Skip to main content

Quantization of Space and Time in 3 and in 4 Space-Time Dimensions

  • Chapter
Quantum Fields and Quantum Space Time

Part of the book series: NATO ASI Series ((NSSB,volume 364))

Abstract

The fact that in Minkowski space, space and time are both quantized does not have to be introduced as a new postulate in physics, but can actually be derived by combining certain features of General Relativity and Quantum Mechanics. This is demonstrated first in a model where particles behave as point defects in 2 space dimensions and 1 time, and then in the real world having 3+1 dimensions. The mechanisms in these two cases are quite different, but the outcomes are similar: space and time form a (non-cummutative) lattice.

These notes are short since most of the material discussed in these lectures is based on two earlier papers by the same author (gr-qc/9601014 and gr-qc/9607022), but the exposition given in the end is new.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Waelbroeck, Class. Quantum Grav. 7 (1990) 751; Phys. Rev. Lett. 64 (1990) 2222; Nucl. Phys. B 364 (1991) 475.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. G.’ t Hooft, Class. Quantum Grav. 9 (1992) 1335; 10 (1993) S 79.

    Article  ADS  MATH  Google Scholar 

  3. G.’ t Hooft, Class. Quantum Grav. 10 (1993) 1023.

    Article  ADS  Google Scholar 

  4. S. Carlip, Nucl. Phys. B324 (1989) 106; and in: “Physics, Geometry and Topology”, NATO ASI series B, Physics, Vol. 238, H.C. Lee ed., Plenum 1990, p. 541; S. Carlip, Six ways to quantize (2+1)-dimensional gravity, Davis Preprint UCD-93-15, gr-qc/9305020.

    Article  MathSciNet  ADS  Google Scholar 

  5. E. Witten, Nucl. Phys. B311 (1988) 46; see also G. Grignani, 2+1-dimensional gravity as a gauge theory of the Poincaré group, Scuola Normale Superiore, Perugia, Thesis 1992-1993.

    Google Scholar 

  6. H. Waelbroeck and F. Zertuche, Phys. Rev. D50 (1994) 4966; H. Waelbroeck, pers. comm.

    MathSciNet  ADS  Google Scholar 

  7. G.’ t Hooft, Class. Quantum Grav. 10 (1993) 1653 (gr-qc/9305008).

    Article  ADS  MATH  Google Scholar 

  8. H. Waelbroeck and J.A. Zapata, 2+1 Covariant Lattice Theory and’ t Hooft’s Formulation, Pennsylvania State Univ. prepr. CGPG-95/8 (gr-qc/9601011). See also: A.P. Balachandran and L. Chandar, Nucl. Phys. B 428 (1994) 435.

    Article  MathSciNet  ADS  Google Scholar 

  9. G.’ t Hooft, Class. Quantum Grav. 13 (1996) 1023 (gr-qc/9601014).

    Article  ADS  MATH  Google Scholar 

  10. S.W. Hawking, Commun. Math. Phys. 43 (1975) 199

    Article  MathSciNet  ADS  Google Scholar 

  11. J.B. Hartle and S.W. Hawking, Phys. Rev. D13 (1976) 2188.

    ADS  Google Scholar 

  12. G.’ t Hooft, “The Scattering matrix Approach for the Quantum Black Hole” (gr-qc/9607022).

    Google Scholar 

  13. L. Susskind, L. Thorlacius and J. Uglum, Phys. Rev. D 48 (1993) 3743 (hep-th/9306069).

    Article  MathSciNet  ADS  Google Scholar 

  14. G.’ t Hooft, “Dimensional Reduction in Quantum Gravity”, in Salamfestschrift: a collection of talks, World Scientific Series in 20th Century Physics, vol. 4, ed. A. Ali, J. Ellis and S. Randjbar-Daemi (World Scientific, 1993), THU-93/26, gr-qc/9310026

    Google Scholar 

  15. L. Susskind, “The world as a hologram”, J. Math. Phys. 36 (1995) 6377, hep-th/9409089

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Corley and T. Jacobson, “Focusing and the holographic hypothesis”, gr-qc/9602031.

    Google Scholar 

  17. G.’ t Hooft, Physica Scripta, T15 (1987) 143–150; id. Nucl. Phys. B335 (1990) 138; Physica Scripta T 36 (1991) 247.

    Article  ADS  Google Scholar 

  18. G.’ t Hooft, “The Black Hole Horizon as a Quantum Surface” Physica Scripta T36 (1991) 247–252. Also published in: The Birth and Early Evolution of Our Universe, Proceedings of Nobel Symposium 79, Gräftavallen, Sweden, June 11–16, 1990. (Eds.: J.S. Nilsson, B. Gustafsson and B.-S. Skagerstam.) World Scientific, Singapore (1991).

    Article  ADS  MATH  Google Scholar 

  19. J.D. Bekenstein and V.F. Mukhanov, Phys. Lett. B 360 (1995) 7.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

’t Hooft, G. (1997). Quantization of Space and Time in 3 and in 4 Space-Time Dimensions. In: ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds) Quantum Fields and Quantum Space Time. NATO ASI Series, vol 364. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1801-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1801-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1803-1

  • Online ISBN: 978-1-4899-1801-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics