Skip to main content

The Stop Signal Controls the Efficiency of Release Factor-Mediated Translational Termination

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 18))

Abstract

There are three important steps in protein synthesis where signals in the mRNA are critical for a successful outcome, namely the production of a functional protein. First the information in the nucleic acid which is to be translated into an amino acid sequence is signalled by successive triplet sense codons, second the frame is set by one sense codon, the initiation codon, which acts as the start of translation of the encoded information, and third the end of the information frame also has to be marked by a specific signal. The use of a range of different signals to mark each of these steps allows for differences in the efficiency with which different proteins are produced. In this review the focus is on the signal that marks the end of the frame, the translational termination signal. For a long time it was thought that termination would be the least interesting phase of protein synthesis but it has subsequently been found to have unexpected dimensions, providing a substratum of cellular regulation. The translational stop signal should now be thought of as a full stop in the large majority of cases, but as a pause in a fundamentally important minority of cases where alternative genetic events can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

RF:

Release Factor

eRF:

Eukaryotic Release Factor

mRF:

Mitochondrial Release Factor

5′DI::

type I iodothyronine 5′-deiodinase

rRNA:

Ribosomal RNA

mRNA:

Messenger RNA

tRNA:

Transfer RNA.

References

  1. Shine, J. and Dalgarno, L. (1974) Proc. Nat. Acad. Sci. U.S.A. 71, 1342–1346.

    Article  CAS  Google Scholar 

  2. Gold, L. (1988) Ann. Rev. Biochem. 57, 199–233.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, H., Bjerknes, M., Kumar, R. and Jay, E. (1994) Nucl. Acids Res. 22, 4953–4957.

    Article  PubMed  CAS  Google Scholar 

  4. McCarthy, J.E.G. and Brimacombe, R. (1994) Trends Genet. 10, 402–407.

    Article  PubMed  CAS  Google Scholar 

  5. Brombach, M. and Pon, C.L. (1987) Mol. Gen. Genet. 208, 94–100.

    Article  PubMed  CAS  Google Scholar 

  6. Kozak, M. (1995) Proc. Nat. Acad. Sci. U.S.A. 92, 2662–2666.

    Article  CAS  Google Scholar 

  7. Sharp, P.M., Stenico, M., Peden, J.F. and Lloyd, A.T. (1993) Biochem. Soc. Trans. 21, 835–841.

    PubMed  CAS  Google Scholar 

  8. Kurland, G.C. (1993) Biochem. Soc. Trans. 21, 841–846.

    PubMed  CAS  Google Scholar 

  9. Collins, R.F., Roberts, M. and Phoenix, D.A. (1995) Biochem. Soc. Trans. 23, 76S.

    Google Scholar 

  10. Saier, M.H., Jr. (1995) FEBS Lett. 362, 1–4.

    Article  PubMed  CAS  Google Scholar 

  11. Goldman, E. and Zubay, G. (1994) in Molecular Microbiology Techniques, Part A (Adolph, K.W. ed.) Vol. 3, pp. 159–178, Academic Press, Inc., San Diego, CA.

    Google Scholar 

  12. Bernardi, G. and Bernardi, G. (1985) J. Mol. Evol. 22, 363–365.

    Article  PubMed  CAS  Google Scholar 

  13. Brenner, S., Stretton, A.O.W. and Kaplan, S. (1965) Nature 206, 994–998.

    Article  PubMed  CAS  Google Scholar 

  14. Brenner, S., Barnett, L., Katz, E.R. and Crick, F.H.C. (1967) Nature 213, 449–450.

    Article  PubMed  CAS  Google Scholar 

  15. Ganoza, M.C. (1966) Cold Spring Harbor Symp. Quant. Biol. 31, 273–278.

    Article  PubMed  CAS  Google Scholar 

  16. Caskey, T., Scolnick, E., Tompkins, R., Goldstein, J. and Milman, G. (1969) Cold Spring Harbor Symp. Quant. Biol. 34, 479–491.

    Article  PubMed  CAS  Google Scholar 

  17. Capecchi, M.R. and Klein, H.A. (1969) Cold Spring Harbor Symp. Quant. Biol. 34, 469–477.

    Article  PubMed  CAS  Google Scholar 

  18. Kopelowitz, J., Hampe, C., Goldman, R., Reches, M. and Engelberg-Kulka, H. (1992) J. Mol. Biol. 225, 261–269.

    Article  PubMed  CAS  Google Scholar 

  19. Buckingham, R.H. (1990) Experientia 46, 1126–1133.

    Article  PubMed  CAS  Google Scholar 

  20. Buckingham, R.H., Murgola, E.J., Sörensen, P., Pagel, F.T., Hijazi, K.A., Mims, B.H., Figueroa, N., Brechemier-Baey, D. and Coppin-Raynal, E. (1990) in The Ribosome: Structure, Function and Evolution (Hill, W.E., Dahlberg, A.E., Garrett, R.A., Moore, P.B., Schlessinger, D. and Warner, J.R., eds.), pp. 541–545, American Society for Microbiology, Washington, DC.

    Google Scholar 

  21. Buckingham, R.H., Sörensen, P., Pagel, F.T., Hijazi, K.A., Mims, B.H., Brechemier-Baey, D. and Murgola, E.J. (1990) Biochim. Biophys. Acta 1050, 259–262.

    Article  PubMed  CAS  Google Scholar 

  22. Brown, C.M., Dalphin, M.E., Stockwell, P.A. and Tate, W.P. (1993) Nucl. Acids Res. 21, 3119–3123.

    Article  PubMed  CAS  Google Scholar 

  23. Sharp, P.M. and Li, W.-H. (1987) Nucl. Acid. Res. 15, 1281–1295.

    Article  CAS  Google Scholar 

  24. Brown, C.M., Stockwell, P.A., Dalphin, M.E. and Tate, W.P. (1994) Nucl. Acids Res. 22, 3620–3624.

    Article  PubMed  CAS  Google Scholar 

  25. Poole, E.S., Brown, C.M. and Tate, W.P. (1995) EMBO J. 14, 151–158.

    PubMed  CAS  Google Scholar 

  26. McClelland, M. and Bhagwat, A.S. (1992) Nature 355, 595–596.

    PubMed  CAS  Google Scholar 

  27. Brown, C.M. (1993) Ph.D. Thesis, University of Otago, Dunedin, New Zealand.

    Google Scholar 

  28. Brown, C.M., Stockwell, P.A., Trotman, C.N.A. and Tate, W.P. (1990) Nucl. Acids Res. 18, 2079–2086.

    Article  PubMed  CAS  Google Scholar 

  29. Brown, C.M., Stockwell, P.A., Trotman, C.N.A. and Tate, W.P. (1990) Nucl. Acids Res. 18, 6339–6345.

    Article  PubMed  CAS  Google Scholar 

  30. Tate, W.P. and Brown, CM. (1992) Biochemistry 31, 2443–2450.

    Article  PubMed  CAS  Google Scholar 

  31. Kohli, J. and Grosjean, H. (1981) Mol. Gen. Genet. 182, 430–439.

    Article  PubMed  CAS  Google Scholar 

  32. Cavener, D.R. and Ray, S.C (1991) Nucl. Acids Res. 19, 3185–3192.

    Article  PubMed  CAS  Google Scholar 

  33. Sharp, P.M., Burgess, C.J., Cowe, E., Lloyd, A.T. and Mitchell, K.J. (1992) in Transfer RNA in Protein Synthesis (Hatfield, D.L., Lee, B.J. and Pirtle, R.M., eds.), pp. 397–425, CRC Press, Boca Raton, FL.

    Google Scholar 

  34. McCaughan, K.K., Brown, CM., Dalphin, M.E., Berry, M.J. and Tate, W.P. (1995) Proc. Nat. Acad. Sci. U.S.A. 92, 5431–5435.

    Article  CAS  Google Scholar 

  35. Mottagui-Tabar, S., Björnsson, A. and Isaksson, L.A. (1994) EMBO J. 13, 249–257.

    PubMed  CAS  Google Scholar 

  36. Arkov, A.L., Korolev, S.V. and Kisselev, L.L. (1993) Nucl. Acids Res. 21, 2891–2897.

    Article  PubMed  CAS  Google Scholar 

  37. Craigen, W.J., Cook, R.G., Tate, W.P. and Caskey, C.T. (1985) Proc. Nat. Acad. Sci. U.S.A. 82, 3616–3620.

    Article  CAS  Google Scholar 

  38. Pedersen, W.T. and Curran, J.F. (1991) J. Mol. Biol. 219, 231–241.

    Article  PubMed  CAS  Google Scholar 

  39. Adamski, F.M., McCaughan, K.K., Jørgensen, F., Kurland, CG. and Tate, W.P. (1994) J. Mol. Biol. 238, 302–308.

    Article  PubMed  CAS  Google Scholar 

  40. Berry, M.J., Banu, L., Chen, Y., Mandel, S.J., Kieffer, J.D., Harney, J.W. and Larsen, P.R. (1991) Nature 353, 273–276.

    Article  PubMed  CAS  Google Scholar 

  41. Bonetti, B., Fu, L., Moon, J. and Bedwell, D.M. (1995) J. Mol. Biol. 251, 334–345.

    Article  PubMed  CAS  Google Scholar 

  42. Frolova, L., Le Goff, X., Rasmussen, H.H., Cheperegin, S., Drugeon, G., Kress, M., Arman, I., Haenni, A-L., Celis, J.E., Philippe, M., Justesen, J. and Kisselev, L. (1994) Nature 372, 701–703.

    Article  PubMed  CAS  Google Scholar 

  43. Pel, H.J., Rozenfeld, S. and Bolotin-Fukuhara, M. Current Genetics (in press).

    Google Scholar 

  44. Caskey, C.T. (1980) Trends Biochem. Sci. 5, 234–237.

    Article  CAS  Google Scholar 

  45. Mikuni, O., Ito, K., Moffat, J., Matsumura, K., McCaughan, K., Nobukuni, T., Tate, W. and Nakamura, Y. (1994) Proc. Nat. Acad. Sci. U.S.A. 91, 5798–5802.

    Article  CAS  Google Scholar 

  46. Grentzmann, G., Brechemier-Baey, D., Heurgue, V., Mora, L. and Buckingham, R.H. (1994) Proc. Nat. Acad. Sci. U.S.A. 91, 5848–5852.

    Article  CAS  Google Scholar 

  47. Pel, H.J., Maat, C., Rep, M. and Grivell, L.A. (1992) Nucl. Acids Res. 20, 6339–6346.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, C.C., Timms, K.M., Trotman, C.N.A. and Tate, W.P. (1987) J. Biol. Chem. 262, 3548–3552.

    PubMed  CAS  Google Scholar 

  49. Beaudet, A.L. and Caskey, C.T. (1971) Proc. Nat. Acad. Sci. U.S.A. 68, 619–624.

    Article  CAS  Google Scholar 

  50. Konecki, D.S., Aune, K.C., Tate, W.P. and Caskey, CT. (1977) J. Biol. Chem. 252, 4514–4520.

    PubMed  CAS  Google Scholar 

  51. Stansfield, I., Jones, K.M., Kushnirov, V.V., Dagkesamanskaya, A.R., Poznyakovski, A.L, Paushkin, S.V., Nierras, C.R., Cox, B.S., Ter-Avanesyan, M.D. and Tuite, M.F. (1995) EMBO J. 14, 4365–4373.

    PubMed  CAS  Google Scholar 

  52. Ter-Avanesyan, M.D., Kushnirov, V.V., Dagkesamanskaya, A.R., Didichenko, S.A., Chernoff, Y.O., Inge-Vechtomov, S.G. and Smirnov, V.N. (1993) Mol. Micro. 7, 683–692.

    Article  CAS  Google Scholar 

  53. Zhouravleva, G., Frolova, L., Le Goff, X., Le Guellec, R., Inge-Vechtomov, S., Kisselev, L. and Philippe, M. (1995) EMBO J. 14, 4065–4072.

    PubMed  CAS  Google Scholar 

  54. Ter-Avanesyan, M.D., Dagkesamanskaya, A.R., Kushnirov, V.V. and Smirnov, V.N. (1994) Genetics 137, 671–676.

    PubMed  CAS  Google Scholar 

  55. Cohen, F.E., Pan, K.-M., Huang, Z., Baldwin, M., Fletterick, R.J. and Prusiner, S.B. (1994) Science 264, 530–531.

    Article  PubMed  CAS  Google Scholar 

  56. Pel, H.J., Rep, M. and Grivell, L.A. (1992) Nucl. Acids Res. 20, 4423–4428.

    Article  PubMed  CAS  Google Scholar 

  57. Brown, C.M. and Tate, W.P. (1994) J. Biol. Chem. 269, 33164–33170.

    PubMed  CAS  Google Scholar 

  58. Stöffler, G., Tate, W.P. and Caskey, C.T. (1982) J. Biol. Chem. 257, 4203–4206.

    PubMed  Google Scholar 

  59. Moffat, J.G. and Tate, W.P. (1994) J. Biol. Chem. 269, 18899–18903.

    PubMed  CAS  Google Scholar 

  60. Zhang, S., Rydén-Aulin, M., Kirsebom, L.A. and Isaksson, L.A. (1994) J. Mol. Biol. 242, 614–618.

    Article  PubMed  CAS  Google Scholar 

  61. Tate, W.P., Dognin, M.J., Noah, M., Stöffler-Meilicke, M. and Stöffler, G. (1984) J. Biol. Chem. 259, 7317–7324.

    PubMed  CAS  Google Scholar 

  62. Tate, W.P., Schulze, H. and Nierhaus, K.H. (1983) J. Biol. Chem. 258, 12816–12820.

    PubMed  CAS  Google Scholar 

  63. Tate, W.P., McCaughan, K.K., Ward, C.D., Sumpter, V.G., Trotman, C.N.A., Stöffler-Meilicke, M., Maly, P. and Brimacombe, R. (1986) J. Biol. Chem. 261, 2289–2293.

    PubMed  CAS  Google Scholar 

  64. Doolittle, R.F. (1986) URFs and ORFs: A Primer on How to Analyze Derived Amino Acid Sequences, University Science Books, California.

    Google Scholar 

  65. Noller, H.F. (1991) Annu. Rev. Biochem. 60, 191–227.

    Article  PubMed  CAS  Google Scholar 

  66. Tate, W., Greuer, B. and Brimacombe, R. (1990) Nucl. Acids Res. 18, 6537–6544.

    Article  PubMed  CAS  Google Scholar 

  67. Hatfield, D.L., Smith, D.W.E., Lee, BJ., Woriand, P.J. and Oroszlan, S. (1990) Crit. Rev. Biochem. Mol. Biol. 25, 71–96.

    Article  PubMed  CAS  Google Scholar 

  68. Gutell, R.R. (1993) Nucl. Acids Res. 21, 3051–3054.

    Article  PubMed  CAS  Google Scholar 

  69. Döring, T., Greuer, B. and Brimacombe, R. (1992) Nucl. Acids Res. 20, 1593–1597.

    Article  PubMed  Google Scholar 

  70. Cunningham, P.R., Nurse, K., Weitzmann, C.J., Nègre, D. and Ofengand, J. (1992) Biochemistry 31, 7629–7637.

    Article  PubMed  CAS  Google Scholar 

  71. Cunningham, P.R., Nurse, K., Weitzmann, C.J. and Ofengand, J. (1993) Biochemistry 32, 7172–7180.

    Article  PubMed  CAS  Google Scholar 

  72. Gutell, R.R. (1993) in The Translational Apparatus: Structure, Function, Regulation, Evolution (Nierhaus, K.H., Franceschi, F., Subramanian, A.R., Erdmann, V.A. and Wittmann-Liebold, B., eds.), pp. 477–488, Plenum Press, New York and London.

    Chapter  Google Scholar 

  73. Moazed, D. and Noller, H.F. (1990) J. Mol. Biol. 211, 135–145.

    Article  PubMed  CAS  Google Scholar 

  74. Ochoa, S. and Mazumder, R. (1974) in The Enzymes (Boyer, P.D., ed.) Vol. 10, Third Edition, pp. 1–51, Academic Press, New York and London.

    Google Scholar 

  75. Lucas-Lenard, J. and Beres, L. (1974) in The Enzymes (Boyer, P.D., ed.) Vol. 10, pp. 53–86, Academic Press, New York and London.

    Google Scholar 

  76. Bock, A., Forchhammer, K., Heider, J. and Baron, C. (1991) Trends Biochem. Sci. 16, 463–467.

    Article  PubMed  CAS  Google Scholar 

  77. Rheinberger, H.-J., Geigenmüller, U., Gnirke, A., Hausner, T.-P., Remme, J., Saruyama, H. and Nierhaus, K.H. (1990) in The Ribosome: Structure, Function and Evolution (Hill, W.E., Dahlberg, A.E., Garrett, R.A., Moore, P.B., Schlessinger, D. and Warner, J.R., eds.), pp. 318–330, American Society for Microbiology, Washington, DC.

    Google Scholar 

  78. Nierhaus, K.H. (1993) Mol. Micro. 9, 661–669.

    Article  CAS  Google Scholar 

  79. Mesters, J.R., Potapov, A.P., de Graaf, J.M. and Kraal, B. (1994) J. Mol. Biol. 242, 644–654.

    Article  PubMed  CAS  Google Scholar 

  80. Bain, J.D., Switzer, C., Chamberlin, A.R. and Benner, S.A. (1992) Nature 356, 537–539.

    Article  PubMed  CAS  Google Scholar 

  81. Lee, C.C., Kohara, Y., Akiyama, K., Smith, C.L., Craigen, W.J. and Caskey, C.T. (1988) J. Bacteriol. 170, 4537–4541.

    PubMed  CAS  Google Scholar 

  82. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.-F., Dougherty, B.A., Merrick, J.M., McKenney, K., Sutton, G., FitzHugh, W., Fields, CA., Gocayne, J.D., Scott, J.D., Shirley, R., Liu, L.-L, Glodek, A., Kelley, J.M., Weidman, J.F., Phillips, CA., Spriggs, T., Hedblom, E., Cotton, M.D., Utterback, T.R., Hanna, M.C., Nguyen, D.T., Saudek, D.M., Brandon, R.C., Fine, L.D., Fritchman, J.L., Fuhrmann, J.L., Geoghagen, N.S.M., Gnehm, C.L., McDonald, L.A., Small, K.V., Fraser, CM., Smith, H.O. and Venter, J.C. (1995) Science 269, 496–512.

    Article  PubMed  CAS  Google Scholar 

  83. Hungerer, C., Troup, B., Römling, U. and Jahn, D. (1995) J. Bacteriol. 177, 1435–1443.

    PubMed  CAS  Google Scholar 

  84. Elliott, T. (1989) J. Bacteriol. 171, 3948–3960.

    PubMed  CAS  Google Scholar 

  85. Elliott, T. and Wang, X. (1991) J. Bacteriol. 173, 4144–4154.

    PubMed  CAS  Google Scholar 

  86. Mikuni, O., Kawakami, K. and Nakamura, Y. (1991) Biochimie 73, 1509–1516.

    Article  PubMed  CAS  Google Scholar 

  87. Kawakami, K. and Nakamura, Y. (1990) Proc. Nat. Acad. Sci. U.S.A. 87, 8432–8436.

    Article  CAS  Google Scholar 

  88. Breining, P. and Piepersberg, W. (1986) Nucl. Acids Res. 14, 5187–5197.

    Article  PubMed  CAS  Google Scholar 

  89. Tassan, J.P., LeGuellec, K., Kress, K., Faure, M., Camonis, J., Jacquet, M. and Philippe, M. (1993) Mol. Cell. Biol. 13, 2815–2821.

    PubMed  CAS  Google Scholar 

  90. Billington, S.J., Jost, B.H. and Rood, J.I. (1995) Microbiol. 141, 945–957.

    Article  CAS  Google Scholar 

  91. Ogier, J.A., Schöller, M., Lepoivre, Y., Gangloff, S., M’zoughi, R. and Klein, J.-P. (1991) Infect. Immun. 59, 1620–1626.

    PubMed  CAS  Google Scholar 

  92. Hoshino, S.-I., Miyazawa, H., Enomoto, T., Hanaoka, F., Kikuchi, Y., Kikuchi, A. and Ui, M. (1989) EMBO J. 8, 3807–3814.

    PubMed  CAS  Google Scholar 

  93. Kushnirov, V.V., Ter-Avanesyan, M.D., Didichenko, S.A., Smirnov, V.N., Chernoff, Y.O., Derkach, I.L., Novikova, O.N., Inge-Vechtomov, S.G., Neistat, M.A. and Tolstorukov, I.I. (1990) Yeast 6, 461–472.

    Article  PubMed  CAS  Google Scholar 

  94. Kushnirov, V.V., Ter-Avanesyan, M.D., Telckov, M.V., Surguchov, A.P., Smirnov, V.N. and Inge-Vechtomov, S.G. (1988) Gene 66, 45–54.

    Article  PubMed  CAS  Google Scholar 

  95. Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry. Part I: The conformation of biological macromolecules, p. 52, W.H. Freeman and Company, San Francisco, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tate, W.P., Dalphin, M.E., Pel, H.J., Mannering, S.A. (1996). The Stop Signal Controls the Efficiency of Release Factor-Mediated Translational Termination. In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1766-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1766-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1768-3

  • Online ISBN: 978-1-4899-1766-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics