Advertisement

Colocalization of WE-14 Immunostaining with the Classical Islet Hormones in the Porcine Pancreas

  • W. J. Curry
  • C. F. Johnston
  • C. Shaw
  • K. D. Buchanan
Chapter
  • 121 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 426)

Abstract

WE-14, a tetradecapeptide possessing an N-terminal tryptophanyl (W) and a C-terminal glutamyl (E) residue, was isolated from extracts of a liver metastasis of an ileal carcinoid1 and from a phaeochromocytoma2. Analysis of the chromogranin A (CGA) cDNA sequences revealed that WE-14 represents residues 322–339, 314–331, 341–358, 338–355 and 311–327 of human, bovine, rat, murine and porcine CGA, respectively3. Human and bovine WE-14 are of identical primary structure. The rat and murine peptides are homologous but differ from the human peptide by a single Arg/Lys conservative substitution, whilst, the porcine peptide differs by a single non-conservative Gln/Arg substitution. Each peptide is flanked by conserved pairs of basic amino acid residues. The characterisation of the novel CGA-derived peptides: B-granin4, pancreastatin (PST)5, chromostatin (CST)6, vasostatin7 and parastatin8, in conjunction with the determination of several CGA cDNA sequences which revealed the presence of multiple proteolytic processing sites, supports the concept that CGA is a prohormone.

Keywords

Chromaffin Cell Primary Antiserum Porcine Pancreas Basic Amino Acid Residue Identical Primary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J. Curry, C. Shaw, C.F. Johnston, L. Thim, and K.D. Buchanan, Isolation and primary structure of a novel chromogranin A-derived peptide, WE-14, from a human midgut carcinoid tumour. FEBS Lett 301: 319–321 (1992)PubMedCrossRefGoogle Scholar
  2. 2.
    J.M. Conlon, B. Hamberger, and L. Grimelius, Isolation of peptides arising from the specific posttranslational processing of chromogranin A and chromogranin B from human phaeochromocytoma. Peptides 13: 639–644 (1992)PubMedCrossRefGoogle Scholar
  3. 3.
    J.-P. Simon, and D. Aunis, Biochemistry of the chromogranin A protein family. Biochem. J. 262:1–13 (1989)PubMedGoogle Scholar
  4. 4.
    J.C. Hutton, F. Hansen, and M. Peshavaria, Beta-granin: 21kDa co-secreted peptides of the insulin secretory granule closely related to adrenal medullary chromogranin A. FEBS Lett. 188: 336–340 (1985)PubMedCrossRefGoogle Scholar
  5. 5.
    K. Tatemoto, S. Efendic, V. Mutt, G. Makk, GJ. Feistner, and J.D. Barchas, Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324: 476–478 (1986)PubMedCrossRefGoogle Scholar
  6. 6.
    E. Galindo, A. Rill, M.-F. Bader, and D. Aunis, Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion. Proc. Natl. Acad. Sci. USA, 88: 1426–1430 (1991)PubMedCrossRefGoogle Scholar
  7. 7.
    S. Ardal, and K.B. Helle, The vasoinhibitory activity of bovine chromogranin A fragments (vasostatin and its dependence of extracellular in isolated segments of human blood vessels. Regul Pept. 41: 9–18 (1992)CrossRefGoogle Scholar
  8. 8.
    B.H. Fasciotto, C.A. Trauss, G.H. Greeley, and D.V. Cohn, Parastatin (porcine chromogranin A 347–419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion. Endocrinology 133: 461–466 (1993)PubMedCrossRefGoogle Scholar
  9. 9.
    B. Wiedenmann, and W.B. Huttner, Synaptophysin and chromogranins/secretogranins — widespread constitutents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Archiv. B. Cell. Pathol. 58: 95–121 (1989)CrossRefGoogle Scholar
  10. 10.
    M. Ravazzola, S. Effendic, C.G. Ostenson, K. Tatemoto, J.C. Hutton, and L. Orci, Localization of pancreastatin immunoreactivity in porcine endocrine cells. Endocrinology 123: 227–229 (1988)PubMedCrossRefGoogle Scholar
  11. 11.
    W.E. Schmidt, E.G. Siegel, R. Lamberts, B. Gallwitz, and W. Creutzfeldt, Pancreastatin: Molecular and immunocytochemical characterization of a novel peptide in porcine and human tissues. Endocrinology 123: 1395–1404 (1988)PubMedCrossRefGoogle Scholar
  12. 12.
    D. Bretherton-Watt, M.A. Ghatei, A.E. Bishop, P. Facer, M. Fahey, M. Hedges, G. Williams, K.L. Valentino, K. Tatemoto, K. Roth, J.M. Polak, and S.R. Bloom, Pancreastatin: Distribution and plasma levels in the pig. Peptides 9: 1005–1014 (1988)PubMedCrossRefGoogle Scholar
  13. 13.
    R. Lamberts, W.E. Schmidt, and W. Creutzfeldt, Light and electron microscopical immunocytochemical localisation of pancreastatin-like immunoreactivity in porcine tissues. Histochemistry 93: 369–380 (1991)CrossRefGoogle Scholar
  14. 14.
    Y. Cetin, D. Aunis, M.-F. Bader, E. Galindo, A. Jörns, G. Bargsten, and D. Grube, Chromostatin, a chromogranin A-derived bioactive peptide, is present in human pancreatic insulin (B) cells. Proc. Natl. Acad. Sci. USA 90:2360–2364 (1993)PubMedCrossRefGoogle Scholar
  15. 15.
    J.C. Hutton, M. Peshavaria, C.F. Johnston, M. Ravazzola, and L. Orci, Immunolocalization of B-granin: a chromogranin A-related protein of the pancreatic B-cell. Endocrinology 122: 1014–1020 (1987)CrossRefGoogle Scholar
  16. 16.
    W. J. Curry, C.F. Johnston, J.C. Hutton, S.D. Arden, N.G. Rutherford, C. Shaw, and K.D. Buchanan, The tissue distribution of rat chromogranin A-derived peptides: Evidence for differential tissue processing from sequence specific antisera. Histochem 96: 531–538 (1991)CrossRefGoogle Scholar
  17. 17.
    S.D. Arden, N.G. Rutherford, P.C. Guest, W.J. Curry, E.M. Bailyes, CF. Johnston, and J.C Hutton, The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem. J. 298: 521–528 (1994)PubMedGoogle Scholar
  18. 18.
    A. Watkinson, A.-C. Jonsson, M. Davison, J. Young, C. Lee, S. Moore, and G.J. Dockray, Heterogeneity of chromogranin A-derived peptides in bovine gut, pancreas and adrenal medulla. Biochem. J. 276: 471–479 (1991)PubMedGoogle Scholar
  19. 19.
    M.-H. Metz-Boutigue, P. Garcia-Sablone, R. Hogue-Angeletti, and D. Aunis, Intracellular and extracellular processing of chromogranin A: Determination of cleavage sites. Eur. J. Biochem 217: 247–257 (1993)PubMedCrossRefGoogle Scholar
  20. 20.
    C.K. Connolly, W.J. Curry, C.F. Johnston, and K.D. Buchanan, Evidence for the proteolytic processing of chromogranin A in mammalian adrenal medullae and phaeochromocytomas. Regul. Pep. 51: 279 (1994)CrossRefGoogle Scholar
  21. 21.
    W.J. Curry, C.F. Johnston, C. Shaw, and K.D. Buchanan, Characterisation of WE-14 immunoreactivity in human, porcine and rat endocrine pancreata. Regul. Pep. 51: 280 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • W. J. Curry
    • 1
  • C. F. Johnston
    • 1
  • C. Shaw
    • 1
  • K. D. Buchanan
    • 1
  1. 1.Department of Medicine Institute of Clinical ScienceThe Queen’s University of BelfastBelfastNothern Ireland, UK

Personalised recommendations