PACAP as Low as 10−13 M Raises Cytosolic Ca2+ Activity in Pancreatic B-Cells by Augmenting Ca2+ Influx Through L-Type Ca2+ Channels to Trigger Insulin Release

  • Toshihiko Yada
  • Masaya Sakurada
  • Masanori Nakata
  • Kazuro Yaekura
  • Masatoshi Kikuchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 426)


Pancreatic insulin secretion is under control by peptides, as well as by nutrients and other substances(1,2). Truncated glucagon like peptide-1 (tGLP-1), gastric inhibitory peptide (GIP) and glucagon, the members of glucagon/VIP/secretin family of peptides, stimulate insulin release in a low concentration range around 10−9 M, and are thought to be involved in the physiological regulation of insulin release(3–5).


Insulin Release Pituitary Adenylate Cyclase Activate Polypeptide Adrenal Chromaffin Cell Amylase Release Stimulate Insulin Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wollheim, C.B., and Sharp, G.W.G., 1981, Regulation of insulin release by calcium, Physiol. Rev. 61: 914–973.PubMedGoogle Scholar
  2. 2.
    Prentki, M., and Matschinsky, F.M., 1987, Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion, Physiol. Rev. 67: 1185–1248.PubMedGoogle Scholar
  3. 3.
    Pipeleers, D., Veld, P.I., Maes, E., and Winkel, M.V.D., 1982, Glucose-induced insulin release depend on functional cooperation between islet cells, Proc. Natl. Acad. Sci. USA 79: 7322–7325.PubMedCrossRefGoogle Scholar
  4. 4.
    Mojsov, S., Weir, G.C., and Habener, J.F., 1987, Insulinotropin: glucagon-like peptide 1(1–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas, J. Clin. Invest. 79:616–619.PubMedCrossRefGoogle Scholar
  5. 5.
    Orskov, C., 1992, Glucagon-like peptide-1, a new hormone of the enteroinsular axis, Diabetologia 35: 701–711.PubMedGoogle Scholar
  6. 6.
    Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D., and Coy, D.H., 1989, Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells, Biochem. Biophys. Res. Commun. 164: 567–574.PubMedCrossRefGoogle Scholar
  7. 7.
    Arimura, A., 1992, Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research, Regul. Pept. 37: 287–303.PubMedGoogle Scholar
  8. 8.
    Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N., and Arimura, A., 1990, Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38), Biochem. Biophys. Res. Commun. 170: 643–648.PubMedCrossRefGoogle Scholar
  9. 9.
    Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D.H., and Kitada, C., 1991, Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes, Endocrinology 129: 2787–2789.PubMedCrossRefGoogle Scholar
  10. 10.
    Koves, K., Arimura, A., Somogyvari-Vigh, A., Vigh, S., and Miller, J., 1990, Immunohistochemical demonstration of a novel hypothalamic peptide, pituitary adenylate cyclase activating polypeptide, in the ovine hypothalamus, Endocrinology 127: 264–271.PubMedCrossRefGoogle Scholar
  11. 11.
    Goth, M. I., Lyons, C.E., Canny, B.J., and Thorner, M.O., 1992, Pituitary adenylate cyclase activating polypeptide, growth hormone (GH)-releasing peptide and GH-releasing hormone stimulate GH release through distinct pituitary receptors, Endocrinology 130: 939–944.PubMedCrossRefGoogle Scholar
  12. 12.
    Isobe, K., Nakai, T., and Takuwa, Y, 1993, Ca2+-dependent stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine secretion from cultured porcine adrenal chromaffin cells, Endocrinology 132: 1757–1765.PubMedCrossRefGoogle Scholar
  13. 13.
    Mungan, Z., Ertan, A., Hammer, R.A., and Arimura, A., 1991, Effect of pituitary adenylate cyclase activating polypeptide on rat pancreatic exocrine secretion, Peptides 12: 559–562.PubMedCrossRefGoogle Scholar
  14. 14.
    Raufman, J.-R, Malhotra, R., and Singh, L., 1991, PACAP38, a novel peptide from ovine hypothalamus, is a potent modulator of amylase release from dispersed acini from rat pancreas, Regul. Pept. 36: 121–129.PubMedCrossRefGoogle Scholar
  15. 15.
    Warren, J.B., Donnelly, L.E., Cullen, S., Robertson, B.E., Ghatei, M.A., Bloom, S.R., and MacDermot, J., 1991, Pituitary adenylate cyclase-activating polypeptide: a novel, long-lasting, endothelin-independent vasorelaxant, Eur J. Pharmacol. 197: 131–134.PubMedCrossRefGoogle Scholar
  16. 16.
    Tatsuno, I., Yada, T., Vigh, S., Hidaka, H., and Arimura, A., 1992, Pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide increases cytosolic free calcium concentration in cultured rat hippocampal neurons, Endocrinology 131: 73–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Canny, B.J., Rawlings, S.R., and Leong, D.A., 1992, Pituitary adenylate cyclase-activating polypeptide specifically increases cytosolic calcium ion concentration in rat gonadotropes and somatotropes, Endocrinology 130:211–215.PubMedCrossRefGoogle Scholar
  18. 18.
    Yada, T., Vigh, S., and Arimura, A., 1993, Pituitary adenylate cyclase activating polypeptide (PACAP) increases cytosolic-free calcium concentration in folliculostellate cells and somatotropes of rat pituitary, Peptides 14: 235–239.PubMedCrossRefGoogle Scholar
  19. 19.
    Yada, T., Sakurada, M., Ihida, K., Nakata, M., Murata, F., Arimura, A., and Kikuchi, M., 1994, Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet β-cells, J. Biol. Chem. 269: 1290–1293.PubMedGoogle Scholar
  20. 20.
    Yada, T., Itoh, K., and Nakata, M., 1993 a, Glucagon-like peptide-1-(7–36)amide and a rise in cyclic adenosine 3′–5′-monophosphate increase cytosolic free Ca2+ in rat pancreatic β-cells by enhancing Ca2+ channel activity Endocrinology 133:1685–1692.PubMedCrossRefGoogle Scholar
  21. 21.
    Yada, T., Kakei, M., and Tanaka, H., 1992, Single pancreatic β-cells from normal rat exhibit an initial decrease and subsequent increase in cytosolic free Ca2+ in response to glucose, Cell Calcium 13:69–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Grynkiewicz, G., Poenie, M., and Tsien, R.Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties J. Biol. Chem 260:3440–3450.PubMedGoogle Scholar
  23. 23.
    Kawai, K., Ohse, C., Watanabe, Y, Suzuki, S., Yamashita, K., and Ohashi, S., 1992, Pituitary adenylate cyclase activating polypeptide stimulates insulin release from the isolated perfused pancreas, Life Sci 50: 257–261.PubMedCrossRefGoogle Scholar
  24. 24.
    Ashcroft, F.M., and Rorsman, P., 1989, Electrophysiology of the pancreatic β-cell, Prog. Biophys. Mol. Biol. 54: 87–147.PubMedCrossRefGoogle Scholar
  25. 25.
    Penner, R., and Neher, E., 1988, The role of calcium in stimulus-secretion coupling in excitable and non-excitable cells, J. Exp. Biol. 139: 329–345.PubMedGoogle Scholar
  26. 26.
    Ämmälä, C., Eliasson, L., Bokvist, K., Larsson, O., Ashcroft, F.M., and Rorsman, P., 1993, Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells, J.Physiol. 472: 665–688.PubMedGoogle Scholar
  27. 27.
    Yada, T., Russo, L.L., and Sharp, G.W.G., 1989, Phorbol ester-stimulated insulin secretion by RINm5F insulinoma cells is linked with membrane depolarization and an increase in cytosolic free Ca2+ concentrations, J.Biol.Chem. 264: 2455–2462.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Toshihiko Yada
    • 1
  • Masaya Sakurada
    • 2
  • Masanori Nakata
    • 1
  • Kazuro Yaekura
    • 1
  • Masatoshi Kikuchi
    • 2
  1. 1.Department of PhysiologyKagoshima University School of MedicineKagoshima 890Japan
  2. 2.Division of Endocrinology and Metabolism, The Institute for Adult DiseasesAsahi Life FoundationTokyo 160Japan

Personalised recommendations