolytic activity in sheep nasal mucosa, Proc. Int. Symp. Controlled Release Bioact. Mater. 18:285–286.

    Google Scholar 

  • Iseki, K., Sugawara, M., Saitoh, H., Miyazaki, K., and Arita, T., 1988, Effect of chlorpromazine on the permeability of β-lactam antibiotics across rat intestinal brush border membrane vesicles, J. Pharm. Pharmacol. 40:701–705.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, K., Alfredsson, K., Soderberg-Ahlm, C., Critchley, H., Broeders, A., and Ohlin, M., 1992, Evaluation of the degradation of desamino1, D-arginine8-vasopressin by nasal mucosa, Acta Endocrinol. 127:27–32.

    PubMed  CAS  Google Scholar 

  • Kajii, H., Horie, T., Hayashi, M., and Awazu, S., 1985, Fluorescence study on the interaction of salicylate with rat small intestinal epithelial cells: Possible mechanism for the promoting effects of salicylate on drug absorption in vivo, Life Sci. 37:523–530.

    Article  PubMed  CAS  Google Scholar 

  • Kajii, H., Horie, T., Hayashi, M., and Awazu, S., 1986, Effects of salicylate acid on the permeability of the plasma membrane of the small intestine of the rat: A fluorescence spectroscopic approach to elucidate the mechanism of promoted drug absorption, J. Pharm. Sci. 75:475–478.

    Article  PubMed  CAS  Google Scholar 

  • Kashi, S. D., and Lee, V. H. L., 1986, Enkephalin hydrolysis in homogenates of various absorptive mucosa of the albino rabbit: Similarities in rates and involvement of aminopeptidases, Life Sci. 38:2019–2028.

    Article  PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen, V., Levi, H., and Ussing, H. H., 1952, The modes of passage of chloride ions through the isolated frog skin, Acta Physiol. Scand. 25:150–163.

    Article  Google Scholar 

  • Lackowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Book  Google Scholar 

  • Laker, M. F, Bull, H. J., and Menzies, I. S., 1982, Evaluation of mannitol for use as a probe marker of gastrointestinal permeability in man, Eur. J. Clin. Invest. 12:485–491.

    Article  PubMed  CAS  Google Scholar 

  • Langridge-Smith, J. E., Field, M., and Dubinsky, W. P., 1983, Isolation of transporting plasma membrane vesicles from bovine tracheal epithelium, Biochim. Biophys. Acta 731:318–328.

    Article  PubMed  CAS  Google Scholar 

  • LeCluyse, E. L., Appel, L. E., and Sutton, S. C., 1991, Relationship between drug absorption enhancing activity and membrane perturbing effects of acylcarnitine, Pharm. Res. 8:84–87.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T. C., Wu, R., Brody, A. R., Barrett, J. C., and Nettesheim, P., 1984, Growth and differentiation of hamster tracheal epithelial cells in culture, Exp. Lung Res. 6:27–45.

    Article  PubMed  CAS  Google Scholar 

  • Martinek, G. J., Berger, L., and Brioda, D., 1964, Simplified estimation of leucine aminopeptidase [LAP] activity, Clin. Chem. 10:1087.

    PubMed  CAS  Google Scholar 

  • Matuszewska, B., Liversidge, G. G., Ryan, F., Dent, J., and Smith, P. L., 1988, in vitro study of intestinal absorption and metabolism of 8-L-arginine vasopressin and its analogues, Int. J. Pharm. 46:1110–1120.

    Article  Google Scholar 

  • Morimoto, K., Yamaguchi, H., Iwakura, Y., Miyazaki, M., Nakatani, E., Iwamoto, T., Ohashi, Y., and Nakai, Y., 1991, Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue, Pharm. Res. 8:1175–1179.

    Article  PubMed  CAS  Google Scholar 

  • Reardon, P. R., 1992, in vitro Intranasal Study: Effects of Ammonium Glycyrrhizinate on Nasal Mucosal Properties, dissertation, University of Kansas, Pharmaceutical Chemistry Dept.

    Google Scholar 

  • Reardon, P. R., and Audus, K. L., 1993, Ammonium glycyrrhizinate (AMGZ) effects on membrane integrity, Int. J. Pharm. 94:161–170.

    Article  CAS  Google Scholar 

  • Reardon, P. R., Gochoco, C. H., Audus, K. L., Wilson, G., and Smith, P. I., 1993, in vitro nasal transport across ovine mucosa: Effects of ammonium glycyrrhizinate on electrical properties and permeability of growth hormone releasing peptide, mannitol, and lucifer yellow, Pharm. Res. 10:553–561.

    Article  PubMed  CAS  Google Scholar 

  • Sklar, L. A., 1984, Fluorescence polarization studies of membrane fluidity: Where do we go from here?, in: Biomembranes (K. Morris and L. A. Manson, eds.), Plenum Press, New York, pp. 99–127.

    Google Scholar 

  • Smith, P. L., Mirabelli, C., Fondacaro, J., Ryan, F., and Dent, J., 1988, Intestinal 5-fluorouracil absorption: Use of Ussing chambers to assess transport and metabolism, Pharm. Res. 5:598–603.

    Article  PubMed  CAS  Google Scholar 

  • Stratford, R. E., and Lee, V. H. L., 1986, Aminopeptidase activity in homogenates of various absorptive mucosae in the albino rabbit: Implications in peptide delivery, Int. J. Pharm. 30:73–82.

    Article  CAS  Google Scholar 

  • Weiser, M. M., 1973, Intestinal epithelial cell surface membrane glycoprotein synthesis, J. Biol. Chem. 248:2536–2541.

    PubMed  CAS  Google Scholar 

  • Wheatley, M. A., Dent, J., Wheeldon, E. B., and Smith, P. L., 1988, Nasal drug delivery: An in vitro characterization of transepithelial electrical properties and fluxes in the presence or absence of enhancers, J. Controlled Release 8:167–177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reardon, P.M. (1996). In Vitro Nasal Models. In: Borchardt, R.T., Smith, P.L., Wilson, G. (eds) Models for Assessing Drug Absorption and Metabolism. Pharmaceutical Biotechnology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1863-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1863-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1865-9

  • Online ISBN: 978-1-4899-1863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics