Skip to main content

Role of 12-Lipoxygenase and Protein Kinase C in Modulating the Activation State of the Integrin αIIbβ3 on Human Tumor Cells

  • Chapter
Eicosanoids and other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 407))

Abstract

Tumor cell metastasis is a complex multistep process involving homotypic and heterotypic interactions among tumor cells and host cells (i. e. platelets, endothelial cells, etc.) in addition to tumor cell interactions with the extracellular matrix. These interactions are mediated by a variety of cell surface receptors including cadherins, CAMs, selectins, and integrins.1 To date a number of integrin receptors have been shown to be critically involved in tumor cell development and metastasis. Most of the integrin receptors recognize one or two matrix proteins (α5β1-fibronectin, α6β1-laminin and collagen).1,2 However, two members of the β3 integrin family, αIIbβ3 and αvβ3, recognize a large number of ECM proteins such as fibrinogen, fibronectin, vitronectin, thrombospondin, and von Willebrand factor.2 Cells expressing these receptors have an advantage to adhere to a variety of basement membrane proteins and thereby generate different matrix driven cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Tang, and K.V. Honn. Adhesion molecules and tumor metastasis: An update. Invasion Metastasis 95:109 (1995).

    Google Scholar 

  2. R.O. Hynes. Integrins: versatility, modulation, and signaling in cell adhe-sion. Cell 69:11 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. D.A. Cheresh. Structure, function and biological properties of integrin αvβ3 on human melanoma cells. Cancer Metastasis Rev. 10:3 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. P.C. Brooks, R.A.F. Clark, and D.A. Cheresh. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. A.M.P. Montgomery, R.A. Reisfeld, and D.A. Cheresh. Integrin αvβ3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc. Natl. Acad. Sci., USA 91:8856 (1994).

    Article  PubMed  CAS  Google Scholar 

  6. J.J. Calvete. Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex. Throm. Haemostasis. 72:1 (1994).

    CAS  Google Scholar 

  7. K.L. Block and M. Poncz. Platelet glycoprotein lIb gene expression as a model of megakaryocyte-specific expression. Stem Cells 13:135 (1995).

    Article  PubMed  CAS  Google Scholar 

  8. E.A. Clark and J.S. Brugge. Integrins and signal transduction pathways: The road taken. Science 268:233 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. RJ. Faull and M.H. Ginsberg. Dynamic regulation of integrins. Stem Cells 13:38 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. S.S. Smyth, C.C. Joneckis, and L.V. Parise. Regulation of vascular integrins. Blood 81:2827 (1993).

    PubMed  CAS  Google Scholar 

  11. J.Y. Ylanne, M. Hormia, M. Jarvinen, and I. Virtanen. Platelet glyco-protein IIb/IIIa complex in cultured cells. Localization in focal adhesion sites in spreading HEL cells. Blood 72:1478 (1988).

    PubMed  CAS  Google Scholar 

  12. M. Poncz, R. Eisman, R.A. Heidenreich, S.M. Silver, G. Villaire, S. Surrey, E. Schwartz, and J.S. Bennett. Structure of the platelet membrane glyco-protein IIb: Homology to the alpha subunit of the vitronectin and fibronec-tin membrane receptors. J. Biol. Chem. 262:8476 (1987).

    PubMed  CAS  Google Scholar 

  13. L.A. Fitzgerald, B. Steiner, S.C. Rall, Jr., S. Lo, and D.R. Phillips. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone: Identity with platelet glycoprotein IIIa and similarity to ‘integrin’. J. Biol. Chem., 262:3936 (1987)

    PubMed  CAS  Google Scholar 

  14. Y.Q. Chen, X. Gao, J. Timar, D.G. Tang, I.M. Grossi, M. Chelladurai, T.J. Kunicki, S.E.G. Fliegel, J.D. Taylor, and K.V. Honn. Identification of the αIIbβ3 integrin in murine melanoma tumor cells. J. Biol. Chem. 267:17314 (1992).

    PubMed  CAS  Google Scholar 

  15. Y.S. Chang, Y.Q. Chen, J. Timar, K.K. Nelson, I.M. Grossi, L.A. Fitzgerald, C.A. Diglio, and K.V. Honn. Increased expression of αIIbβ3 integrin in subpopulations of murine melanoma cells with high lung-colonizing ability. Int. J. Cancer 51:445 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. K.V. Honn, Y.Q. Chen, J. Timar, J.M. Onoda, J.S. Hatfield, S.E. Fligiel, B.W. Steinert, C.A. Diglio, I.M. Grossi, K.K. Nelson, J.D. Taylor. αIIbβ3 integrin expression and function in subpopulations of murine tumors. Exp. Cell Res. 201:23 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. D.G. Tang, J.M. Onoda, B.W. Steinert, I.M. Grossi, K.K. Nelson, L. Umbarger, C.A. Diglio, J.D. Taylor, and K.V. Honn. Phenotypic properties of cultured tumor cells: integrin αIIbβ3 expression, tumor-cell-induced platelet aggregation, and tumor-cell adhesion to endothelium as important parameters of experimental metastasis. Intl. J. Cancer 54:338 (1993).

    Article  CAS  Google Scholar 

  18. Y.S. Chang, Y.Q. Chen, L.A. Fitzgerald, and K.V. Honn. Analysis of integrin mRNA in human and rodent tumor cells. Biochem. Biophys. Res. Comm. 176:108 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. H. Boekerche, O. Berthier-Vergnes, E. Tabone, J.F. Dore, L. Leung, and J.L. McGregor. Platelet-melanoma cell interaction is mediated by the glycoprotein IIb-IIIa complex. Blood 74:658 (1989).

    Google Scholar 

  20. L. Oleksowicz, Z. Mrowiec, E. Schwartz, M. Khorshidi, J.P. Dutcher, and E. Puzkin. Characterization of tumor induced platelet aggregation: The role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Throm. Res. 79:261 (1995).

    Article  CAS  Google Scholar 

  21. J. Heino and J. Massague. Transforming growth factor β switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol. Chem., 264:21806 (1989).

    PubMed  CAS  Google Scholar 

  22. F.J. Burrow, D.O. Haskard, I.R. Hart, J.F. Marshall, S. Selkirk, S. Poole, and P.E. Thorpe. Influence of tumo rderived interleukin-1 on melanoma-endothelial cell interactions in vitro. Cancer Res., 51:4768 (1991).

    Google Scholar 

  23. P. Defilippi, G. Truffa, G. Stefanuto, F. Altruda, L. Silengo, G. Tarone, Tumor necrosis factor α and interferon y modulate the expression of the vitronectin receptor (αtvβ3) in human endothelial cells. J. Biol. Chem., 266:7638 (1991).

    PubMed  CAS  Google Scholar 

  24. S. Klein, F.G. Giancotti, M. Presta, S.M Albelda, C.A. Buck, D.B. Rifkin,. Basic fibroblast growth factor modulates integrin expression in micro-vascular endothelial cells. Molec. Biol. Cell, 4:973 (1993).

    PubMed  CAS  Google Scholar 

  25. K. Ahlen and K. Rubin. Platelet derived growth factor-BB stimulates synthesis of the integrin α2 subunit in human diploid fibroblasts. Exp. Cell Res., 215:347 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. H. Chopra, J. Timar, Y.Q. Chen, X. Rong, I.M. Grossi, L.A. Fitzgerald, J.D. Taylor, and K.V. Honn. The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin αIIbβ3 on melanoma cells. Int. J. Cancer, 49:774 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. J. Timar, Y.Q. Chen, B. Liu, R. Bazaz, J.D. Taylor, and K.V Honn. The lipoxygenase metabolite 12(S)-HETE promotes αIIbβ3 integrin-mediated tumor cell spreading on fibronectin. Int. J. Cancer, 52:594 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. D.G. Tang, I.M. Grossi, Y.Q. Chen, C.A. Diglio, and K.V Honn. 12(S)-HETE promotes tumor-cell adhesion by increasing surface expression of αvβ3 integrins on endothelial cells. Int. J. Cancer, 54:102 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. D.G. Tang, Y.Q. Chen, C.A. Diglio, and K.V. Honn. Protein kinase C-dependent effects of 12(S)-HETE on endothelial cell vitronectin receptor and fibronectin receptor. J. Cell Biol., 121:689 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. J. Timar, R. Bazaz, VA. Kimler, M.M. Haddad, D.G. Tang, D. Robertson, J.D. Taylor, and K.V. Honn. Immunomorphological characterization and effects of 12(S)-HETE on a dynamic intracellular pool of the αI-Ibβ3-integrin in melanoma cells. J. Cell Sci., 108:2175 (1995).

    PubMed  CAS  Google Scholar 

  31. D.G. Tang, C.A. Diglio, R. Bazaz, and K.V. Honn. Transcriptional activation of endothelial cell integrin av by protein kinase C activator 12(S)-HETE. J. Cell Sci., 108:2629 (1995).

    PubMed  CAS  Google Scholar 

  32. J. Timar, S. Silletti, R. Bazaz, A. Raz, and K.V. Honn. Regulation of melanoma cell motility by the lipoxygenase metabolite 12(S)-HETE. Int. J. Cancer, 55:1003 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. S. Silletti, J. Timar, K.V. Honn, and A. Raz. Autocrine motility factor induces differential 12-lipoxygenase expression and activity in high-and low-metastatic K1735 melanoma cell variants. Cancer Res., 54:5752 (1994).

    PubMed  CAS  Google Scholar 

  34. M. Stocker and E. Gherardi. Regulation of cell movement: the motogenic cytokines. Biochim. Biophys. Acta, 1072:81 (1991).

    Google Scholar 

  35. J. Timar, M. Trikha, K. Szekeres, R. Bazaz, J. Tovari, S. Silletti, A. Raz, and K.V Honn. Autocrine motility factor signals integrin-mediated metastatic melanoma cell adhesion and invasion. Cancer Res., in press.

    Google Scholar 

  36. B. Liu, W.A. Khan, Y.A. Hannun, R. Bazaz, C. Renaud, S. Stojakovic, J. Timar, J.D. Taylor, and K.V Honn. 12(S)-HETE and 13(S)-HODE regulation of protein kinase C alpha in melanoma cells: role of receptor mediated hydrolysis of inositol phospholipids. Proc. Natl. Acad. Sci. USA, 92:9323 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trikha, M., Honn, K.V. (1997). Role of 12-Lipoxygenase and Protein Kinase C in Modulating the Activation State of the Integrin αIIbβ3 on Human Tumor Cells. In: Honn, K.V., Marnett, L.J., Nigam, S., Jones, R.L., Wong, P.YK. (eds) Eicosanoids and other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 3. Advances in Experimental Medicine and Biology, vol 407. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1813-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1813-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1815-4

  • Online ISBN: 978-1-4899-1813-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics