Skip to main content

Prooxidant Functions of Coenzyme Q

  • Chapter
Fat-Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 30))

Abstract

Ubiquinone (oxidized coenzyme Q, Q, Q10) shares its biological role in membrane-associated redox reactions with a variety of other redox carriers such as dehydrogenases, non-heme-iron proteins, and cytochromes. The cooperation of this biological quinone with respiratory enzymes is often emphasized through the synonymous name “coenzyme Q.” Peculiarities arise from the lack of transition metals, which in contrast to the electron carriers mentioned above, do not participate in redox-shuttle activities of coenzyme Q. Another peculiarity is the lipophilicity of coenzyme Q, which allows free movement between reductants and oxidants of a membrane. The chemistry of ubiquinone reduction and ubiquinol (reduced coenzyme Q, QH2, Q10H2) oxidation requires the stepwise acceptance and transfer of two single electrons associated with the addition or release of two single protons. These special qualities are widely used in biological membranes for linear electron transfer and transmembrane proton translocation. In mitochondria, under certain conditions linear electron transfer from the semireduced form of coenzyme Q (ubisemiquinone radical(s), SQ) to native oxidants of the respiratory chain (Rieske iron sulfur protein and cytochromes) may run out of control, thereby establishing a permanent source of oxygen radical release (Fig. 1A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boveris, A., and Cadenas, E., 1975, Mitochondrial production of Superoxide anions and its relationship to the antimycin insensitive respiration, FEBS Lett. 54:311–314.

    Article  PubMed  CAS  Google Scholar 

  • Boveris, A., Oshino, N., and Chance, B., 1972, The cellular production of hydrogen peroxide, Biochem. J. 128:617–630.

    PubMed  CAS  Google Scholar 

  • Boveris, A., Cadenas, E., and Stoppani, A. O. M., 1976, Role of ubiquinone in the mitochondrial generation of hydrogen peroxide, Biochem. J. 156:435–444.

    PubMed  CAS  Google Scholar 

  • Buettner, G. R., 1987, Spin trapping: ESR parameters of spin adducts. Free Radic. Biol. Med. 3:259–303.

    Article  PubMed  CAS  Google Scholar 

  • Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. M., 1977, Production of Superoxide radicals and hydrogen peroxide by NADH ubiquinone reductase and ubiquinol cyto-chrome c reductase from beef heart mitochondria, Arch. Biochem. Biophys. 180:248–257.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Wilson, D. F., Dutton, P. L., and Erecinska, M., 1970, Energy-coupling mechanisms in mitochondria: Kinetic, spectroscopic, and thermodynamic properties of an energy-transducing form of cytochrome b, Proc. Natl. Acad. Sci. USA 66:1175–1182.

    Article  PubMed  CAS  Google Scholar 

  • Davies, M. J., and Slater, T. F., 1987, Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy, Biochem. J. 245:167–173.

    PubMed  CAS  Google Scholar 

  • De Vries, S., Albracht, S. P. J., Berden, J. A., and Slater, E. C., 1981, A new species of bound ubisemiquinone anion in QH2: cytochrome c oxidoreductase, J. Biol. Chem. 256:11996–11998.

    PubMed  Google Scholar 

  • Ding, H., Moser, C. C., Robertson, D. E., Tokito, M. K., Daldal, F., and Dutton, P. L., 1995, Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bcl complex, Biochemistry 34:15979–15996.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., and Wilson, D. F., 1976, The effect of antimycin A on cytochromes b561, b566, and their relationship to ubiquinone and the iron-sulfur centers S-1 (+N-2) and S-3, Arch. Biochem. Biophys. 174:143–157.

    Article  PubMed  CAS  Google Scholar 

  • Gutman, M., Coles, C. J., Singer, T. P., and Casida, J. E., 1971, On the functional organization of the respiratory chain at the dehydrogenase-coenzyme Q junction, Biochemistry 10:2036–2043.

    Article  PubMed  CAS  Google Scholar 

  • Ilan, Y. A., Czapski, G., and Meisel, D., 1976, The one electron transfer redox potentials of free radicals. 1. The oxygen/superoxide system, Biochim. Biophys. Acta 430:209–224.

    Article  PubMed  CAS  Google Scholar 

  • Kagan, V. E., Nohl, H., and Quinn, P. J., 1996, Coenzyme Q: Its role in scavenging and generation of radicals in membranes, in Handbook of Antioxidants (E. Cadenas and L. Packer, eds.), pp. 157–201, Marcel Dekker, New York.

    Google Scholar 

  • Kozlov, A. V., Nohl, H., and Gille, L., 1998, Identification of the ubiquinone species involved in Superoxide radical formation, Biochem. Biophys. Res. Commun..

    Google Scholar 

  • Submitted. Lenaz, G., and Esposti, M. D., 1985, Physical properties of ubiquinones in model systems and membranes, in Coenzyme Q (G. Lenaz, ed.), pp. 83–105, Wiley, Chichester.

    Google Scholar 

  • Lester, R. L., and Fleischer, S., 1961, Studies on the electron-transport system. XXVII. The respiratory activity of acetone extracted beef-heart mitochondria, role of coenzyme Q and other lipids. Biochim. Biophys. Acta 71:355–363.

    Google Scholar 

  • Loschen, G., Flohe, L., and Chance, B., 1971, Respiratory chain linked H2O2 production in pigeon heart mitochondria, FEBS Lett. 18:261–264.

    Article  PubMed  CAS  Google Scholar 

  • Loschen, G., Azzi, A., and Flohe, L., 1973, Mitochondrial H2O2 formation at site II, Hoppe Seyler Z. Physiol. Chem. 354:791–794.

    Article  PubMed  CAS  Google Scholar 

  • Maride, D. L., and Hodgson, W. G., 1965, Reduction of oxygen to Superoxide anion in aprotic solvents, Anal. Chem. 37:1562–1565.

    Article  Google Scholar 

  • Nohl, H., 1982, The biochemical mechanism of the formation of reactive oxygen species in heart mitochondria, in Advances in Studies on Heart Metabolism (C. M. Caldera and P. Harris, eds.), pp. 413–421, CLUEB, Bologna.

    Google Scholar 

  • Nohl, H., 1990, Is redox-cycling ubiquinone involved in mitochondrial oxygen activation? Free Radic. Res. Commun. 8:307–315.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H., and Hegner, D., 1978, Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563–567.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H., and Stolze, K., 1992, Ubisemiquinones of the mitochondrial respiratory chain do not interact with molecular oxygen, Free Radic. Res. Commun. 16:409–419.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H., Koltover, V., and Stolze, K., 1993, Ischemia/reperfusion impairs mitochondrial energy conservation and triggers O2 release as a byproduct of respiration, Free Radic. Res. Commun. 18:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H., Gille, L., Schoenheit, K., and Liu, Y., 1996, Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen, Free Radic. Biol. Med. 20:207–213.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H., Gille, L., and Staniek, K., 1997a, Endogenous and exogenous regulation of redox-properties of coenzyme Q, Mol. Aspects Med. 18:s33–s40.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H., Staniek, K., and Gille, L., 1997b, Imbalance of oxygen activation and energy metabolism as a consequence or mediator of aging, Exp. Gerontol. 32:485–500.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, T., and Trumpower, B. L., 1980, Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate cytochrome c reductase complex, J. Biol. Chem. 255:3278–3284.

    PubMed  CAS  Google Scholar 

  • Stolze, K., and Nohl, H., 1994, Effect of xenobiotics on the respiratory activity of rat heart mitochondria and the concomitant formation of Superoxide radicals, Environ. Toxicol. Chem. 13:499–502.

    Article  CAS  Google Scholar 

  • Thomas, S. R., Neuzil, J., and Stocker, R., 1996, Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation, Arterioscler. Thromb. Vasc. Biol. 16:687–696.

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn, C. C., 1981, Evidence for the production of hydroxyl radicals from the adriamycin semiquinone and H2O2, FEBS Lett. 136:89–94.

    Article  CAS  Google Scholar 

  • Wood, P. M., 1974, The redox potential of the system oxygen-superoxide, FEBS Lett. 44:22–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nohl, H., Gille, L., Kozlov, A.V. (1998). Prooxidant Functions of Coenzyme Q. In: Quinn, P.J., Kagan, V.E. (eds) Fat-Soluble Vitamins. Subcellular Biochemistry, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1789-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1789-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1791-1

  • Online ISBN: 978-1-4899-1789-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics