Skip to main content

PACAP as Low as 10−13 M Raises Cytosolic Ca2+ Activity in Pancreatic B-Cells by Augmenting Ca2+ Influx Through L-Type Ca2+ Channels to Trigger Insulin Release

  • Chapter
Physiology and Pathophysiology of the Islets of Langerhans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 426))

Abstract

Pancreatic insulin secretion is under control by peptides, as well as by nutrients and other substances(1,2). Truncated glucagon like peptide-1 (tGLP-1), gastric inhibitory peptide (GIP) and glucagon, the members of glucagon/VIP/secretin family of peptides, stimulate insulin release in a low concentration range around 10−9 M, and are thought to be involved in the physiological regulation of insulin release(3–5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wollheim, C.B., and Sharp, G.W.G., 1981, Regulation of insulin release by calcium, Physiol. Rev. 61: 914–973.

    PubMed  CAS  Google Scholar 

  2. Prentki, M., and Matschinsky, F.M., 1987, Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion, Physiol. Rev. 67: 1185–1248.

    PubMed  CAS  Google Scholar 

  3. Pipeleers, D., Veld, P.I., Maes, E., and Winkel, M.V.D., 1982, Glucose-induced insulin release depend on functional cooperation between islet cells, Proc. Natl. Acad. Sci. USA 79: 7322–7325.

    Article  PubMed  CAS  Google Scholar 

  4. Mojsov, S., Weir, G.C., and Habener, J.F., 1987, Insulinotropin: glucagon-like peptide 1(1–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas, J. Clin. Invest. 79:616–619.

    Article  PubMed  CAS  Google Scholar 

  5. Orskov, C., 1992, Glucagon-like peptide-1, a new hormone of the enteroinsular axis, Diabetologia 35: 701–711.

    PubMed  CAS  Google Scholar 

  6. Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D., and Coy, D.H., 1989, Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells, Biochem. Biophys. Res. Commun. 164: 567–574.

    Article  PubMed  CAS  Google Scholar 

  7. Arimura, A., 1992, Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research, Regul. Pept. 37: 287–303.

    PubMed  CAS  Google Scholar 

  8. Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N., and Arimura, A., 1990, Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38), Biochem. Biophys. Res. Commun. 170: 643–648.

    Article  PubMed  CAS  Google Scholar 

  9. Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D.H., and Kitada, C., 1991, Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes, Endocrinology 129: 2787–2789.

    Article  PubMed  CAS  Google Scholar 

  10. Koves, K., Arimura, A., Somogyvari-Vigh, A., Vigh, S., and Miller, J., 1990, Immunohistochemical demonstration of a novel hypothalamic peptide, pituitary adenylate cyclase activating polypeptide, in the ovine hypothalamus, Endocrinology 127: 264–271.

    Article  PubMed  CAS  Google Scholar 

  11. Goth, M. I., Lyons, C.E., Canny, B.J., and Thorner, M.O., 1992, Pituitary adenylate cyclase activating polypeptide, growth hormone (GH)-releasing peptide and GH-releasing hormone stimulate GH release through distinct pituitary receptors, Endocrinology 130: 939–944.

    Article  PubMed  CAS  Google Scholar 

  12. Isobe, K., Nakai, T., and Takuwa, Y, 1993, Ca2+-dependent stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine secretion from cultured porcine adrenal chromaffin cells, Endocrinology 132: 1757–1765.

    Article  PubMed  CAS  Google Scholar 

  13. Mungan, Z., Ertan, A., Hammer, R.A., and Arimura, A., 1991, Effect of pituitary adenylate cyclase activating polypeptide on rat pancreatic exocrine secretion, Peptides 12: 559–562.

    Article  PubMed  CAS  Google Scholar 

  14. Raufman, J.-R, Malhotra, R., and Singh, L., 1991, PACAP38, a novel peptide from ovine hypothalamus, is a potent modulator of amylase release from dispersed acini from rat pancreas, Regul. Pept. 36: 121–129.

    Article  PubMed  CAS  Google Scholar 

  15. Warren, J.B., Donnelly, L.E., Cullen, S., Robertson, B.E., Ghatei, M.A., Bloom, S.R., and MacDermot, J., 1991, Pituitary adenylate cyclase-activating polypeptide: a novel, long-lasting, endothelin-independent vasorelaxant, Eur J. Pharmacol. 197: 131–134.

    Article  PubMed  CAS  Google Scholar 

  16. Tatsuno, I., Yada, T., Vigh, S., Hidaka, H., and Arimura, A., 1992, Pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide increases cytosolic free calcium concentration in cultured rat hippocampal neurons, Endocrinology 131: 73–81.

    Article  PubMed  CAS  Google Scholar 

  17. Canny, B.J., Rawlings, S.R., and Leong, D.A., 1992, Pituitary adenylate cyclase-activating polypeptide specifically increases cytosolic calcium ion concentration in rat gonadotropes and somatotropes, Endocrinology 130:211–215.

    Article  PubMed  CAS  Google Scholar 

  18. Yada, T., Vigh, S., and Arimura, A., 1993, Pituitary adenylate cyclase activating polypeptide (PACAP) increases cytosolic-free calcium concentration in folliculostellate cells and somatotropes of rat pituitary, Peptides 14: 235–239.

    Article  PubMed  CAS  Google Scholar 

  19. Yada, T., Sakurada, M., Ihida, K., Nakata, M., Murata, F., Arimura, A., and Kikuchi, M., 1994, Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet β-cells, J. Biol. Chem. 269: 1290–1293.

    PubMed  CAS  Google Scholar 

  20. Yada, T., Itoh, K., and Nakata, M., 1993 a, Glucagon-like peptide-1-(7–36)amide and a rise in cyclic adenosine 3′–5′-monophosphate increase cytosolic free Ca2+ in rat pancreatic β-cells by enhancing Ca2+ channel activity Endocrinology 133:1685–1692.

    Article  PubMed  CAS  Google Scholar 

  21. Yada, T., Kakei, M., and Tanaka, H., 1992, Single pancreatic β-cells from normal rat exhibit an initial decrease and subsequent increase in cytosolic free Ca2+ in response to glucose, Cell Calcium 13:69–76.

    Article  PubMed  CAS  Google Scholar 

  22. Grynkiewicz, G., Poenie, M., and Tsien, R.Y., 1985, A new generation of Ca2+ indicators with greatly improved fluorescence properties J. Biol. Chem 260:3440–3450.

    PubMed  CAS  Google Scholar 

  23. Kawai, K., Ohse, C., Watanabe, Y, Suzuki, S., Yamashita, K., and Ohashi, S., 1992, Pituitary adenylate cyclase activating polypeptide stimulates insulin release from the isolated perfused pancreas, Life Sci 50: 257–261.

    Article  PubMed  CAS  Google Scholar 

  24. Ashcroft, F.M., and Rorsman, P., 1989, Electrophysiology of the pancreatic β-cell, Prog. Biophys. Mol. Biol. 54: 87–147.

    Article  PubMed  CAS  Google Scholar 

  25. Penner, R., and Neher, E., 1988, The role of calcium in stimulus-secretion coupling in excitable and non-excitable cells, J. Exp. Biol. 139: 329–345.

    PubMed  CAS  Google Scholar 

  26. Ämmälä, C., Eliasson, L., Bokvist, K., Larsson, O., Ashcroft, F.M., and Rorsman, P., 1993, Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells, J.Physiol. 472: 665–688.

    PubMed  Google Scholar 

  27. Yada, T., Russo, L.L., and Sharp, G.W.G., 1989, Phorbol ester-stimulated insulin secretion by RINm5F insulinoma cells is linked with membrane depolarization and an increase in cytosolic free Ca2+ concentrations, J.Biol.Chem. 264: 2455–2462.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yada, T., Sakurada, M., Nakata, M., Yaekura, K., Kikuchi, M. (1997). PACAP as Low as 10−13 M Raises Cytosolic Ca2+ Activity in Pancreatic B-Cells by Augmenting Ca2+ Influx Through L-Type Ca2+ Channels to Trigger Insulin Release. In: Soria, B. (eds) Physiology and Pathophysiology of the Islets of Langerhans. Advances in Experimental Medicine and Biology, vol 426. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1819-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1819-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1821-5

  • Online ISBN: 978-1-4899-1819-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics