Skip to main content

Mass Spectrometry

Instrumentation and Techniques

  • Chapter
Mass Spectrometry

Part of the book series: Modern Analytical Chemistry ((MOAC))

Abstract

Mass spectrometry (MS) was first used approximately 80 years ago by Sir J. J. Thomson for analysis of positive rays (1). Since then, it has undergone extensive innovations. The last decade has seen an especially rapid pace of development in both instrumentation and ionization techniques. MS is now probably our most versatile and comprehensive analytical tool. It has found applications in several areas of physics, chemistry, biology, medicine, geology, nuclear science, and environmental science. It is used routinely to obtain relative molecular weights (M r) and structural information; to quantify at trace levels; to study ion chemistry and ion-molecule reactions dynamics; to provide data on physical properties such as ionizing energy, appearance energy, the enthalpy of a reaction, and proton affinities; and to verify theoretical predictions based on molecular orbital calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomson, J. J., 1913, Rays of Positive Electricity and Their Applications to Chemical Analysis, Longmans, London.

    Google Scholar 

  2. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M., 1989, Electrospray ionization for mass spectrometry of large biomolecules, Science 246:64–71.

    Article  CAS  Google Scholar 

  3. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M., 1990, Electrospray ionization—principles and practice, Mass Spectrom. Rev. 9:37–70.

    Article  CAS  Google Scholar 

  4. Smith, R. D., Loo, J. A., Ogarzalek Loo, R.R., Busman, M., and Udseth, H. R., 1991, Principles and practice of electrospray ionization—mass spectrometry for large polypeptides and proteins, Mass Spectrom. Rev. 10:359–451.

    Article  CAS  Google Scholar 

  5. Karas, M., and Hillenkamp, F., 1988, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem. 60:2299–2301.

    Article  CAS  Google Scholar 

  6. Karas, M., Bahr, U., and Giebmann, U., 1991, Matrix-assisted laser desorption ionization mass spectrometry, Mass Spectrom. Rev. 10:335–357.

    Article  CAS  Google Scholar 

  7. Tolun, E., Dass, C., and Desiderio, D. M., 1987, Trace level measurement of enkephalin peptides at the attomole/femtomole level by FAB-MS. Optimization of FAB matrix conditions, Rapid Commun. Mass Spectrom. 1:77–89.

    Article  CAS  Google Scholar 

  8. McLafferty, F. W., 1980, Interpretation of Mass Spectra, University Science Books, Mill Valley, CA.

    Google Scholar 

  9. Rosenstock, H. M., Wallenstein, M. B., Wahrhaftig, A. L., and Eyring, H., 1952, Absolute rate theory of isolated systems and the mass spectra of polyatomic molecules, Proc. Natl. Acad. Sci. U.S. A. 38:667–678.

    Article  CAS  Google Scholar 

  10. Marcus, R. A., 1952, Unimolecular dissociations and free radical recombination reactions, J. Chem. Phys. 20:359–362.

    Article  CAS  Google Scholar 

  11. Munson, M. S. B., and Field, F. H., 1966, Chemical ionization mass spectrometry, J. Am. Chem. Soc. 88:2621–2630.

    Article  CAS  Google Scholar 

  12. Harrison, A. G., 1983, Chemical Ionization Mass Spectrometry, CRC Press, Boca Raton, FL.

    Google Scholar 

  13. McLafferty, F. W., 1980, Unimolecular decompositions of even-electron ions, Org. Mass Spectrom. 15:114–121.

    Article  CAS  Google Scholar 

  14. Lias, G. G., Bartmess, J. E., Liebman, J. F., Holmes, J. L., Levin, R. D., and Mallard, W. G., 1988, J. Phys. Chem. Ref. Data 17:Suppl. 1 (1988).

    Google Scholar 

  15. Vairamani, M., Mirza, U. A., and Srinivas, R., 1990, Unusual positive ion reagents in chemical ionization mass spectrometry, Mass Spectrom. Rev. 9:235–258.

    Article  CAS  Google Scholar 

  16. Dass, C., and Gross, M. L., 1983, Electrocyclic ring opening of 1-phenylcyclobutene and 3-phenycyclobutene radical cations, J. Am. Chem. Soc. 105:5724–5729.

    Article  CAS  Google Scholar 

  17. Dass, C., and Gross, M. L., 1985, The question of cyclic versus acyclic ions: the structure of [C10H12]+ gas-phase ions, Org. Mass Spectrom. 20:34–40.

    Article  CAS  Google Scholar 

  18. Hunt, D. F., Stafford, Jr., G. C., Crow, F. W., and Russell, J. W., 1976, Pulsed positive negative ion chemical ionization mass spectrometry, Anal. Chem. 48:2098–2105.

    Article  CAS  Google Scholar 

  19. Hunt, D. F., and Sethi, S.K., 1978, Analytical applications of positive and negative ion chemical ionization mass spectrometry, in High Performance Mass Spectrometry: Chemical Applications (M. L. Gross, ed.), ACS Symposium Series 70, Washington, D. G, pp. 150–178.

    Chapter  Google Scholar 

  20. Beckey, H. D., 1977, Principles of Field Ionization and Field Desorption Mass Spectrometry, Pergamon, Oxford.

    Google Scholar 

  21. Baldwin, M. A., and McLafferty, F. W., 1973, Direct chemical ionization of relatively involatile samples. Application to underivatized oligopeptides, Org. Mass Spectrom. 7:1353–1356.

    Article  CAS  Google Scholar 

  22. Sundqvist, B., and Macfarlane, R. D., 1985, 252Cf-Plasma desorption mass spectrometry, Mass Spectrom. Rev. 4:421–460.

    Article  CAS  Google Scholar 

  23. Cotter, R. J., Chen, L., and Wang, R., 1991, Plasma desorption mass spectrometry of peptides and peptide conjugates, in Mass Spectrometry of Peptides (D. M. Desiderio, ed.), CRC Press, Boca Raton, FL, pp. 17–40.

    Google Scholar 

  24. Jonsson, G., Hedin, A., Håkansson, P., Sundqvist, S. U. R., Bennich, H., and Roepstorff, P., 1989, Compensation for non-normal ejection of large molecular ions in plasma-desorption mass spectrometry, Rapid Commun. Mass Spectrom. 3:190–191.

    Article  CAS  Google Scholar 

  25. Roepstorff, P., 1991, Analysis of peptides and proteins by plasma desorption mass spectrometry, in Mass Spectrometry of Peptides (D. M. Desiderio, ed.), CRC Press, Boca Raton, FL, pp. 65–66.

    Google Scholar 

  26. Benninghoven, A., Rudenauer, F. G., and Werner, H. W., 1987, Secondary Ion Mass Spectrometry-Basic Concepts, Instrumental Aspects, Applications and Trends, Wiley, New York.

    Google Scholar 

  27. Barber, M., Bordoli, R.S., Sedgwick, R. D., and Tyler, R. N., 1981, Fast atom bombardment of solids (FAB): a new ion source for mass spectrometry, J. Chem. Soc. Chem. Commun. 325-327.

    Google Scholar 

  28. Aberth, W., Straub, K., and Burlingame, A. L., 1982, Secondary ion mass spectrometry with cesium ion primary ion beam and liquid target matrix for analysis of bio-organic compounds. Anal. Chem. 54:2029–2034.

    Article  CAS  Google Scholar 

  29. Barofsky, D., 1985, Liquid metal ion sources, in Desorption Mass Spectrometry—Are SIMS and FAB the Same? (P. A. Lyon, ed.), ACS Symposium Series 291, Washington, D. C., pp. 113–124.

    Chapter  Google Scholar 

  30. Pachuta, S., and Cooks, R. G., 1985, Molecular secondary ion mass spectrometry, in Desorption Mass Spectrometry—Are SIMS and FAB the Same? (P. A. Lyon, ed.), ACS Symposium Series 291, Washington, D. C., pp. 1–42.

    Chapter  Google Scholar 

  31. Dass, C., 1990, Fast atom bombardment combined with mass spectrometry for characterization of polycyclic aromatic hydrocarbons, J. Am. Soc. Mass Spectrom. 1:405–412.

    Article  CAS  Google Scholar 

  32. Gower, J. L., 1985, Matrix compounds for fast atom bombardment mass spectrometry, Biomed. Mass Spectrom. 12:191–196.

    Article  CAS  Google Scholar 

  33. DePauw, E., 1990, Matrix selection for LSIMS and FAB-MS, in Methods in Enzymology (J. A. McCloskey, ed.), Vol. 193, Academic Press, New York, pp. 201–204.

    Google Scholar 

  34. DePauw, E., Liquid matrices for secondary ion mass spectrometry, Mass Spectrom. Rev. 5:191–196.

    Google Scholar 

  35. Cook, K. D., Todd, P. J., and Frier, D. H., Physical properties of matrices used for fast atom bombardment, Biomed. Environ. Mass Spectrom. 18:492–497.

    Google Scholar 

  36. Dass, C., and Desiderio, D. M., 1988, Particle beam—induced reactions between peptides and liquid matrices, Anal. Chem. 60:2723–2729.

    Article  CAS  Google Scholar 

  37. Busch, K. L., 1991, Sample preparation and matrix selection for analysis of peptides by FAB and liquid SIMS, in Mass Spectrometry of Peptides (D. M. Desiderio, ed.), CRC Press, Boca Raton, FL, pp. 173–200.

    Google Scholar 

  38. Naylor, S., Findeis, A. F., Gibson, B. W., and Williams, D. H., 1986, An approach toward the complete FAB analysis of enzymic digests of peptides and proteins, J. Am. Chem. Soc. 108:6359–6363.

    Article  CAS  Google Scholar 

  39. Ligon, W. V., and Dorn, S. B., 1986, Mass spectrometry determination of amines after formation of a charged surface-active derivative, Anal. Chem. 58:1889–1892.

    Article  CAS  Google Scholar 

  40. Caprioli, R. M., Fan, T., and Cottrell, J.S., 1986, Continuous-flow sample probe for fast atom bombardment mass spectrometry, Anal. Chem. 58:2949–2954.

    Article  CAS  Google Scholar 

  41. Caprioli, R. M., 1988, Analysis of biochemical reactions with molecular specificity using fast atom bombardment mass spectrometry, Biochemistry 27:513–520.

    Article  CAS  Google Scholar 

  42. Caprioli, R. M., Moore, W. T., DaGue, B., and Martin, M., 1988, Microbore high-performance liquid chromatography-mass spectrometry for the analysis of proteolytic digests by continuous-flow fast-atom bombardment mass spectrometry, J. Chromatogr. 443:355–362.

    Article  CAS  Google Scholar 

  43. Mosely, M. A., Deterding, L. J., Tomer, K. B., and Jorgenson, J. W., 1989, Coupling of capillary zone electrophoresis and capillary liquid chromatography with coaxial continuous-flow fast atom bombardment tandem sector mass spectrometry, J. Chromatogr. 480:197–209.

    Article  Google Scholar 

  44. Caprioli, R. M., Moore, W. T., Martin, M., DaGue, B., Wilson, K., and Moring, S., 1989, Coupling of capillary zone electrophoresis and continuous-flow fast-atom bombardment mass spectrometry for the analysis of peptide mixtures, J. Chromatogr. 480:247–257.

    Article  CAS  Google Scholar 

  45. Mosely, M. A., Deterding, L. J., Tomer, K. B., and Jorgenson, J. W., 1989, Capillary-zone electrophoresis/fast-atom bombardment mass spectrometry: Design of an on-line coaxial continuous-flow interface, Rapid Commun. Mass Spectrom. 3:87–93.

    Article  Google Scholar 

  46. Caprioli, R. M., and Lin, S. N., 1990, On-line analysis of penicillin blood levels in the live rat by combined microdialysis/fast-atom bombardment mass spectrometry, Proc. Natl. Acad. Sci. U.S.A. 87:240–243.

    Article  CAS  Google Scholar 

  47. Caprioli, R. M., 1990, Continuous-Flow Fast Atom Bombardment Mass Spectrometry, Wiley, New York.

    Google Scholar 

  48. Hillenkamp, F., and Karas, M., 1990, Mass spectrometry of peptides and proteins by matrix-assisted ultraviolet laser desorption/ionization, in Methods in Enzymology (J. A. McCloskey, ed.), Vol. 193, 193 Academic Press, New York, pp. 280–295.

    Google Scholar 

  49. Beavis, R. C., and Chait, B. T., 1989, Factors affecting the ultraviolet laser desorption of proteins, Rapid Commun. Mass Spectrom. 3:233–237.

    Article  CAS  Google Scholar 

  50. Tanaka, K., Waki, H., Ido, H., Akita, S., and Yoshida, T., 1988, Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 82:151–153.

    Article  Google Scholar 

  51. Blakley, C. R., and Vestal, M. L., 1983, Thermospray interface for liquid chromatography/mass spectrometry, Anal. Chem. 55:750–754.

    Article  CAS  Google Scholar 

  52. Willoughby, R. C., and Browner, R. F., 1984, Monodisperse aerosol generation interface for combining liquid chromatography with mass spectrometry, Anal. Chem. 56:2626–2631.

    Article  Google Scholar 

  53. Dole, M., Mack, L. L., and Hines, R. L., 1968, Molecular beams of microions, J. Chem. Phys. 49:2240–2249.

    Article  CAS  Google Scholar 

  54. Mack, L. L., Kralik, P., Rheude, A., and Dole, M., 1970, Molecular beams of microions. II, J. Chem. Phys. 52:4977–4986.

    Article  CAS  Google Scholar 

  55. Yamashita, M., and Fenn, J. B., 1984, Electrospray ion source. Another variation on the free-jet theme, J. Phys. Chem. 88:4671–4675.

    Article  CAS  Google Scholar 

  56. Mann, M., and Fenn, J. B., 1992, Electrospray mass spectrometry: principle and methods, in Mass Spectrometry: Clinical and Biomedical Applications (D. M. Desiderio, ed.), Plenum Press, New York, pp. 1–35.

    Google Scholar 

  57. Aleksandrov, M. L., Gall, L. N., Krasnov, V. N., Nikolaev, V. I., Pavlenko, V. A., and Shkurov, V. A., 1984, Ion extraction from solutions at atmospheric pressure—a method for mass spectrometric analysis of bioorganic substances, Dokl. Akad. Nauk. SSSR 277:379–383.

    CAS  Google Scholar 

  58. Covey, T. R., Bonner, R. F., Shushan, B. I., and Henion, J. D., 1988, The determination of protein, oligonucleotide, and peptide molecular weights by ion-spray mass spectrometry, Rapid Commun. Mass Spectrom. 2:249–256.

    Article  CAS  Google Scholar 

  59. Bruins, A. P., Covey, T. R., and Henion, J. D., 1987, Ion-spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry, Anal. Chem. 59:2642–2646.

    Article  CAS  Google Scholar 

  60. Green, B. N., Oliver, R. W. A., Falick, A. M., Shackleton, C. H. L., Rutman, E., and Witkowska, H. E., 1990, Electrospray MS, LSIMS and MS/MS for the rapid detection and characterization of variant hemoglobins, in Biological Mass Spectrometry (A. L. Burlingame and J. A. McCloskey, eds.), Elsevier, Amsterdam, pp. 129–146.

    Google Scholar 

  61. Dass, C., Kusmierz, J. J., Desiderio, D. M., Jarvis, S. A., and Green, B. N., 1991, Electrospray mass spectrometry for the analysis of opioid peptides and for the quantification of endogenous methionine enkephalin and ′-endorphin, J. Am. Soc. Mass Spectrom. 2:149–156.

    Article  CAS  Google Scholar 

  62. Lee, E. D., Muck, W., Henion, J. D., and Covey, T.R., 1989, Capillary zone electrophoresis/tandem mass spectrometry for the determination of sulfonated azo dyes, Biomed. Environ. Mass Spectrom. 18:253–257.

    Article  CAS  Google Scholar 

  63. Olivares, J. A., Nguyen, N.T., Yonker, C.R., and Smith, R. D., 1987, On-line mass spectrometric detection for capillary zone electrophoresis, Anal. Chem. 59:1230–1232.

    Article  CAS  Google Scholar 

  64. Smith, R. D., Olivares, J. A., Nguyen, N. T., and Udseth, H. R., 1988, Capillary zone electrophoresis-mass spectrometry using an electrophoresis ionization interface, Anal. Chem. 60:436–441.

    Article  CAS  Google Scholar 

  65. Loo, J. A., Edmonds, C. G., and Smith, R. D., 1991, Tandem mass spectrometry of very large molecules: serum albumin sequence information from multiply charged ions formed by electrospray ionization, Anal. Chem. 63:2488–2499.

    Article  CAS  Google Scholar 

  66. Roboz, J., 1968, Introduction to Mass Spectrometry, Interscience, New York.

    Google Scholar 

  67. McDowell, C. A., 1963, Mass Spectrometry, McGraw-Hill, New York.

    Google Scholar 

  68. Cottrell, J. S., and Evans, S., 1987, Characteristics of multichannel electro-optical detection system and its applications to the analysis of large molecules by fast atom bombardment mass spectrometry, Anal. Chem. 59:1990–1995.

    Article  CAS  Google Scholar 

  69. Gross, M. L., 1990, Tandem mass spectrometry: multisector magnetic sector instruments, in Methods in Enzymology (J. A. McCloskey, ed.), Vol. 193, Academic Press, New York, pp. 131–153.

    Google Scholar 

  70. Cotter, R. J., 1992, Time-of-flight mass spectrometry for the analysis of biological molecules, Anal. Chem. 64:1027A–1039A.

    CAS  Google Scholar 

  71. Mamyrin, B. A., Karataev, V. I., Schmikk, D. V., and Zagulin, V. A., 1973, The mass reflection, a new magnetic time-of-flight mass spectrometer with high resolution, Sov. Phys. JETP 37:45–48.

    Google Scholar 

  72. Gross, M. L., and Rempel, D. L., 1984, Fourier transform mass spectrometry, Science 226:261–268.

    Article  CAS  Google Scholar 

  73. March, R. E., and Hughes, R. J., 1989, Quadrupole Storage Mass Spectrometry, Wiley-Inter-science, New York.

    Google Scholar 

  74. McLafferty, F. W., 1983, Tandem Mass Spectrometry, Wiley-Interscience, New York.

    Google Scholar 

  75. Busch, K. L., Glish, G. L., and McLuckey, S. A., 1988, Mass Spectrometry/Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry, VCH Publishers, New York.

    Google Scholar 

  76. Dass, C., and Desiderio, D. M., 1987, Fast atom bombardment mass spectrometry analysis of opioid peptides, Anal. Biochem. 163:52–66.

    Article  CAS  Google Scholar 

  77. Beynon, J. H., Caprioli, R. M., and Ast, T., 1971, Effect of deuterium labeling on the width of a ‘metastable peak,’ Org. Mass Spectrom. 5:229–234.

    Article  CAS  Google Scholar 

  78. Cooks, R. G., Beynon, J. H., Caprioli, R. M., and Lester, G. R., 1973, Metastable Ions, Elsevier, Amsterdam.

    Google Scholar 

  79. Gross, M. L., 1989, Mass spectrometry: an interplay between ion chemistry, instrumental development, and applications, Mass Spectrom. Rev. 8:165–197.

    Article  CAS  Google Scholar 

  80. Jennings, K. R., and Mason, R. S., 1983, Tandem mass spectrometry utilizing linked scanning of double focusing instruments, in Tandem Mass Spectrometry (F. W. McLafferty, ed.), Wiley—Interscience, New York, pp. 197–222.

    Google Scholar 

  81. Dass, C., and Desiderio, D. M., 1989, Characterization of neuropeptides by fast atom bombardment and B/E linked-field scan techniques, Int. J. Mass Spectrom. Ion Proc. 92:267–287.

    Article  CAS  Google Scholar 

  82. Dass, C., and Gross, M. L., 1990, Structures of decomposing and nondecomposing gas-phase [C4H6O]+ radical cations, and their [C2H2O]+ and [C3H6]+- product ions, Org. Mass Spectrum. 25:24–32.

    Article  CAS  Google Scholar 

  83. Biemann, K., 1990, Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation, in Methods in Enzymology (J. A. McCloskey, ed.), Vol. 193, Academic Press, New York, pp. 455–479.

    Google Scholar 

  84. Yost, R. A., and Enke, C. G., 1979, Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation, Anal. Chem. 51:1251A–1264A.

    Article  CAS  Google Scholar 

  85. Cody, R. B., and Freiser, B. S., 1982, High-resolution detection of collision-induced fragments by Fourier transform mass spectrometry, Anal. Chem. 54:1431–1433.

    Article  CAS  Google Scholar 

  86. Louris, J. N., Cooks, R. G., Syka, J. E. P., Kelley, P. E., Stafford, Jr., G. C., and Todd, J. F. J., 1987, Instrumentation, applications, and energy deposition in quadrupole ion trap tandem mass spectrometry, Anal. Chem. 59:1677–1685.

    Article  CAS  Google Scholar 

  87. Denis, P. O., Wesdemiotis, C., and McLafferty, F. W., 1983, Neutralization-reionization mass spectrometry (NRMS), J. Am. Chem. Soc. 105:7454–7456.

    Article  Google Scholar 

  88. Dekrey, M. J., Mabud, Md. A., Cooks, R. G., and Syka, J. E. P., 1985, Applications of linked scan procedures in investigating polyatomic ions/surface interactions. Int. J. Mass Spectrom. Ion Proc. 67:295–303.

    Article  CAS  Google Scholar 

  89. Cody, R. B., and Freiser, B. S., 1987, Electron impact excitation of ions in Fourier transform mass spectrometry, Anal. Chem. 59:1054–1056.

    Article  CAS  Google Scholar 

  90. Tecklenburg, Jr., R. E., and Russell, D. H., 1990, An evalution of the analytical utility of the photodissociation of fast ion beams, Mass Spectrom. Rev. 9:405–451.

    Article  CAS  Google Scholar 

  91. Bateman, R. H., and Bott, P. A., 1987, A new high efficiency high mass ion detector, Proc. 35th ASMS Conf. Mass Spectrom. Allied Topics, pp. 253-254.

    Google Scholar 

  92. Biemann, K., 1990, Applications of tandem mass spectrometry to peptides and protein structures, in Biological Mass Spectrometry (A. L. Burlingame and J. A. McCloskey, eds.), Elsevier, Amsterdam, pp. 179–196.

    Google Scholar 

  93. Pesch, R., Jung, G., Rost, K., and Tietje, K.-H., 1989, A versatile array detection system, Proc. 37th ASMS Conf. Mass Spectrom. Allied Topics, pp. 1079-1080.

    Google Scholar 

  94. Biemann, K., Bommer, P., and Desiderio, D. M., 1964, Element-mapping, a new approach to the interpretation of high resolution mass spectra, Tetrahedron Lett. 1725-1731.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dass, C. (1994). Mass Spectrometry. In: Desiderio, D.M. (eds) Mass Spectrometry. Modern Analytical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1748-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1748-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1750-8

  • Online ISBN: 978-1-4899-1748-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics