Advertisement

New Aspects to the Functioning and Regeneration of Pancreatic β-Cells

Cyclic ADP-Ribose and Reg Gene
  • Hiroshi Okamoto
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 426)

Abstract

In this paper, some of our recent experiments concerning a novel second messenger in β-cells, cyclic ADP-ribose (cADPR), and Reg gene which is involved in β-cell regeneration will be discussed.

Keywords

Insulin Secretion Pancreatic Islet Plasma Membrane Fraction Synthetase Inhibitor Insulin Positive Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft, S. J. H., Weerasinghe, L. C. C. and Randle, P. J., 1973, Interrelationship of islet metabolism, adenosine triphosphate content and insulin release, Biochem. J. 132: 223–231.PubMedGoogle Scholar
  2. Bendtzen, K., Mandrup-Poulsen, T., Nerup, J., Nielsen, J. H., Dinarello, C. A. and Svenson, M., 1986, Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans, Science 232: 1545–1547.PubMedCrossRefGoogle Scholar
  3. Clapper, D. L., Walseth, T. F., dargie, P. J. and Lee, H. C., 1987, Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate, J. Biol. Chem. 262: 9561–9568.PubMedGoogle Scholar
  4. Comens, P. G., Wolf, B. A., Unanue, E. R., Lacy, P. E. and McDaniel, M. L., 1987, Interleukin 1 is potent modulator of insulin secretion from isolated rat islets of Langerhans, Diabetes 36: 963–970.PubMedCrossRefGoogle Scholar
  5. Corbett, J. A. and McDaniel, M. L., 1992, Dose nitric oxide mediate autoimmune destruction of β-cells? — possible therapeutic interventions in IDDM, Diabetes 41: 897–903.PubMedCrossRefGoogle Scholar
  6. Delaney, C. A., Green, M. H., Lowe, J. E. and Green, I. C., 1993, Endogenous nitric oxide induced by interleukin-1 β in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay, FEBS Lett. 333: 291–295.PubMedCrossRefGoogle Scholar
  7. Itoh, T., Tsuzuki, H., Katoh, T., Teraoka, H., Matsumoto, K., Yoshida, N., Terazono, K., Watanabe, T., Yonekura, H., Yamamoto, H. and Okamoto, H., 1990, Isolation and characterization of human reg protein produced in Saccharomyces cerevisiae, FEBS Lett., 272: 85–88.CrossRefGoogle Scholar
  8. Kawazu, S., Sener, A., Couturier, E. and Malaisse, W. J., 1980, Metabolic, cationic and secretory effects of hypoglycemic sulfonylureas in pancreatic islets, Naunyn-Schmiedeberg’s Arch. Pharmacol. 312: 277–283.CrossRefGoogle Scholar
  9. Kallmann, B., Burkart, V., Kröncke, K.-D., Kolb-Bachofen, V and Kolb, H., 1992, Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide, Life Sci. 51: 671–678.PubMedCrossRefGoogle Scholar
  10. Koguma, T., Takasawa, S., Tohgo, A., Karasawa, T., Furuya, Y., Yonekura, H. and Okamoto, H., 1994, Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase / cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans, Biochim. Biophys. Acta 1223: 160–162.PubMedCrossRefGoogle Scholar
  11. Lee, H. C., Walseth, T. F., Bratt, G. T., Hayes, R. N. and Clapper, D. L., 1989, Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity, J. Biol. Chem. 264: 1608–1615.PubMedGoogle Scholar
  12. Like, A. A., Weringer, E. J., Holdash, A., McGill, P., Atkinson, D. and Rossini, A. A., 1985, Adoptive transfer of autoimmune diabetes mellitus in biobreeding/Worrcester (BB/W) inbred and hybrid rats, J. Immunol. 134: 1583–1587.PubMedGoogle Scholar
  13. Matschinsky, F. M., Pagliara, A. S., Stillings, S. N. and Hover, B. A., 1976, Glucose and ATP levels in pancreatic islet tissue of normal and diabetic rats, J. Clin. Invest. 58: 1193–1200.PubMedCrossRefGoogle Scholar
  14. Mori, Y., Suko, M., Okudaira, H., Matsuda, I., Tsuruoka, A., Sasaki, A., Yokoyama, H., Tanase, T., Shida, T., Nishimura, M., Terada, E. and Ikeda, Y, 1986, Preventive effects of cyclosporin on diabetes in NOD mice, Diabetologia 29: 244–247.PubMedCrossRefGoogle Scholar
  15. Moriizumi, S., Watanabe, T., Unno, M., Nakagawara, K., Suzuki, Y., Miyashita, H., Yonekura, H. and Okamoto, H., 1994, Isolation, structural determination and expression of a novel reg gene, human reg Iβ, Biochim. Biophys. Acta 1217: 199–202.PubMedCrossRefGoogle Scholar
  16. Nomikos, I. N., Prowse, S. J., Carotenuto, P. and Lafferty, K. J., 1986, Combined treatment with nicotinamide and desferrioxamine prevents islet allograft destruction in NOD mice, Diabetes 35: 1302–1304.PubMedCrossRefGoogle Scholar
  17. Okamoto, H., 1981, Regulation of proinsulin synthesis in pancreatic islets and a new aspect to insulin-dependent diabetes, Mol. Cell. Biochem. 37: 43–61.PubMedCrossRefGoogle Scholar
  18. Okamoto, H., 1985, Molecular basis of experimental diabetes: degeneration, oncogenesis, and regeneration of pancreatic B-cells of islets of Langerhans, BioEssays 2: 15–21.CrossRefGoogle Scholar
  19. Okamoto, H., 1990, The molecular basis of experimental diabetes, in “Molecular biology of the islets of Langerhans”, pp. 209–231, H. Okamoto ed., Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  20. Okamoto, H., Takasawa, S., Nata, K. and Yonekura, H., 1992, Cyclic ADP-ribose, a novel second messenger for intracellular Ca++ mobilization in pancreatic islets, in “The first conference of the international union of biochemistry and molecular biology: Biochemistry of diseases, June 1–6, 1992, Nagoya, Japan, Abstract” p. 218, Bridge Ltd., Nagoya.Google Scholar
  21. Okamoto, H., Takasawa, S., Nata, K., Sugimoto, T., Noguchi, N., Takeyama, J. and Yonekura, H., 1993, ADP-ribosyl cyclase that synthesizes cyclic ADP-ribose, a second messenger for Ca2+ mobilization in β-cells, Diabetes, 42:76A.Google Scholar
  22. Okamoto, H. Sr., 1976, Antitumor activity of streptolysin S-forming streptococci. In: “Mechanisms in Bacterial Toxinology,” A. W. Bernheimer, ed., John Wiley & Sons, New York, pp. 237–257.Google Scholar
  23. Radons, J., Heller, B., Bürkle, A., Hartmann, B., Rodriguez, M. L., Kröncke, K. D., Burkart, V. and Kolb, H., 1994, Nitric oxide toxicity in islet cells involves poly (ADP-ribose) polymerase activation and concomitant NAD+ depletion, Biochem. Biophys. Res. Commun. 199: 1270–1277.PubMedCrossRefGoogle Scholar
  24. Sener, A., Hutton, J. C., Kawazu, S., Boschero, A. C., Somers, G., Devis, G., Herchuelz, A. and Malaisse, W. J., 1978, The stimulus-secretion coupling of glucose-induced insulin release — metabolic and functional effects of NH4 + in rat islets, J. Clin. Invest. 62: 868–878.PubMedCrossRefGoogle Scholar
  25. States, D. J., Walseth, T. F. and Lee, H. C., 1992, Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38, Trends Biochem. Sci. 17: 495.PubMedCrossRefGoogle Scholar
  26. Takasawa, S., Nata, K., Yonekura, H. and Okamoto, H., 1993a, Cyclic ADP-ribose in insulin secretion from pancreatic β cells, Science, 259: 370–373.PubMedCrossRefGoogle Scholar
  27. Takasawa, S., Nata, K., Yonekura, H. and Okamoto, H., 1993 b, Cyclic ADP-ribose in β cells, Science, 262: 585.PubMedCrossRefGoogle Scholar
  28. Takasawa, S., Tohgo, A., Noguchi, N., Koguma, T., Nata, K., Sugimoto, T., Yonekura, H. and Okamoto, H., 1993 c, Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP, J. Biol. Chem., 268: 26052–26054.PubMedGoogle Scholar
  29. Terazono, K., Yamamoto, H., Takasawa, S., Shiga, K., Yonemura, Y., Tochino, Y. and Okamoto, H., 1988, A novel gene activated in regenerating islets, J. Biol. Chem., 263, 2111–2114.PubMedGoogle Scholar
  30. Terazono, K., Uchiyama, Y., Ide, M, Watanabe, T., Yonekura, H., Yamamoto, H. and Okamoto, H., 1990, Expression of reg protein in rat regenerating islets and its co-localization with insulin in the beta cell secretory granules, Diabetologia, 33: 250–252.PubMedCrossRefGoogle Scholar
  31. Toyota, T., Satoh, J., Oya, K., Shintani, S. and Okano, T., 1986, Streptococcal preparation (OK-432) inhibits development of type I diabetes in NOD mice, Diabetes 35: 496–499.PubMedGoogle Scholar
  32. Uchigata, Y., Yamamoto, H., Kawamura, A. and Okamoto, H., 1982, Protection by Superoxide dismutase, catalase, and poly (ADP-ribose) synthetase inhibitors against alloxan-and streptozotocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesis, J. Biol. Chem., 257: 6084–6088.PubMedGoogle Scholar
  33. Unno, M., Yonekura, H., Nakagawara, K., Watanabe, T., Miyashita, H., Moriizumi, S., Okamoto, H., Itoh, T. and Teraoka, H., 1993, Structure, chromosomal localization, and expression of mouse reg genes, reg I and reg II — a novel type of reg gene, reg II, exists in the mouse genome, J. Biol. Chem., 268: 15974–15982.PubMedGoogle Scholar
  34. Vague, Ph., Vialettes, B., Lassmann-Vague, V. and Vallo, J. J., 1987, Nicotinamide may extend remission phase in insulin-dependent diabetes, Lancet i: 619–620.CrossRefGoogle Scholar
  35. Watanabe, T., Yonekura, H., Terazono, K., Yamamoto, H. and Okamoto, H., 1990, Complete nucleotide sequence of human reg gene and its expression in normal and tumoral tissues — the reg protein, pancreatic stone protein, and pancreatic thread protein are one and the same product of the gene, J. Biol. Chem., 265: 7432–7439.PubMedGoogle Scholar
  36. Watanabe, T., Yonemura, Y., Yonekura, H., Suzuki, Y., Miyashita, H., Sugiyama, K., Moriizumi, S., Unno, M., Tanaka, O., Kondo, H., Bone, A. J., Takasawa, S. and Okamoto, H., 1994, Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein, Proc. Natl. Acad. Sci. USA, 91: 3589–3592.PubMedCrossRefGoogle Scholar
  37. Wicker, L. S., Miller, B. J. and Mullen, Y., 1986, Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice, Diabetes 35: 855–860.PubMedCrossRefGoogle Scholar
  38. Yamada, K., Nonaka, K., Hanafusa, T., Miyazaki, A., Toyoshima, H. and Tarui, S., 1982, Preventive and therapeutic effects of large-dose nicotinamide injections on diabetes associated with insulitis — an observation in nonobese diabetic (NOD) mice, Diabetes 31: 749–753.PubMedCrossRefGoogle Scholar
  39. Yamamoto, H., Uchigata, Y. and Okamoto, H., 1981, Streptozotocin and alloxan induce DNA strand breaks and poly (ADP-ribose) synthetase in pancreatic islets, Nature, 294: 286–286.CrossRefGoogle Scholar
  40. Yonemura, Y., Takashima, T., Matsuda, Y, Miwa, K., Sugiyama, K., Miyazaki, I, Yamamoto, H. and Okamoto, H., 1984, Amelioration of diabetes mellitus in partially depancreatized rats by poly (ADP-ribose) synthetase inhibitors — Evidence of islet B-cell regeneration, Diabetes, 33: 401–404.PubMedCrossRefGoogle Scholar
  41. Yonemura, Y., Takashima, T., Matsuda, Y, Miwa, K., Sugiyama, K., Miyazaki, I., Yamamoto, H. and Okamoto, H., 1988, Induction of islets B-cell regeneration in partially pancreatectomized rats by poly (ADP-ribose) synthetase inhibitors, Int. J. Pancreatol., 3: 73–82.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Hiroshi Okamoto
    • 1
  1. 1.Department of BiochemistryTohoku University School of MedicineSendaiJapan

Personalised recommendations