Advertisement

Molecular Cloning of the cDNA Encoding β-Cell Calcium/Calmodulin-Dependent Protein Kinase II

  • Virginia Urquidi
  • Stephen J. H. Ashcroft
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 426)

Abstract

Current hypotheses postulate that the metabolism of glucose within islets results in a transient increase in the ATP:ADP ratio, leading to depolarization and opening of voltage-dependent Ca2+ channels, promoting influx of Ca2+ into the β-cell. The increase in intracellular calcium may activate Ca2+-dependent protein kinases, which in turn phosphorylate key components in the secretory machinery. The nature and identity of these components are at present unclear. In addition, the β-cell contains a high (15–50 μM) concentration of calmodulin (CaM) and it has been shown that inhibitors of CaM block insulin secretion. Possible candidates for Ca2+/calmodulin-dependent protein kinases acting as regulatory enzymes in the exocytotic release process are phosphorylase kinase, myosin light chain kinase and CaM kinases.

Keywords

Northern Analysis Myosin Light Chain Kinase Phosphorylase Kinase Autographa Californica Nuclear Polyhedrosis Virus Encode Protein Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colbran, R.J. and Soderling, T.R. (1990). Curr. Topics Cell. Regul. 31: 181–221.Google Scholar
  2. 2.
    Hanson, P.I. and Schulman, H. (1992). Annu. Rev. Biochem. 61: 559–601.PubMedCrossRefGoogle Scholar
  3. 3.
    Bulleit, R.F., Bennett, M.K., Molloy, S.S., Hurley, J.B., and Kennedy, M.B. (1988). Neuron 21: 63–72.CrossRefGoogle Scholar
  4. 4.
    Nghiem, P., Saati, S.M., Martens, C.L., Gardner, P. and Schulman, H. (1993). J. Biol. Chem. 268: 5471–5479.PubMedGoogle Scholar
  5. 5.
    Schworer, C.M., Rothblum, L.I., Thekkumkara, T.J. and Singer, H.A. (1993). J. Biol. Chem. 268: 14443–14449.PubMedGoogle Scholar
  6. 6.
    Edman, C.F. and Schulman, H. (1994). Biochim Biophys. Acta 1221: 89–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Tobimatsu, T. and Fujisawa, H. (1989). J. Biol. Chem. 264: 17907–17912.PubMedGoogle Scholar
  8. 8.
    Colca J.R., Kotogal, N., Brooks, C.L., Lacy, P.E., Landt, M., and McDaniel, M.L. (1983). J. Biol. Chem. 258: 7260–7263.PubMedGoogle Scholar
  9. 9.
    Hughes, S., Smith, H. and Ashcroft, S.J.H. (1993). Biochem J. 289: 795–800.PubMedGoogle Scholar
  10. 10.
    Wenham, R.M., Landt, M. Walters, S.M., Hidaka, H. & Easom, R.A. (1992). Biochem. Biophys. Res. Com. 189: 128–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Cohn, J.A., Kinder, B., Jamieson, J.D., Delahunt, N.G. and Gorelick, F.S. (1987). Biochem. Biophys. Acta 928: 320–331.PubMedCrossRefGoogle Scholar
  12. 12.
    Ämmälä, C., Eliasson, B., Wäppling-Raaholt, B., Bokvist, K., Larsson, O., Ashcroft, F.M. and Rorsman, P. (1993). Nature 363: 356–358.PubMedCrossRefGoogle Scholar
  13. 13.
    Takaishi, T., Saito, N. and Tanaka, C. (1992). J. Neurochem. 58: 1971–1974.PubMedCrossRefGoogle Scholar
  14. 14.
    Llinas, R., Mc Guiness, T.L., Leonard, C.S., Sugimori, M. and Greengard, P. (1985). Proc. Natl. Acad. Sci. 82: 3035–3039.PubMedCrossRefGoogle Scholar
  15. 15.
    Nichols, R.A., Sihra, T.S., Czernik, A.J., Nairn, A.C. and Greengard, P. (1990). Nature 343: 647–651.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Virginia Urquidi
    • 1
  • Stephen J. H. Ashcroft
    • 1
  1. 1.Nuffield Department of Clinical Biochemistry, John Radcliffe HospitalUniversity of OxfordHeadington OxfordUK

Personalised recommendations