Intracellular Second Messengers

  • Stephen J. H. Ashcroft
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 426)


In the β-cell, the effects of extracellular signals are mediated by changes of concentration of intracellular second messengers. Complex interrelationships among the signalling pathways determine the rate of insulin release and also can modulate the rate of insulin biosynthesis. This short overview summarises some key properties of the known second messenger systems of the β-cell. References cited are, where possible, to reviews in order to keep the reference list to a reasonable size.


Insulin Secretion Pancreatic Islet Insulin Release Human Islet Nutrient Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashcroft, S.J.H., and Ashcroft, F.M., 1992, In: “Insulin. Molecular Biology to Pathology”, RM. Ashcroft and S.J.H. Ashcroft, eds., IRL Press, pp 37-63.Google Scholar
  2. 2.
    Ashcroft, F.M., Williams, B., Smith, P.A. and Fewtrell, C.M.S., 1992, Ion channels involved in the regulation of nutrient-stimulated insulin secretion. In: Nutrient regulation of insulin secretion (P.R. Flatt, ed.) Portland Press: 193-212.Google Scholar
  3. 3.
    Ashcroft, S.J.H., and Ashcroft, F.M., 1992, The sulfonylurea receptor, Biochim. Biophys. Acta Mol. Cell Res 1175: 45–59.CrossRefGoogle Scholar
  4. 4.
    Hellman, B., Gylfe, E., Grapengiesser, E., Lund, P.-E., and Marcström, A., 1992, Cytoplasmic calcium and insulin secretion. In: “Nutrient regulation of insulin secretion,” P.R. Flatt, ed., Portland Press: 213-246.Google Scholar
  5. 5.
    Berggren, P.-O., Arkhammar, P., Islam, M.S., Juntti-Berggren, L., Khan, A., Kindmark, H., Köhler, M., Larsson, K., Larsson, O., Nilsson, T., Sjöholm, A., Szecowka, J., and Zhang, Q., 1993, Regulation of cytoplasmic free Ca2+ in insulin-secreting cells, Adv. Exp. Med. Biol 334: 25–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Hellman, B., Gylfe, E., Grapengiesser, E., Lund, P.-E., and Berts, A., 1992, Cytoplasmic Ca2+ oscillations in pancreatic beta-cells, Biochim. Biophys. Acta Rev. Biomembr. 1113: 295–305.CrossRefGoogle Scholar
  7. 7.
    Valdeolmillos, M, Santos, R.M., Contreras, D., Soria, B., and Rosario, L.M., 1989, Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of Langerhans, FEBS Lett 259: 19–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Yaney, G.C., Wheeler, M.B., Wei, X., Perez-Reyes, E., Birnbaumer, L., Boyd, A.E., III, and Moss, L.G., 1992, Cloning of a novel alpha 1-subunit of the voltage-dependent calcium channel from the beta-cell, Mol. Endocrinol. 6: 2143–2152.PubMedCrossRefGoogle Scholar
  9. 9.
    Harrison, D.E., Ashcroft, S.J.H., Christie, M.R., and Lord, J.M., 1984, Protein phosphorylation in the pancreatic β-cell, Experientia 40: 1057–1084.CrossRefGoogle Scholar
  10. 10.
    Harrison, D.E., Poje, M., Rocic, B. & Ashcroft, S.J.H., 1986, Effects of dehydrouramil on protein phosphorylation and insulin secretion in rat islets of Langerhans, Biochem. J. 237: 191–196.PubMedGoogle Scholar
  11. 11.
    Hughes, S.J., Smith, H., and Ashcroft, S.J.H., 1993, Characterization of Ca2+/calmodulin-dependent protein kinase in rat pancreatic islets, Biochem J 289: 795–800.PubMedGoogle Scholar
  12. 12.
    Niki, I., Okazaki, K., Saitoh, M., Niki, A., Niki, H., Tamagawa, T., Iguchi, A., and Hidaka, H., 1993, Presence and possible involvement of Ca/calmodulin-dependent protein kinases in insulin release from the rat pancreatic beta cell, Biochem. Biophys. Res. Commun 191: 255–261.PubMedCrossRefGoogle Scholar
  13. 13.
    Urquidi, V., and Ashcroft, S.J.H., 1993, Ca2+/calmodulin-dependent protein kinase (CaM kinase) of pancreatic β-cells exhibits homology with CaM kinase II: immunological and genetic evidence, Diabetologia 36 [Suppl 1]: A113.Google Scholar
  14. 14.
    Wenham, R.M., Landt, M., and Easom, R.A., 1994, Glucose activates the multifunctional Ca2+/calmodulin-dependent protein kinase II in isolated rat pancreatic islets, J. Biol. Chem. 269: 4947–4952.PubMedGoogle Scholar
  15. 15.
    Wenham, R.M., Landt, M., Walters, S.M., Hidaka, H., and Easom, R.A., 1992, Inhibition of insulin secretion by KN-62, a specific inhibitor of the multifunctional Ca2+/calmodulin-dependent protein kinase II, Biochem. Biophys. Res. Commun., 189: 128–133.PubMedCrossRefGoogle Scholar
  16. 16.
    Li, G., Hidaka, H., and Wollheim, C.B., 1992, Inhibition of voltage-gated Ca2+ channels and insulin secretion in HIT cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62: Comparison with antagonists of calmodulin and L-type Ca2+ channels, Mol Pharmacol 42: 489–498.PubMedGoogle Scholar
  17. 17.
    Ämmälä, C., Eliasson, L., Bokvist, K., Larsson, O., Ashcroft, F.M., and Rorsman, P., 1993, Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells, J. Physiol. (Lond.) 472: 665–688.Google Scholar
  18. 18.
    Jones, P.M., Persaud, S.J., and Howell, S.L., 1992, Ca2+-induced insulin secretion from electrically permeabilized islets: Loss of the Ca2+-induced secretory response is accompanied by loss of Ca2+-induced protein phosphorylation, Biochem. J. 285: 973–978.PubMedGoogle Scholar
  19. 19.
    Okazaki, K., Niki, I., lino, S., Kobayashi, S. & Hidaka, H. (1994) A role of calcyclin, a Ca2+-binding protein, on the Ca2+-dependent insulin release from the pancreatic beta cell. J. Biol. Chem. 269: 6149–6152.PubMedGoogle Scholar
  20. 20.
    German, M.S., Moss, L.G., and Rutter, W.J., 1990, Regulation of insulin gene expression by glucose and calcium in transfected primary islet cultures, J. Biol. Chem. 265: 22063–22066.PubMedGoogle Scholar
  21. 21.
    Goodison, S., Kenna, S., and Ashcroft, S.J.H., 1992, Control of insulin gene expression by glucose. Biochem. J. 285: 563–568.PubMedGoogle Scholar
  22. 22.
    Berggren, P.-O., Rorsman, P., Efendic, S., Östenson, G., Flatt, P.R., Nilsson, T., Arkhammar, P., and Juntti-Berggren, L., 1992, Mechanisms of action of entero-insular hormones, islet peptides and neural input on the insulin secretory process. In: “Nutrient regulation of insulin secretion,” P.R. Flatt, ed., Portland Press: 289-318.Google Scholar
  23. 23.
    Capito, K., and Hedeskov, C.J., 1977, Effects of glucose, glucose metabolites and calcium ions on adenylate cyclase activity in homogenates of mouse pancreatic islets, Biochem. J. 162: 569–573.PubMedGoogle Scholar
  24. 24.
    Hughes, S.J., and Ashcroft, S.J.H., 1992, Cyclic AMP, protein phosphorylation and insulin release. In: “Nutrient Regulation of Insulin Secretion,” P.R. Flatt, ed., Portland Press: 271-288.Google Scholar
  25. 25.
    Philippe, J., 1991, Structure and pancreatic expression of the insulin and glucagon genes, Endocr. Rev. 12: 252–271.PubMedCrossRefGoogle Scholar
  26. 26.
    Persaud, S.J., Jones, P.M., and Howell, S.L., 1990, Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A, Biochem. Biophys. Res. Commun. 173: 833–839.PubMedCrossRefGoogle Scholar
  27. 27.
    Hughes, S.J., Christie, M.R., and Ashcroft, S.J.H., 1987, Potentiators of insulin secretion modulate Ca2+ sensitivity in rat pancreatic islets, Mol. Cell Endocrinol 50: 231–236.PubMedCrossRefGoogle Scholar
  28. 28.
    Hughes, S.J., Chalk, J.G., and Ashcroft, S.J.H., 1989, Effects of secretagogues on cytosolic free Ca2+ and insulin release at different extracellular Ca2+ concentrations in the hamster clonal β-cell line HIT-T15, Mol. Cell Endocrinol. 65: 35–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Jones, P.M., Salmon, D.M.W., Howell, S.L., 1988, Protein phosphorylation in electrically permeabilised islets of langerhans. Effects of Ca2+, cyclic AMP, a phorbol ester and noradrenaline, Biochem. J. 254: 397–403.PubMedGoogle Scholar
  30. 30.
    Ämmälä, C., Ashcroft, F.M., and Rorsman, P., 1993, Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells, Nature 363: 356–358.PubMedCrossRefGoogle Scholar
  31. 31.
    Garbers, D.L., 1992, Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands, Cell 71: 1–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Purrello, F., and Buscema, M., 1993, Effects if interleukin-1β on insulin secretion by pancreatic beta-cells, Diab. Nutr. Metab. 6: 295–304.Google Scholar
  33. 33.
    Corbett, J.A., Wang, J.L., Hughes, J.H., Wolf, B.A., Sweetland, M.A., Lancaster, J.R., Jr., and McDaniel, M.L., 1992, Nitric oxide and cyclic GMP formation induced by interleukin 1beta in Islets of Langerhans. Evidence for an effector role of nitric oxide in islet dysfunction, Biochem. J. 287: 229–235.PubMedGoogle Scholar
  34. 34.
    Corbett, J.A., Sweetland, M.A., Wang, J.L., Lancaster, J.R., Jr., and McDaniel, M.L., 1993 b, Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans, Proc. Natl. Acad. Sci. USA 90: 1731–1735.PubMedCrossRefGoogle Scholar
  35. 35.
    Turk, J., Corbett, J.A., Ramanadham, S., Bohrer, A., and McDaniel, M.L., 1993, Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets, Biochem. Biophys. Res. Commun. 197: 1458–1464.PubMedCrossRefGoogle Scholar
  36. 36.
    Berridge, M.J., 1993, Inositol trisphosphate and calcium signalling, Nature 361: 315–325.PubMedCrossRefGoogle Scholar
  37. 37.
    Prentki, M., and Matchinsky, F.M., 1987, Ca2+, cAMP and phospholipid-derived messengers in coupling mechanisms of insulin secretion, Physiol Rev 67: 1185.PubMedGoogle Scholar
  38. 38.
    Morgan, N.G., and Montague, W., 1992, Phospholipids and insulin secretion. In: “Nutrient regulation of insulin secretion”, P.R. Flatt, ed., Portland Press: 125-155.Google Scholar
  39. 39.
    Prentki, M. Biden, T.J., Janjic, D., Irvine, R.F., Berridge, M.J., and Wollheim C.B., 1984, Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-triphosphate, Nature 309: 562–564.PubMedCrossRefGoogle Scholar
  40. 40.
    Biden, T.J., Prentki, M., Irvine, R.F., Berridge, M.J., and Wollheim, C.B., 1984, Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilised insulin-secreting cells, Biochem. J. 223: 467–473.PubMedGoogle Scholar
  41. 41.
    Biden, T.J., Prugue, M.L., and Davison, A.G.M., 1992, Evidence for phosphatidylinositol hydrolysis in pancreatic islets stimulated with carbamoylcholine. Kinetic analysis of inositol polyphosphate metabolism, Biochem. J. 285: 541–549.PubMedGoogle Scholar
  42. 42.
    Weng, L., Davies, M., and Ashcroft, S.J.H., 1993, Effects of cholinergic agonists on diacylglycerol and intracellular calcium levels in pancreatic beta-cells, Cell. Signal. 5: 777–786.PubMedCrossRefGoogle Scholar
  43. 43.
    Persaud, S.J., Jones, P.M., and Howell, S.J., 1992, The role of protein kinase C in insulin secretion. In: “Nutrient regulation of insulin secretion”, P.R. Flatt, ed, Portland Press: 247-269.Google Scholar
  44. 44.
    Hughes, S.J., Chalk, J.G., and Ashcroft, S.J.H., 1990, The role of cytosolic free Ca2+ and protein kinase C in acetylcholine-induced insulin release in the clonal beta-cell line, HIT-T15, Biochem. J. 267: 227–232.PubMedGoogle Scholar
  45. 45.
    Hughes, S.J., Carpinelli, A., Niki, I., Nicks, J.L., and Ashcroft, S.J.H., 1992, Stimulation of insulin release by vasopressin in the clonal beta-cell line, HIT-T15: The role of protein kinase C., J. Mol. Endocrinol. 8: 145–153.PubMedCrossRefGoogle Scholar
  46. 46.
    Ämmälä C., Eliasson, L., Bokvist, K., Berggren, P.-O, Honkanen, R.E., Sjöholm, A., and Rorsman, P., 1994, Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells, Proc. Natl. Acad. Sci. USA 91: 4343–4347.PubMedCrossRefGoogle Scholar
  47. 47.
    Calle, R., Ganesan, S., Smallwood, J.I. and Rasmussen, H., 1992, Glucose-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) in isolated rat pancreatic islets. J. Biol. Chem. 267:18723–18727.PubMedGoogle Scholar
  48. 48.
    Hughes, S.J., and Ashcroft, S.J.H., 1988, Effects of a phorbol ester and clomiphene on protein phosphorylation and insulin secretion in rat pancreatic islets, Biochem. J. 249: 825–830.PubMedGoogle Scholar
  49. 49.
    Dekker, L.V., and Parker, P.J., 1994, Protein kinase C. A question of specificity, Trends Biochem. Sci. 19: 73–77.PubMedCrossRefGoogle Scholar
  50. 50.
    Selbie, L.A., Schmitz-Peiffer, C., Sheng, Y, and Biden, T.J., 1993, Molecular cloning and characterization of PKCiota, an atypical isoform of protein kinase C derived from insulin-secreting cells, J. Biol. Chem. 268: 24296–24302.PubMedGoogle Scholar
  51. 51.
    Fletcher, D.J. and Ways, D.K., 1991, Age-dependent expression of protein kinase C isoforms in rat islets, Diabetes 40: 1496–1503.PubMedCrossRefGoogle Scholar
  52. 52.
    Hammonds, P., Schofield, P.N., and Ashcroft, S.J.H., 1987, Glucose regulates preproinsulin messenger RNA levels in a clonal cell line of simian virus 50-transformed β-cells. FEBS Lett. 213: 149–154.PubMedCrossRefGoogle Scholar
  53. 53.
    Hammonds, P., Schofield, P.N., Ashcroft, S.J.H., Sutton, R., and Gray, D.W.R., 1987, Regulation and specificity of glucose-stimulated insulin gene expression in human islets of Langerhans. FEBS Lett. 223: 131–137.PubMedCrossRefGoogle Scholar
  54. 54.
    Galione, A., 1993, Cyclic ADP-ribose: A new way to control calcium, Science 259: 325–326.PubMedCrossRefGoogle Scholar
  55. 55.
    Takasawa, S., Nata, K., Yonekura, H., and Okamoto, H., 1993, Cyclic ADP-ribose in insulin secretion from pancreatic beta cells, Science 259: 370–373.PubMedCrossRefGoogle Scholar
  56. 56.
    Islam, M.S., Larsson, O, and Berggren, P.-O., 1993, Cyclic ADP-ribose in β cells, Science 262: 584–585.PubMedCrossRefGoogle Scholar
  57. 57.
    Turk, J., Gross, R.W., and Ramanadham, S., 1993, Amplification of insulin secretion by lipid messengers, Diabetes 42: 367–374.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones, P.M., and Persaud, S.J., 1993, Arachidonic acid as a second messenger in glucose-induced insulin secretion from pancreatic beta-cells, J. Endocrinol. 137: 7–14.PubMedCrossRefGoogle Scholar
  59. 59.
    Turk, J., Hughes, J.H., Easom, R.A., Wolf, B.A., Scharp, D.W., Lacy, P.E. and McDaniel, M.L., 1988, Arachidonic acid metabolism and insulin secretion by isolated human pancreatic islets, Diabetes 37: 992–996.PubMedCrossRefGoogle Scholar
  60. 60.
    Gross, R.W., Ramanadham, S., Kruszka, K.K., Han, X., and Turk, J., 1993, Rat and human pancreatic islet cells contain a calcium ion independent phospholipase A2 activity selective for hydrolysis of arachidonate which is stimulated by adenosine triphosphate and is specifically localized to islet beta-cells, Biochemistry 32: 327–336.PubMedCrossRefGoogle Scholar
  61. 61.
    Ramanadham, S., Gross, R.W., Han, X., and Turk, J., 1993, Inhibition of arachidonate release by secretagogue-stimulated pancreatic islets suppresses both insulin secretion and the rise in beta-cell cytosolic calcium ion concentration, Biochemistry 32: 337–346.PubMedCrossRefGoogle Scholar
  62. 62.
    Basudev, H., Jones, P.M., Persaud, S.J., and Howell, S.L., 1992, Arachidonic acid induces phosphorylation of an 18 kDa protein in electrically permeabilised rat islets of Langerhans, FEBS Lett 296: 69–72.PubMedCrossRefGoogle Scholar
  63. 63.
    Basudev, H., Jones, P.M., Persaud, S.J., and Howell, S.L., 1993, Arachidonic acid-induced insulin secretion from rat islets of Langerhans is not mediated by protein phosphorylation, Mol. Cell. Endocrinol. 91: 193–199.PubMedCrossRefGoogle Scholar
  64. 64.
    Safayhi, H., Koopmann, I., and Ammon, H.P.T., 1993, Insulin secretion without the participation of arachidonic acid, Mol. Cell. Endocrinol. 91: 143–148.PubMedCrossRefGoogle Scholar
  65. 65.
    Rustenbeck, I., and Lenzen, S., 1992, Effect of lysophospholipids, arachidonic acid and other fatty acids on regulation of Ca2+ transport in permeabilized pancreatic islets, Cell Calcium 13: 193–202.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Stephen J. H. Ashcroft
    • 1
  1. 1.Nuffield Department of Clinical BiochemistryJohn Radcliffe HospitalHeadington, OxfordUK

Personalised recommendations