Skip to main content

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 30))

Abstract

As we approach the end of the 20th Century, it is useful to look back and reflect on the important fundamental properties of nature that have been elucidated by the science of our times. Although it is always problematic to make predictions, we nonetheless today can see important studies emerging that center on the questions surrounding the origins of self-organizing systems, the so-called science of complexity.1,2

The more we know, the more fantastic the world becomes and the profounder the surrounding darkness.

Aldous Huxley (1925)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KAUFFMAN, S. 1995. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford University Press, New York, p. 321.

    Google Scholar 

  2. COVENEY, P., HIGHFIELD, R. 1995. Frontiers of Complexity: The Search for Order in a Chaotic World. Fawcett Columbine, New York, p. 462.

    Google Scholar 

  3. WILLIAMS, D. H., STONE, M. J., HAUCK, P. R., RAHMAN, S. K. 1989. Why are secondary metabolites (natural products) synthesized? J. Nat. Prod. 52: 1189–1208.

    Article  PubMed  CAS  Google Scholar 

  4. MAPLESTONE, R. A., STONE, M. J., WILLIAMS, D. H. 1992. The evolutionary role of secondary metabolites — a review. Gene 115: 151–157.

    Article  PubMed  CAS  Google Scholar 

  5. FISHER, R. F., LONG, S. P. 1992. Rhizobium-plant signal exchange. Nature 357: 655–660.

    Article  PubMed  CAS  Google Scholar 

  6. VAN RHIJN, P., VANDERLEYDEN, J. 1995. The Rhizobium-plant symbiosis. Microbial. Rev. 59:124–142.

    Google Scholar 

  7. KOPROWSKI, H., MAEDA, H. (eds.) 1995. The Role of Nitric Oxide in Physiology and Pathophysiology, Springer-Verlag, Berlin, p. 90.

    Google Scholar 

  8. SKORY, C. D., CHANG, P.-K., CARY, J., LINZ, J. E. 1992. Isolation and characterization of a gene from Aspergillus parasiticus associated with the conversion of versicolorin A to sterigmatocystin in aflatoxin biosynthesis. Appl. Environ. Microbiol. 58: 3527–3537.

    PubMed  CAS  Google Scholar 

  9. MARGULIS, L., FESTER R. (eds.) 1991. Symbiosis as a Source of Evolutionary Innovation 1991, The Mit Press, Cambridge, MA, p. 435.

    Google Scholar 

  10. BU’LOCK, J. D. 1985. Genetic aspects of mycotoxin formation. In: Regulation of Secondary Metabolite Function., (H. Kleinkauf, H. V. Döhren, H. Dornauer, G. Nesemann, eds.), VCH Publishers, Weinheim, Germany, pp. 1–12.

    Google Scholar 

  11. MARGULIS, L. (Ed.) 1993. Symbiosis in Cell Evolution, 2nd ed., 1993 (L. Margulis), W. H. Freeman, New York, p. 452.

    Google Scholar 

  12. PIEPERSBERG, W. 1992. Metabolism and cell individualization. In: Secondary Metabolites: Their Function and Evolution, (J. Davies, ed.), John Wiley & Sons, Chichester, England, pp. 294–299.

    Google Scholar 

  13. BENGSTON, S. (ed.) 1994. Early Life (S. Bengston, ed.), Columbia University Press, New York, p. 630.

    Google Scholar 

  14. MÜLLER, D., PITSCH, S., KITTAKA, A., WAGNER, E., WINTNER, C. E., ESCHENMOSER, A. 1990. Chemie von a-aminonitrilen. aldomerisierung von glycoaldehyd-phosphat zu racemischen hexose-2,4,6-triphosphaten und (in gegenwart von formaldehyd) racemischen pentose-2,4-diphosphaten: rac-allose-2,4,6-triphosphat und rac-ribose-2,4-diphosphat sind die reaktionshauptprodukte. Helv. Chem. Acta. 73: 1410–1468.

    Article  Google Scholar 

  15. ESCHENMOSER, A., LOEWENTHAL, E. 1992. Chemistry of potentially prebiotic natural products. Chem. Soc. Rev. 92: 1–16.

    Article  Google Scholar 

  16. DE DUVE, C. 1995. Vital Dust: Life as a Cosmic Imperative, Basic Books, New York, p. 362.

    Google Scholar 

  17. ALTMAN, S. 1990. Enzymatic cleavage of RNA by RNA (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 29: 749–758.

    Article  Google Scholar 

  18. CECH, T. R. 1990. Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 29: 759–768.

    Article  Google Scholar 

  19. DAVIES, J. 1990. What are antibiotics? Archaic functions for modern activities. Mol. Microbiol. 4: 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  20. CAVALIER-SMITH, T. 1992. Origins of secondary metabolism. In: Secondary Metabolites: Their Function and Evolution, (J. Davies, ed.), John Wiley & Sons, Chichester, England, pp. 64–87.

    Google Scholar 

  21. BERGMAN, R. G. 1973. Reactive 1,4-dehydroaromatics. Acc. Chem. Res. 6: 25–31.

    Article  CAS  Google Scholar 

  22. LOCKHART, T. P., BERGMAN, R. G. 1981. Evidence for the reactive spin state of 1,4-dehy-drobenzene. J. Am. Chem. Soc. 103: 4091–4096.

    Article  CAS  Google Scholar 

  23. DOYLE T.W., KADOW, J.F. (eds.) 1994. Recent progress in the chemistry of enediyne antibiotics. In: Tetrahedron Symposium-in-Print Number 53, pp. 1311–1538.

    Google Scholar 

  24. PERT, C. B., SNYDER, S. H. 1973. Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014.

    Article  PubMed  CAS  Google Scholar 

  25. HUGHES, J., SMITH, T. W., KOSTERLITZ, H. W., FOTHERGILL, L. A., MORGAN, B. A., MORRIS, H. R. 1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–579.

    Article  PubMed  CAS  Google Scholar 

  26. DEVANE, W. A., DYSARZ, F. A., III, JOHNSON, M. R., MELVIN, L. S., HOWLETT, A. C. 1988. Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34: 605–613.

    PubMed  CAS  Google Scholar 

  27. DEVANE, W. A., HANUS, L., BREUER, A., PERTWEE, R. G., STEVENSON, L. A., GRIFFIN, G., GIBSON, D., MANDELBAUM, A., ETINGER, A., MECHOULAM, R. 1992. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258: 1946–1949.

    Article  PubMed  CAS  Google Scholar 

  28. CHANG, M. C., BERKERY, D., SCHUEL, R., LAYCHOCK, S. G., ZIMMERMAN, A. M., ZIMMERMAN, S., SCHUEL, H. 1993. The sea urchin Strongylocentrotus purpuratus has cannabinoid receptor remarkably similar to that in mammals. Mol. Reprod. Dev. 36: 507–516.

    Article  PubMed  CAS  Google Scholar 

  29. SCHREIBER, S. L. 1992. Using the principles of organic chemistry to explore biology. Chemical & Engineering News, October 26, 1992, pp. 22–32.

    Google Scholar 

  30. SPENCER, D. M., WANDLESS, T. J., SCHREIBER, S. L., CRABTREE, G. R. 1993. Controlling signal transduction with synthetic ligands. Science 262: 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  31. ROTH, J., LEROITH, D., COLLIER, E. S., WATKINSON, A., LESNIAK, M. A. 1986. The evolutionary origins of of intercellular communication and the Maginot lines of the mind. Ann. NY Acad. Sci. 463: 1–11.

    Article  PubMed  CAS  Google Scholar 

  32. TRAVIS, J. 1993. Tracing the immune system’s evolutionary history. Science 261: 164–165.

    Article  PubMed  CAS  Google Scholar 

  33. SCHREIBER, S. L. 1991. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251: 283–287.

    Article  PubMed  CAS  Google Scholar 

  34. SIGAL, N. H., DUMONT, S. J. 1992. Cyclosporin A, FK-506, and Rapamycin: pharmacologic probes of lymphocyte signal transduction. Ann. Rev. Immunol. 10: 519–560.

    Article  CAS  Google Scholar 

  35. WALLDROP, M.M. 1992. Complexity: the Emerging Science at the Edge of Order and Chaos, Simon & Shuster, New York, NY, p. 380.

    Google Scholar 

  36. LEWIN, R. 1992. Complexity: Life at the Edge of Chaos, Macmillen, New York, NY, p. 208.

    Google Scholar 

  37. BELL, E.A. 1980. The possible significance of secondary compounds in plants. In: Encyclopedia of Plant Physiology, Vol. 8, (E. A. Bell, B. V. Charlwood, eds.), Springer-Verlag, New York, NY, pp. 11–21.

    Google Scholar 

  38. TURLINGS, T. C. J., LOUGHRIN, J. H., MCCALL, P. J., ROSE, U. S. R., LEWIS, W. J., TUMLINSON, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. 92: 4169–4174.

    Article  PubMed  CAS  Google Scholar 

  39. SEN, A., BERGVINSON, D., MILLER, S. S., ATKINSON, J., FULCHER, R.G., ARNASON, J. T. 1994. Distribution and microchemical detection of phenolic acids, flavanoids, and phenolic acid amides in maize kernels. J. Agric. Food Chem. 42: 1879–1883.

    Article  CAS  Google Scholar 

  40. CONE, K. C., COCCIOLONE, S. M., BURR, F. A., BURR, B. 1993. Maize anthocyanin regulatory gene pl is a duplicate of C 1 that functions in the plant. The Plant Cell 5: 1795–1805.

    PubMed  CAS  Google Scholar 

  41. DOONER, H. K., ROBBINS, T. P., JORGENSEN, R. A. 1991. Genetic and developmental control of anthyocyanin biosynthesis. Ann. Rev. Genet. 25: 173–199.

    Article  PubMed  CAS  Google Scholar 

  42. LUCKNER, M. 1980. Expression and control of secondary metabolism. In: Encyclopedia of Plant Physiology, Vol. 8, (E. A. Bell and B. V. Charlwood, eds.), Springer-Verlag, New York, NY, pp. 23–63.

    Google Scholar 

  43. LYONS, P. C., HIPSKIND, J. D., WOOD, K. V., NICHOLSON, R. L. 1988. Separation and quantification of cyclic hydroxamic acids and related compounds by high-pressure liquid chromatography. J. Agric. Food Chem. 36: 57–60.

    Article  CAS  Google Scholar 

  44. KOBAYASHI, J., ISHIBASHI, M. 1993. Bioactive metabolites of symbiotic marine microorganisms. Chem. Rev. 93: 1753–1769.

    Article  CAS  Google Scholar 

  45. HU, J., MARR, J., DEFREITAS, A. S. W., QUILLIAM, M. A., WALTER, J. A., WRIGHT, J. L. C. 1992. New diol esters isolated from cultures of the dinoflagellates Prorocentrwn lima and Prorocentrum Iconcavum. J. Nat. Prod. 55: 1631–1637.

    Article  CAS  Google Scholar 

  46. HU, T., CURTIS, J. M., WALTER, J. A., WRIGHT, J. L. C. 1995. Identification of DTX-4, a new water-soluble phosphatase inhibitor from the toxic dinoflagellate Prorocentrum lima. J. Chem. Soc, Chem. Commun. 597–599.

    Google Scholar 

  47. MILLER, J. D. 1995. Fungi and mycotoxins in grain: implications for stored product research. J. Stored Prod. Res. 31: 1–16.

    Article  CAS  Google Scholar 

  48. TURNER, W.B., ALDRIDGE, D.C. 1983. Fungal Metabolites. Academic Press, New York, NY, p. 631.

    Google Scholar 

  49. ZAHNER, H, ANKE, H., ANKE, T. 1983. Evolution and secondary pathways. In: Secondary Metabolism and Differentiation in Fungi, Vol.5 (J. W. Bennett and A. Ciegler, eds.), Marcel Dekker, Inc, New York, NY, pp. 153–171.

    Google Scholar 

  50. LOPEZ-FRANCO, R., BARTNICKI-GARCIA, S., BRACKER, C. E. 1994. Pulsed growth of fungal hyphal tips. Proc. Natl. Acad. Sci. 91: 12228–12232.

    Article  PubMed  CAS  Google Scholar 

  51. HALE, M. D., EATON, R. A. 1985. Growth of soft rot fungi in wood. Trans. Brit. Mycol. Soc. 84:277–281.

    Article  Google Scholar 

  52. MILLER, J. D., GREENHALGH, R. 1988. Metabolites of fungal pathogens and plant resistance. In: Biotechnology for Crop Protection, Vol. 379 (P. A. Hedin, J. J. Menn, and R. M. Hollingworth, eds.), American Chemical Society, Washington, DC, pp. 117–129.

    Chapter  Google Scholar 

  53. BU’LOCK, J.D. 1975. Secondary metabolism in fungi and its relationship to growth and development. In: The Filamentous Fungi, Industrial Mycology, Vol. 1 (J. E. Smith and D. A. Berry, eds.), Academic Press, Inc., New York, NY, pp. 33–58.

    Google Scholar 

  54. CANDAU, R., AVALOS, J., CERDA-OLMEDO, E. 1992. Regulation of gibberellin biosyn-thase in Gibberella fujikuroi. Plant Physiol. 100: 1184–1188.

    Article  PubMed  CAS  Google Scholar 

  55. BORROW, A., JEFFREYS, E. G., KESSEL, R., LLOYD, E. C., LLOYD, P. B., NIXON, I. S. 1961. The metabolism of Gibberella fujikuroi in stirred culture. Can. J. Microbiol. 7: 227–276.

    Article  CAS  Google Scholar 

  56. BORROW, A., BROWN, S., JEFFREYS, E. G., KESSEL, R., LLOYD, E. C., LLOYD, P. B., ROTHWELL, A., ROTHWELL, B., SWAIT, J. C. 1964. The kinetics of metabolism of Gibberella fujikuroi in stirred culture. Can. J. Microbiol. 10: 407–444.

    Article  PubMed  CAS  Google Scholar 

  57. BUCHANAN, R. L., BENNETT, J. W. 1988. Nitrogen regulation of polyketide mycotoxin production. In: Nitrogen Source Control of Microbial Processes, (S. Sanchez-Esquival, ed.), CRC Press, Boca Raton, FL, pp. 137–149.

    Google Scholar 

  58. HIDY, P. H., BALDWIN, R. S., GREASHAM, R. L., KIETH, C. L., MCMULLEN, J. R. 1977. Zearalenone and derivatives: production and biological activities. Adv. Appl. Microbiol. 22: 54–82.

    Google Scholar 

  59. MILLER, J. D., BLACKWELL, B. A. 1986. Biosynthesis of 3-acetyldeoxynivalenol and other metabolites by Fusarium culmorum HLX 1503 in a stirred jar fermenter. Can. J. Bot. 641: 1–5.

    Article  Google Scholar 

  60. MILLER, J. D., SAVARD, M. E., RAPIOR, S. 1994. Production and purification of fumonisins from a stirred jar fermenter. Natural Toxins, 2: 354–359.

    PubMed  CAS  Google Scholar 

  61. ROLLINS, M. J., GAUCHER, G. M. 1994. Ammonium repression of antibiotic and intracellular proteinase production in Penicillium urticae. Appl. Microbiol. Biotechnol. 41: 447–455.

    PubMed  CAS  Google Scholar 

  62. BRUCKNER, B., BLECHSCHMIDT, D. 1991. Nitrogen regulation of gibberelin biosynthesis in Gibberella fujikuroi. Appl. Microbiol. Biotechnol. 35: 646–650.

    Article  Google Scholar 

  63. ESPESO, E. A., PENALVA, M. A. 1992. Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene Aspergillus nidulans. Molecular Microbiol. 6: 1457–1465.

    Article  CAS  Google Scholar 

  64. MILLER, J. D., GREENHALGH, R. 1985. Nutrient effects on the biosynthesis of trichothe-cenes and other metabolites by Fusarium graminearum. Mycologia 771: 130–136.

    Article  Google Scholar 

  65. GENDLOFF, E. H., CHU, F. S., LEONARD, T. J. 1992. Variation in regulation of aflatoxin biosynthesis among isolates of Aspergillus flavus. Experientia 48: 84–87.

    Article  PubMed  CAS  Google Scholar 

  66. WANG, I.-K., REEVES, C., GAUCHER, G. M. 1991. Isolation and sequencing of a genomic DNA clone containing the 3’ terminus of the 6-methylsalicyclic acid polyketide synthase gene of Penicillium urticae. Can. J. Microbiol. 37: 86–95.

    Article  PubMed  CAS  Google Scholar 

  67. LENDENFELD, T., GHALI, D., WOLSCHEK, M., KUBICEK-PRANZ, E., KUBICEK, C. P. 1993. Subcellular compartmentation of penicillin biosynthesis in Penicillium chrysogenum: The amino acid precursors are derived from the vacuole. J. Biol. Chem. 2681: 665–671.

    Google Scholar 

  68. BEREMAND, M.N., MCCORMICK, S. P. 1992. Biosynthesis and regulation of trichothecene production by Fusarium species. In: Handbook of Applied Mycology, Vol. 5, (D. Bhatnagar, E. B. Lillehoj, and D. K. Arora, eds.), Marcel Dekker, Inc., New York, NY, pp. 359–384.

    Google Scholar 

  69. COULOMBE, R. A., JR. 1991. Aflatoxins. In: Mycotoxins and Phytoalexins, (R. P. Sharmaand, D. K. Salunkhe, eds.), CRC Press, Boca Raton, FL, pp. 103–143.

    Google Scholar 

  70. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. 1993. Vol. 56, IARC, Lyon, France. p. 599.

    Google Scholar 

  71. MISRA, R. P., MUENCH, K. F., HUMAYUN, M. Z. 1983. Covalent and noncovalent interactions of aflatoxins with defined deoxyribonucleic acid sequences. Biochemistry 22: 3351–3359.

    Article  PubMed  CAS  Google Scholar 

  72. EATON, D. L., GALLAGHER, E. P. 1994. Mechanisms of aflatoxin carcinogenesis. Ann. Rev. Pharmacol. Toxicol. 34: 135–172.

    Article  CAS  Google Scholar 

  73. TASHIRO, F., MORIMURA, S., HAYASHI, K., MAKJNO, R., KAWAMURA, H., HORIK-OSHI, N., NEMOTO, K., OHTSUBO, K., SUGIMURA, T., UENO, Y. 1986. Expression of the c-Ra-ras and c-myc genes in aflatoxin B,-induced heptocellular carcinomas. Biochem. Bio-phys. Res. Commun. 138: 858–864.

    CAS  Google Scholar 

  74. LILLEHOJ, E. B. 1980. Secondary metabolites as chemical signals between species in ecological niches. In: Proc. 6th Int. Fermentation Symp. Advances in Biotechnology, Vol. 3, (M. Moo-Young, C. Vezina, and K. Singh, eds.), Pergamon Press, Elmsford, NY, pp. 397–423.

    Google Scholar 

  75. LILLEHOJ, E. B. 1991. Aflatoxin: an ecologically elicited genetic activation signal. In: Mycotoxins and Animal Foods, (J. E. Smith and R. S. Henderson, eds.), CRC Press, Boca Raton, Fl, pp. 1–35.

    Google Scholar 

  76. PITT, J. L., HOCKING, A. D., BHUDHASAMAI, K., MISCAMBE, B. F., WHEELER, K. A., TANBOON-EK, P. 1993. The normal mycoflora of commoditied from Thailand. 1. Nuts and oilseeds. Int. J. Food Microbiol. 20: 211–226.

    Article  PubMed  CAS  Google Scholar 

  77. KURTZMAN, C. P., HORN, B. W., HESSELTINE, C. W. 1987. Aspergillus nominus, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antoine van Leeuwenhoek 53: 147–158.

    Article  CAS  Google Scholar 

  78. KLICH, M. A., PITT, J. I. 1988. A Laboratory Guide to Common Aspergillus species and their telomorphs. Commonwealth Scientific and Industrial Research Organisation, Australia. p. 116.

    Google Scholar 

  79. YU, J., CHANG, P.-K., CARY, J. W., WRIGHT, M., BHATNAGAR, D., CLEVELAND, T. E., PAYNE, G. A., LINZ, J. E. 1995. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl. Environ. Microbiol. 61: 365–2371.

    Google Scholar 

  80. WICKLOW, D. T. 1994. The mycology of stored grain: an ecological perspective. In: Stored Grain Ecosystems, (D. S. Jayas, N. D. G. White, and W. E. Muir, eds.), Marcel Dekker, New York, NY, pp. 197–249.

    Google Scholar 

  81. DOWD, P. F. 1992. Insect interactions with mycotoxin-producing fungi and their hosts. In: Handbook of Applied Mycology, Vol. 5, (D. Bhatnagar, E. B. Lillehoj, and D. K. Arora, eds.), Marcel Dekker, Inc. pp. 137–155.

    Google Scholar 

  82. JARVIS, J. L., GUTHRIE, W. D., LILLEHOJ, E. B. 1984. Aflatoxin and selected biosynthetic precursors: effects on the European corn borer in the laboratory. J. Agric. Entomol. 1: 354–359.

    CAS  Google Scholar 

  83. WICKLOW, D. T., SHOTWELL, O. L. 1982. Intrafungal distribution of aflatoxins among conidia and sclerotia of Aspergillus flavus and Aspergillus parasiticus. Can. J. Microbiol. 29: 1–5.

    Article  Google Scholar 

  84. WICKLOW, D. T. 1988. Metabolites in the coevolution of fungal chemical defence systems. In: Coevolution of Fungi with Plants and Animals, (K. A. Pirizynski and D. Hawksworth, eds.), Academic Press, London. pp. 173–201.

    Google Scholar 

  85. BRONSON, C. R. 1991. The genetics of Phytotoxin production by plant pathogenic fungi. Experientia 47: 771–776.

    Article  CAS  Google Scholar 

  86. MCLEAN, M. 1994. The phytotoxic effects of aflatoxin B1: a review (1984–1994). South African J. Sci. 90: 385–390.

    CAS  Google Scholar 

  87. BOUTIBONNES, P. 1980. Antibacterial activity of some mycotoxins. Ircs Pharmacology 8: 850–851.

    CAS  Google Scholar 

  88. KELLER, N. P., BROWN, D., BUTCHKO, R. A. E., FERNANDES, M., KELKAR, H., NESBITT, C., SEGNER, S., BHATNAGAR, D., CLEVELAND, T. E., ADAMS, T., H. 1995. A conserved polyketide mycotoxin gene cluster in Aspergillus nidulans. In: Molecular Approaches to Food Safety Issues Involving Toxic Microorganisms, (J. L. Richard, ed.), Alaken Inc., Fort Collins, CO, pp. 263–277.

    Google Scholar 

  89. TRAIL, F., MAHANTI, N., LINZ, J. 1995. Molecular biology of aflatoxin biosynthesis. Microbiol. 141:755–765.

    Article  CAS  Google Scholar 

  90. POWELL, R. G., PETROSKI, R. J. 1992. Alkaloid toxins in endophyte-infected grasses. Nat. Toxins 1: 163–170.

    Article  PubMed  CAS  Google Scholar 

  91. GALLAGHER, R. T., HAWKES, A. D., STEYN, P. S., VLEGGAAR, R. 1984. Tremorgenic neuraltoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: structure elucidation of lolitrem B. J. Chem. Soc. Chem. Commun. 614–616.

    Google Scholar 

  92. BACON, C. W., DE BATTISTA, J. 1991. Endophytic fungi of grasses. In: Handbook of Applied Mycology, Vol. I, (D. K. Arora, B. Rai, K. G. Mukerji, and G. R. Knudsen, eds.), Marcel Dekker, Inc., New York, NY, pp. 231–256.

    Google Scholar 

  93. CLAY, K. 1990. Fungal endophytes of grasses. Ann. Rev. Ecol. Syst., 21: 275–295.

    Article  Google Scholar 

  94. HAMMON, K. E., FAETH, S. H. 1992. Ecology of plant-herbivore communities: a fungal component? Nat. Toxins 1: 197–208.

    Article  PubMed  CAS  Google Scholar 

  95. BENTLEY, M. D., LEONARD, D. E., LEACH, S., REYNOLDS, E., STODDARD, W., TOMPKINSON, B., TOMPKINSON, D., STRUNZ, G. W., YATAGAI, M. 1982. Effects of some naturally occurring chemicals and some extracts of non-host plants on feeding of spruce budworm (Choristoneuria fumiferana). Life Sciences and Agricultural Experimental Station, University of Maine Technical Bulletin 107. p. 114.

    Google Scholar 

  96. CALHOUN, L. A., FINDLAY, J. A., MILLER, J. D., WHITNEY, N.J. 1992. Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol. Res. 96: 281–286.

    Article  Google Scholar 

  97. FINDLAY, J. A., LI, G., PENNER, P. E. 1995. Novel diterpenoid insect toxins from a conifer endophyte. J. Nat. Prod. 58: 197–200.

    Article  CAS  Google Scholar 

  98. TODD, D. 1988. The effects of host genotype, growth rate and needle age on the distribution of a mutualistic, endophytic fungus in Douglas fir plantations. Can. J. Forestry Res. 18: 601–605.

    Article  Google Scholar 

  99. PORTER, D. 1986. Mycoses of marine organisms: and overview of pathogenic fungi. In: The Biology of Marine Fungi, (S.T. Moss, ed.), Cambridge University Press, New York, NY, pp. 141–153.

    Google Scholar 

  100. YEH, Y. A., OIAH, E., WENDEL, J. J., SLEDGE, G. W., JR., WEBER, G. 1994. Synergistic action of taxol with tiazofurin and methotrexate in human breast cancer cells: schedule dependence. Life Sci. 54: 431–435.

    Google Scholar 

  101. ROWINSKY, E. K., CAZENAVE, L. A., DONEHOWER, R. C. 1990. Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82: 1247–1263.

    Article  PubMed  CAS  Google Scholar 

  102. WHEELER, N. C., JECH, K., MASTERS, S., BROBST, S. W., ALVARADO, A. B., HOOVER, A. J., SNADER, K. M. 1992. Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J. Nat. Prod. 55: 432–440.

    Article  PubMed  CAS  Google Scholar 

  103. HAN, K. H., FLEMING, K., LOPER, M., CHILTON, W. S., MOCEK, U., GORDON, M. P., FLOSS, H. G. 1994. Genetic-transformation of mature Taxus — an approach to genetically control the in-vitro production of an anticancer drug, taxol. Plant Sci. 95: 187–196.

    Article  CAS  Google Scholar 

  104. STIERLE, A., STROBEL, G., STIERLE, D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260: 214–216.

    Article  PubMed  CAS  Google Scholar 

  105. MANDER, L. N. 1992. The chemistry of gibberellins: an overview. Chem. Rev. 92: 573–612.

    Article  CAS  Google Scholar 

  106. LANG, A. 1970. Gibberellins: structure and metabolism. Ann. Rev. Plant Physiol. 21: 37–570.

    Article  Google Scholar 

  107. BAMBURG, J. R. 1983. Biological and biochemical actions of the trichothecenes mycotoxins. Prog. Mol. Subcell. Biol. 8: 41–110.

    Article  CAS  Google Scholar 

  108. FEINBERG, B., MCLAUGHLIN, C. S. 1989. Biochemical mechanism of action of trichothe-cene mycotoxins. In: Trichothecene Mycotoxicosis: Pathophysiologic Effects, Vol. 1 (V. R. Beasley, ed.), CRC Press, Boca Raton, FL, pp. 27–35.

    Google Scholar 

  109. CUTLER, H. G., JARVIS, B. B. 1985. Preliminary observations on the effects of macrocyclic trichothecenes on plant growth. Exper. Environ. Bot. 25: 115–128.

    Article  CAS  Google Scholar 

  110. PROCTOR, R. H., HOHN, T. M., MCCORMICK, S. P. 1995. Reduced virulence of Gibberalla zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact. 8: 593–601.

    Article  PubMed  CAS  Google Scholar 

  111. COSSETTE, F., MILLER, J. D. 1995. Phytotoxic effect of deoxynivalenol and gibberella ear rot resistance of corn. Nat. Toxins 3: 383–388.

    Article  PubMed  CAS  Google Scholar 

  112. SNIJDERS, C. H. A., KRECHTING, C. F. 1992. Inhibition of translocation and fungal colonization in fusarium head blight resistant wheat. Can. J. Bot. 70: 1570–1576.

    Article  CAS  Google Scholar 

  113. MILLER, J. D. 1989. Effects of Fusarium graminearum metabolites on wheat cells. In : Phytotoxins and Plant Pathogenesis, (A. Graniti, R. Durbin, and A. Ballio, eds.), NATO ASI Series Vol. H27, Springer-Verlag, Berlin, pp. 449–452.

    Chapter  Google Scholar 

  114. MILLER, J. D., ARNISON, P. G. 1986. Degradation of deoxynivalenol by suspension cultures of the fusarium head blight resistant wheat cultivar Frontana. Can. J. Plant Pathol. 8: 147–150.

    Article  CAS  Google Scholar 

  115. SEWALD, N., LEPSCHY VON GLEISSENTHALL, J., SCHUSTER, M., MULLER, G., APLIN, R.T. 1992. Structure elucidation of a plant metabolite of 4-desoxynivalenol. Tetrahedron: Asymmetry 3: 953–960.

    Article  CAS  Google Scholar 

  116. FIELDER, D. A., COLLINS, F. W., BLACKWELL, B. A., BENSIMIN, C., APSIMON, J. W. 1994. Isolation and characterization of 4-acetyl-benzoxazolin-2-one (4-ABOA), a new ben-zoxazolinone from Zea mays. Tetrahedron Letters 35: 521–524.

    Article  CAS  Google Scholar 

  117. JARVIS, B. B., MIDIWO, J. O., TUTHILL, D., BEAN, G. A. 1981. Interaction between the antibiotic trichothecenes and the higher plant Baccharis megapotamica. Science 214: 460–462.

    Article  PubMed  CAS  Google Scholar 

  118. JARVIS, B. B., MIDIWO, J. O., BEAN, G. A., ABOUL-NASR, M. B., BARROS, C. S. 1988. The mystery of trichothecene antibiotics in Baccharis species. J. Nat. Prod. 51: 736–744.

    Article  PubMed  CAS  Google Scholar 

  119. JARVIS, B. B., MOKHTARI-REJALI, N., SCHENKEL, E. P., BARROS, C. S., MATZEN-BACHER, N. I. 1991. Trichothecene mycotoxins from Brazilian Baccharis species. Phyto-chemistry 30: 789–797.

    Article  CAS  Google Scholar 

  120. KUTI, J. O., JARVIS, B. B., MOKHTARI, N., BEAN, G. 1990. Allelochemical regulation of reproduction and seed germination of two Brazilian Baccharis species by phytotoxic trichothecenes. J. Chem. Ecol. 16: 3441–3453.

    Article  CAS  Google Scholar 

  121. LAMBOY, W. F. 1984. Evolution of flowering plants by fungus-to-host horizontal gene transfer. Evol. Theory 7: 45–54.

    Google Scholar 

  122. JARVIS, B. B. 1991. Macrocyclic trichothecenes. In: Mycotoxins and Phytoalexins, (R. P. Sharma and D. K. Salunkhe, eds.), CRC Press, Boca Raton, FL, pp. 361–421.

    Google Scholar 

  123. CHAPMAN, D. J., RAGAN, M. A. 1980. Evolution of biochemical pathways: evidence from comparative biochemistry. Ann. Rev. Plant Physiol. 31: 639–678.

    Article  CAS  Google Scholar 

  124. PIROZYNSKI, K.A., 1981. Interactions between fungi and plants through the ages. Can. J. Bot. 59: 1824–1827.

    Article  Google Scholar 

  125. HOHN, T. M., OHLROGGE, J. B. 1991. Expression of a fungal sesquiterpene cyclase in transgenic tobacco. Plant Physiol. 97: 460–462.

    Article  PubMed  CAS  Google Scholar 

  126. ECKES, P., DONN, G., WENGENMAYER, F. 1987. Genetic engineering with plants. Angew. Chem. Int. Ed. Engl. 26: 382–402.

    Article  Google Scholar 

  127. SCHELL, J. S. 1987. Transgenic plants as tools to study the molecular organization of plant genes. Science 237: 1176–1183.

    Article  Google Scholar 

  128. PIETRA, F. 1995. Structurally similar natural products in phylogenetically distant marine organisms, and a comparison with terrestrial species. Chem Soc. Rev. 24: 65–71.

    Article  CAS  Google Scholar 

  129. SMITH, M. W., FENG, D.-F., DOOLITTLE, R. F. 1992. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem. Sci. 17: 489–493.

    Article  PubMed  CAS  Google Scholar 

  130. AMÁBILE-CUEVAS, C. F., CHICUREL, M. E. 1993. Horizontal gene transfer. Am. Scientist 81:332–341.

    Google Scholar 

  131. HERON, C. 1992. The networks of botanical creation. New Scientist 133: 40–44.

    Google Scholar 

  132. ROSENTHAL, G.A., BERENBAUM, M.R. (eds.) Herbivores Their Interactions with Secondary Plant Metabolites, 1991, Second Edition, Vols. 1 and 2, Academic Press, New York, NY. p. 468, p. 493.

    Google Scholar 

  133. NAHRSTEDT, A. 1989. The significance of secondary metabolites for interactions between plants and insects. Planta Medica 55: 333–338.

    Article  PubMed  CAS  Google Scholar 

  134. BOPPRÉ, M. 1990. Lepidoptera and pyrrolizidine alkaloids — exemplification of complexity in chemical ecology. J. Chem. Ecol. 16: 165–185.

    Article  Google Scholar 

  135. EISNER, T., MEINWALD, J. 1987. Alkaloid-derived pheromones and sexual selection in Lepidoptera. In: Pheromone Biochemistry, (G. D. Prestwich and G. I. Bloomquist, eds.), Academic Press, Orlando, FL, pp. 251–269.

    Google Scholar 

  136. EHRLICH, P. R., RAVEN, P. H. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608.

    Article  Google Scholar 

  137. BERENBAUM, M. R. 1991. Coumarins. In: Herbivores Their Interactions with Secondary Plant Metabolites, (G. A. Rosenthal and M. R. Berenbaum, eds.), Second Edition, Vol. 1, Academic Press, New York, NY, pp. 221–249.

    Chapter  Google Scholar 

  138. IVIE, G. W., BULL, D. L., BEIER, R. C., PRYOR, N. W., OERTLI, E. H. 1983. Metabolic detoxification: mechanism of insect resistance to plant psorelens. Science 221: 374–376.

    Article  PubMed  CAS  Google Scholar 

  139. BERENBAUM, M. 1983. Coumarins and caterpillars — a case for coevolution. Evolution 37: 163–179.

    Article  CAS  Google Scholar 

  140. JANZEN, D. H. 1980. What is coevolution? Evolution, 34: 611–612.

    Article  Google Scholar 

  141. DESJARDINS, A. E., PLATTNER, R. D., SPENCER, G. F. 1988. Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics. Phytochemistry 27: 767–771.

    Article  CAS  Google Scholar 

  142. DESJARDINS, A. E., SPENCER, G. F., PLATTNER, R. D. 1989. Tolerance and metabolism of furanocoumarins by the phytopathogenic fungus Gibberella pulicaris (Fusarium sam-bucinum). Phytochemistry 28: 2963–2969.

    Article  CAS  Google Scholar 

  143. BU’LOCK, J. D. 1980. Mycotoxins as secondary metabolites. In: The Biosynthesis of Myco-toxins: A Study in Secondary Metabolism, (P. S. Steyn, ed.), Academic Press, New York, NY, pp. 1–16.

    Google Scholar 

  144. BRAYTON, K. P., CHEN, Z., ZHOU, G., NAGY, P. L., GAVALAS, A., TERENT, J. M., DEAVAEN, L. L., DIXON, J. E., ZALKIN, H. 1994. Two genes for de novo purine nucleotide synthesis on human chromosome 4 are closely linked and divergently transcribed. J. Biol. Chem. 269:5313–5321.

    PubMed  CAS  Google Scholar 

  145. ZORIO, D. A. R., CHENG, N. N., BLUMENTHAL, T., SPIETH, J. 1994. Operons as a common form of chromosomal organization in C. elegans. Nature 372: 270–272.

    Article  PubMed  CAS  Google Scholar 

  146. MARTIN, J. F. 1992. Clusters of genes for the biosynthesis of antibiotics: regulatory genes and overproduction of pharmaceuticals. J. Ind. Microbiol. 9: 73–90.

    Article  PubMed  CAS  Google Scholar 

  147. HOHN, T. M., MCCORMICK, S. P., DESJARDINS, A. E. 1993. Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr. Genet. 24:291–295.

    Article  PubMed  CAS  Google Scholar 

  148. DESJARDINS, A. E., HOHN, T. M., MCCORMICK, S.P. 1993. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol. Rev. 57: 595–604.

    PubMed  CAS  Google Scholar 

  149. TURNER, G. 1992. Genes for the biosynthesis of β-lactam compounds in microorganisms. In: Secondary Metabolites: Their Function and Evolution, (Davies, J., ed.), John Wiley & Sons, Chichester, England, pp. 113–128.

    Google Scholar 

  150. STONE, M. J., WILLIAMS, D. H. 1992. On the evolution of functional secondary metabolites (natural products). Mol. Microbiol. 6: 29–34.

    Article  PubMed  CAS  Google Scholar 

  151. WESSON, R. 1991. Beyond Natural Selection, The Mit Press, Cambridge, MA, p. 353.

    Google Scholar 

  152. CANE, D. E. 1994. Polyketide biosynthesis: molecular recognition or genetic programming? Science 263: 338–340.

    Article  PubMed  CAS  Google Scholar 

  153. CORTES, J., WIESMANN, K. E. H., ROBERTS, G. A., BROWN, M. J. B., STAUNTON, J., LEADLAY, P. F. 1995. Repositioning of a domain in a modular polyketide synthase to promote specific chain cleavage. Science 268: 1487–1489.

    Article  PubMed  CAS  Google Scholar 

  154. VINING, L. C. 1992. Secondary metabolism, inventive evolution and biochemical diversity a review. Gene 115: 135–140.

    Article  PubMed  CAS  Google Scholar 

  155. DEMAIN, A. I. 1995. Why do microorganisms produce antimicrobials? In: Fifty Years of Antimicrobials: Past Perspectives and Future Trends, (P. A. Hunter, G. K. Darby, and N. J. Russell, eds.), Cambridge University Press, New York, pp. 205–239.

    Google Scholar 

  156. KAUFFMAN, S. A. 1993. The Origins of Order, Oxford University Press, New York, NY, p. 709.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jarvis, B.B., Miller, J.D. (1996). Natural Products, Complexity, and Evolution. In: Romeo, J.T., Saunders, J.A., Barbosa, P. (eds) Phytochemical Diversity and Redundancy in Ecological Interactions. Recent Advances in Phytochemistry, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1754-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1754-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1756-0

  • Online ISBN: 978-1-4899-1754-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics