Skip to main content

Symmetries of Dimensionally Reduced String Effective Action

  • Chapter
Quantum Fields and Quantum Space Time

Part of the book series: NATO ASI Series ((NSSB,volume 364))

  • 394 Accesses

Abstract

The ten dimensional heterotic string effective action with graviton, dilaton and antisymmetric tensor fields is dimensionally reduced to two spacetime dimensions. The resulting theory, with some constraints on backgrounds, admits infinite sequence of conserved nonlocal currents. It is shown that generators of the infinitesimal transformations associated with these currents satisfy Kac-Moody algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Maharana, Phys. Rev. Lett. 75 (1995) 205; Mod. Phys. Lett. A11 (1996) 11.

    Article  ADS  Google Scholar 

  2. J. Maharana and J. H. Schwarz, Nucl. Phys. B390 (1993) 3.

    Article  MathSciNet  ADS  Google Scholar 

  3. For recent reviews and detailed references see A. Sen Int. J. Mod. Phys. A9 (1994) 3707

    ADS  Google Scholar 

  4. A. Giveon, M. Porrati and E. Ravinovici, Phys. Rep., C244 (1994) 77.

    Article  ADS  Google Scholar 

  5. V. Kac, Math. USSR Izv. 2 (1968) 1271

    Article  Google Scholar 

  6. R. Moody, J. Algebra, 10 (1968) 211. Some of the monographs giving an expositions to the subject are: V. G. Kac, Infinite Dimensional Lie Algebras, Birkhäuser; V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Scientific Co; Vertex Operators in Mathematics and Physics, Ed. J. Lepowsky, S. Mandelstam and I. M. Singer, Springer Verlag; Kac-Moody and Virasoro Algebras, Ed. P. Goddard and D. Olive, World Scientific Co.

    Article  MathSciNet  Google Scholar 

  7. L. Dolan and A. Roos, Phys. Rev. D22 (1980) 2018.

    MathSciNet  ADS  Google Scholar 

  8. T. Dass and J. Maharana, Converse of Noether’s theorem and symmetries associated with conservation laws of the KdV equation preprint IP/BBSR-81-24; unpublished. Transformation laws associated with infinite set of currents of KdV equation were presented in this paper.

    Google Scholar 

  9. L. Doalan, Phys. Rev. Lett. 47 (1981) 1371.

    Article  MathSciNet  ADS  Google Scholar 

  10. M. J. Duff and R. R. Khuri, Nucl. Phys. B411 (1994) 473

    Article  MathSciNet  ADS  Google Scholar 

  11. M. J. Duff, R. R. Khuri, R. Minasian and J. Rahmfield, Nucl. Phys. B418 (1994) 195.

    Article  ADS  Google Scholar 

  12. J. Maharana, Isaac Newton Institute, Cambridge, preprint NI94023; Phys. Lett.B (in press).

    Google Scholar 

  13. I. Bakas, Nucl. Phys. B428 (1994) 374.

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Lüscher and K. Pohlmeyer, Nucl. Phys. B137 (1978) 46

    Article  ADS  Google Scholar 

  15. E. Brezin, C. Itzykson, J. Zinn-Justin, J. B. Zubber, Phys. Lett. 82B (1979) 442

    ADS  Google Scholar 

  16. H. J. de Vega, Phys. Lett. 87B (1979) 233

    ADS  Google Scholar 

  17. A. T. Ogielski, Phys. Rev. D21 (1980) 3462

    MathSciNet  Google Scholar 

  18. E. Witten, Phys. Rev. D16 (1978) 2991; 341

    MathSciNet  ADS  Google Scholar 

  19. E. Corrigan and C. K. Zachos, Phys. Lett. 88B (1979) 273

    ADS  Google Scholar 

  20. T. Curtright, Phys. Lett, bf 88B (1979) 276

    MathSciNet  ADS  Google Scholar 

  21. Y. Y. Goldschmidt and E. Witten Phys. Lett. 91B (1980) 392

    MathSciNet  ADS  Google Scholar 

  22. T. Curtright and C. K. Zachos, Phys. Rev. D21 (1980) 411

    MathSciNet  ADS  Google Scholar 

  23. H. Eichenherr and M. Forger, Nucl. Phys. B156 (1979) 381

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Maharana, Phys. Lett. 128B (1983) 411

    ADS  Google Scholar 

  25. J. Maharana, Lett. Math. Phys. 8 (1984) 284

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Maharana, Ann. Inst. Henri Poincare 45 (1986) 231.

    MathSciNet  MATH  Google Scholar 

  27. C. Devchand and D. B. Fairlie, Nucl. Phys. B194 (1982) 232.

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Font, L. Ibanez and F. Quevedo, Phys. Lett. 249B (1990) 35

    MathSciNet  ADS  Google Scholar 

  29. S.-J. Rey, Phys. Rev. D43 (1991) 526

    MathSciNet  ADS  Google Scholar 

  30. A. Sen Nucl. Phys. B404 (1993) 109; Phys. Lett. 303B (1993) 22; Mod. Phys. Lett. A8 (1993) 2023

    Article  ADS  Google Scholar 

  31. J. H. Schwarz, Caltech Preprint CALT-68-1815

    Google Scholar 

  32. J. H. Schwarz and A. Sen Phys. Lett. 329B (1994) 105

    MathSciNet  Google Scholar 

  33. A. Sen, Phys. Lett. 329B (1994) 217

    ADS  Google Scholar 

  34. J. H. Schwarz and A. Sen Nucl. Phys. B411 (1994) 35.

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Sen preprint TIFR-TH-94-19; G. Segal (to appear); E. Witten (unpublished)

    Google Scholar 

  36. J. H. Schwarz, Nuci. Phys. B447 (1995) 137; Nucl. Phys. B454 (1995) 427; hep-th/1903127; hep-th/1905170.

    Article  ADS  Google Scholar 

  37. A. Sen, Nucl. Phys. B447 (1995) 62.

    Article  ADS  Google Scholar 

  38. A. Kumar and K. Ray, Phys. Lett. B358 (1995) 223

    MathSciNet  ADS  Google Scholar 

  39. A. K. Biswas, A. Kumar and K. Ray, Nucl. Phys. B453 (1995) 181.

    Article  MathSciNet  ADS  Google Scholar 

  40. A. A. Kehagias, Phys. Lett. B360 (1995) 19.

    MathSciNet  ADS  Google Scholar 

  41. D. V. Gal’tsov and O. V. Keehkin, Phys. Lett. B361 (1995) 52; Phys. Rev. D54 (1996) 1656.

    ADS  Google Scholar 

  42. E. Abdella and M. C. B. Abdella, Phys. Lett. B365 (1996) 41.

    ADS  Google Scholar 

  43. H. Nicolai, Phys. Lett. B194 (1987) 402

    MathSciNet  ADS  Google Scholar 

  44. H. Nicolai and B. de Witt, Nucl. Phys. B208 (1982) 323

    ADS  Google Scholar 

  45. H. Nicolai and N. P. Warner, Commun. Math. Phys. 125 (1989) 369

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. D. Korotkin and H. Nicolai, Phys. Rev. Lett. 74 (1995) 1272; hep-th/9605144; B. Julia and H. Niclai, hep-th/ 9608082.

    Google Scholar 

  47. H. Nicolai, Lectures in this proceeding.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maharana, J. (1997). Symmetries of Dimensionally Reduced String Effective Action. In: ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds) Quantum Fields and Quantum Space Time. NATO ASI Series, vol 364. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1801-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1801-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1803-1

  • Online ISBN: 978-1-4899-1801-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics