Advertisement

Islet Release of ACTH-Like Peptides and their Modulatory Effect on Insulin Secretion

  • Juan J. Gagliardino
  • María I. Borelli
  • Fernando Estivariz
  • Illani Atwater
  • Carlos Boschero
  • Eduardo Rojas
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 426)

Abstract

The B-cell secretion of insulin in response to glucose is modulated by different hormones1,5. Some of these hormones are produced by non-B islet cells and also by the B-cells themselves. Among these hormones, the presence of POMC6 and some of its derivative products such as endorphin7,8, ACTH9 and corticotropin-like intermediate peptide10 has been identified in the islets. It has not yet been established whether the endogenous islet POMC and its derivatives play any modulatory role in the secretion of insulin. On the other hand, it has already been reported that ACTH enhances the secretion of insulin in response to glucose11,12. Such effect has been attributed to its stimulation on islet adenylate cyclase13 and to the consequent increase of 3′5′-cAMP14 in islet content, but the mechanism by which ACTH stimulates the release of insulin is not clear.

Keywords

Insulin Secretion ATPase Activity Insulin Release Krebs Ringer Bicarbonate Buffer Islet Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Tatemoto, S. Efendic, V. Mutt, G. Makk, G.J. Feistner, and J.D. Barrchas, Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion, Nature 324:476 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    I. Swenne, D.J. Hill, A.J. Strain, and R.D.J. Milner, Growth hormone regulation of somatomedin of insulin-like growth factor I production and DNA replication in fetal rat islets in tissue culture, Diabetes 36:288 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Knudtzon, Effects of pro-opiomelanocortin-derived peptides on plasma levels of glucagon, insulin and glucose, Horm. Metab. Res. 18:579 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    D.G. Pipeleers, F.C. Schuit, P. in’t Veld, E. Maes, E. Hooghe-Peters, M. van de Winkel, and W. Gepts, Interplay of nutrients and hormones in the regulation of insulin release, Endocrinology 117:824 (1985b).PubMedCrossRefGoogle Scholar
  5. 5.
    F.C. Schuit, and D.G. Pipeleers, Regulation of adenosine 3′,5′-monophosphate levels in the pancreatic B-cell, Endocrinology 117:834 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Zuhlke, U. Lendeckel, A. Zinke, and G. Jesse, Regulation of expression of proopiomelanocortin gene in isolated islets of Langerhans, Diabetologia (abstract) 32:560A (1989).Google Scholar
  7. 7.
    H. Ehrenreich, and F.D. Goebel, The role of opioids in the endocrinefunction of the pancreas, Diabetes Res. 3:59 (1986).PubMedGoogle Scholar
  8. 8.
    W.R. Niendorf, and H. Zuhlke, Biosynthesis of a-endorphin in pancreatic islets of neonatal Wistar rats, Biomed. Biochim. Acta 44:51 (1985).Google Scholar
  9. 9.
    Sanchez F. Franco, Y.C. Patel, and S. Reichlin, Immunoreactive adrenocorticotropin in the gastrointestinal tract and pancreatic islets of the rat, Endocrinology 108:2235 (1981).CrossRefGoogle Scholar
  10. 10.
    J.B. Marshall, L.P. Kapcala, L.D. Manning, and A. McCullough, Effect of corticotropin-like intermediate lobe peptide on pancreatic exocrine function in isolated rat pancreatic lobulus, J. Clin.Invest. 74:1885 (1984).CrossRefGoogle Scholar
  11. 11.
    D.L. Curry, and L.L. Bennett, Dynamics on insulin release by perfused rat pancreases: effects of hypophysectomy, growth hormone, adrenocorticotropic hormone and hydrocortisone, Endocrinology 93:602 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    K.K. Sussman, and G.D. Vaughan, Insulin release after ACTH, glucagon and adenosine-3′,5′-phosphate cyclic AMP in the perfused isolated rat pancreas, Diabetes 16:449 (1967).PubMedGoogle Scholar
  13. 13.
    W.N. Kuo, D. Hodgins, and J.K. Kuo, Adenylate cyclase in islets of Langerhans, J. Biol. Chem. 248:2705 (1973).PubMedGoogle Scholar
  14. 14.
    W.J. Malaisse, F. Malaisse-Lagae, and D. Mayhew, A possible role for the adenylcyclase system in insulin secretion. J. Clin. Invest. 46:1724 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    F.E. Lacy, and M. Kostianovsky, Method por the isolation of intact islets of Langerhans from rat pancreas, Diabetes 16:35 (1967).PubMedGoogle Scholar
  16. 16.
    J.J. Gagliardino, C. Nierle, and E.F. Pfeiffer, The effect of serotonin on in vitro insulin secretion and biosynthesis in mice. Diabetologia 10:411 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Fenger, Alpha-melanocyte-stimulating-hormone precursors in the pig pituitary, Biochem. J. 235:715 (1986).PubMedGoogle Scholar
  18. 18.
    V. Herbert, K.S. Lau, C.N. Gottlieb, and S.J. Bleicher, Coated-charcoal immunoassay of insulin, J. Clin. Endocr. Metab. 25:1375 (1965).PubMedCrossRefGoogle Scholar
  19. 19.
    P. Gobbe, and A. Herchuelz, Does glucose decrease cytosolic free calcium in normal pancreatic islet cells? Res. Commun. Chem. Pathol. Pharmacol. 63:231 (1989).PubMedGoogle Scholar
  20. 20.
    G. Grynkiewicz, M. Poenie, and R.Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260:3440 (1985).PubMedGoogle Scholar
  21. 21.
    J.P. Rossi, C.M. Gronda, H.N. Fernandez, and J.J. Gagliardino, Characteristics of Ca2+-ATPase activity measured in islet homogenates, Biochim. Biophys. Acta 943:175 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    O.H. Lowry, N.J. Rosebrough, A.L. Farr, and P.J. Randall, Protein measurement with the folin-phenol reagent, J. Biol. Chem. 193:265 (1951).PubMedGoogle Scholar
  23. 23.
    I. Atwater and P.M. Beigelman, Dynamic characteristics of electrical activity in pancreatic B-cells, J. Physiol. 72:769 (1976).Google Scholar
  24. 24.
    I. Atwater, Control mechanisms for glucose-induced changes in the membrane potential of mouse pancreatic B-cell, Cien. Biol. Portugal 5:299 (1980).Google Scholar
  25. 25.
    M.I. Borelli, M.I. Morano, F.E. Estivariz, and J.J. Gagliardino, Glucose-induced secretion of ACTH-like products by rat pancreatic islets, Arch. Internat. Physiol. Biochem. 102:17 (1994).CrossRefGoogle Scholar
  26. 26.
    H. Zuhlke, G. Jesse, T. Rosolsky, S. Gruska, U. Lendecker, and H. Hahn van Dorsche, Characterization of transcriptional and translational products of a-endorphin in isolated islets of Langerhans, Diabetologia (abstract) 31:562A (1988).CrossRefGoogle Scholar
  27. 27.
    S. Genuth, and H.E. Lebovitz, Stimulation of insulin release by corticotropin, Endocrinology 76:1093 (1965).PubMedCrossRefGoogle Scholar
  28. 28.
    F.E. Estivariz, M.I. Morano, M. Carino, S. Jackson, and P.J. Lowry, Adrenal regeneration in the rat is mediated by mitogenic N-terminal pro-opiomelanocortin peptides generated by changes in precursor processing in the anterior pituitary, J. Endocrinol. 116:207 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Deleers, M. Mahy, and W.J. Malaisse, Glucose increases cytosolic Ca2+ in pancreatic islet cells, Biochem. Int. 10:97 (1985).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Juan J. Gagliardino
    • 1
  • María I. Borelli
    • 1
  • Fernando Estivariz
    • 1
  • Illani Atwater
    • 2
  • Carlos Boschero
    • 2
  • Eduardo Rojas
    • 2
  1. 1.CENEXA-Centro de Endocrinología Experimental y Aplicada (UNLP-CONICET)La PlataArgentina
  2. 2.Laboratory of Cell Biology and Genetics, NIDDKNational Institutes of HealthBethesdaUSA

Personalised recommendations