Skip to main content

Structure and Function in the Tubulin Dimer and the Role of the Acidic Carboxyl Terminus

  • Chapter
Proteins: Structure, Function, and Engineering

Part of the book series: Subcellular Biochemistry ((SCBI,volume 24))

Abstract

Microtubules are intracellular polymeric structures found in nearly all eukaryotic cells. Two other major intracellular fiber systems—the intermediate filaments and the actin-based microfilaments—combine with microtubules (MTs) to form the cytoskeleton, the dynamic architectural coordinate system of the cell. MTs are steady-state dynamic polymers, constantly exchanging with a pool of the subunit protein tubulin. In addition to tubulin, the intracellular polymer should be considered to contain the many other proteins that bind to MTs, move along the surface, and change their properties. Recent reviews and monographs on MTs and tubulin have emphasized different aspects, such as MT structure (Amos and Amos, 1991; Linck, 1989; Wade and Chretien, 1993), tubulin structure (Luduena et al., 1992; Ponstingl et al., 1984; Serrano and Avila, 1990), sequence and isotype analysis (Burns, 1991a; Burns and Surridge, 1990; Little and Seehaus, 1988; Luduena, 1993), tubulin/MT cell biology (Byard and Lange, 1991; Huang, 1990), membrane tubulin (Stephens, 1986), and plant MT and tubulin (Fosket and Morejohn, 1992). Reviews of other topics will be cited in appropriate sections. This chapter covers material published through October 1993.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, J. E., Hunt, D. F., Lee, M. K., Shabanowitz, J., Michel, H., Berlin, S. C., MacDonald, T. L., Sundberg, R. J., Rebhun, L. I., and Frankfurter, A., 1991, Characterization of post-translational modification in neuron-soecific class III β tubulin by mass spectrometry, Proc. Natl. Acad. Sci. USA 88:4685–4689.

    Article  PubMed  CAS  Google Scholar 

  • Amos, L. A., 1982, Tubulin and associated proteins, in Electron Microscopy of Proteins, vol. 3 (Harris, J. R., ed.), pp. 207–250, Academic Press, New York.

    Google Scholar 

  • Amos, L. A., and Amos, W. B., 1991, Molecules of the Cytoskeleton, MacMillan, London.

    Google Scholar 

  • Andreu, J. M., Bordas, J., Diaz, J. F., Garcia de Ancos, J., Gil, R., Medrano, F. J., Nogales, E., Pantos, E., and Towns-Andrews, E., 1992, Low resolution structure of microtubules in solution: Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules, J. Mol. Biol. 226:169–184.

    Article  PubMed  CAS  Google Scholar 

  • Arevalo, M. A., Nieto, J. M., Andreu, D., and Andreu, J. M., 1990, Tubulin assembly probed with antibodies to synthetic peptides, J. Mol. Biol. 214:105–120.

    Article  PubMed  CAS  Google Scholar 

  • Bai, R., Duanmu, C., and Hamel, E., 1989, Mechanism of action of the antimitotic drug 2,4-dichlorobenzyl thiocyanate: alkaylation of sulfhydryl group(s) of beta-tubulin, Biochim. Biophys. Acta 994:12–20.

    Article  PubMed  CAS  Google Scholar 

  • Bai, W., Singh, B., Yang, Y., Ramagli, L. S., Nash, M., Herzog, N. K., and Arlinghaus, R. B., 1992, The physical interaction between p37(env-mos) and tubulin structures, Oncogene 7:493–500.

    PubMed  CAS  Google Scholar 

  • Baker, H. N., Rothwell, S. W., Grasser, W. A., Wallis, K. T., and Murphy, D. B., 1990, Copolymerization of two distinct tubulin isotypes during microtubule assembly in vitro, J. Cell Biol. 110:97–104.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, A., and Luduena, R. R., 1992, Kinetics of colchicine binding to purified β-tubulin isotypes from bovine brain, J. Biol. Chem. 267:13335–13339.

    PubMed  CAS  Google Scholar 

  • Banerjee, A., Roach, M. C., Wall, K. A., Lopata, M. A., Cleveland, D. W., and Luduena, R. F., 1988, A monoclonal antibody against the type II isotype of β-tubulin. Preparation of isotypically altered tubulin, J. Biol. Chem. 263:3029–3034.

    PubMed  CAS  Google Scholar 

  • Banerjee, A., Roach, M. C., Trcka, P., and Luduena, R. R, 1990, Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of β-tubulin, J. Biol. Chem. 265:1794–1799.

    PubMed  CAS  Google Scholar 

  • Banerjee, A., Roach, M. C., Trcka, P., and Luduena, R. R, 1992, Preparation of a monoclonal antibody specific for the class IV isotype of β-tubulin. Purification and assembly of αβII, αβIII, and αβIV tubulin dimers from bovine brain, J. Biol. Chem. 267:5625–5630.

    PubMed  CAS  Google Scholar 

  • Barra, H. S., Arce, C. A., and Argarana, C. E., 1988, Posttranslational tyrosination/detyrosination of tubulin, Mol. Neurobiol. 2:133–153.

    Article  PubMed  CAS  Google Scholar 

  • Bayley, P. M., and Martin, S. R., 1991, Microtubule dynamic instability: Some possible physical mechanisms and their implications, Biochem. Soc. Trans. 19:1023–1028.

    PubMed  CAS  Google Scholar 

  • Bayley, P., Clark, D. C., and Martin, S. R., 1983, Conformation properties of microtubule protein: Their relation to the self-assembly process in vitro, Biopolymers 22:87–91.

    Article  PubMed  CAS  Google Scholar 

  • Beese, L., Stubbs, G., and Cohen, C., 1987a, Microtubule structure at 18 Ă… resolution, J. Mol. Biol. 194:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Beese, L., Stubbs, G., Thomas, J., and Cohen, C., 1987b, Structure of microtubules with reduced hydration: Comparison of results from X-ray diffraction and electron microscopy, J. Mol. Biol. 196:575–580.

    Article  PubMed  CAS  Google Scholar 

  • Beltramo, D. M., Alonso, A. C., and Barra, H. S., 1992, Tyrosinated, detyrosinated and acetylated tubulin isotypes in rat brain membranes. Their proportions in comparison with those in cytosol, Mol. Cell. Biochem. 112:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Best, D., Warr, P. J., and Gull, K., 1981, Influence of the composition of commercial sodium dodecyl sulfate preparations on the separation of alpha and beta tubulin during polyacrylamide gel electrophoresis, Anal. Biochem. 114:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, B., and Wolff, J., 1975, Membrane-bound tubulin in brain and thyroid tissue, J. Biol. Chem. 250:7639–7646.

    PubMed  CAS  Google Scholar 

  • Bhattacharyya, B., Sackett, D. L., and Wolff, J., 1985, Tubulin, hybrid dimers and tubulin S: Stepwise charge reduction and polymerization, J. Biol. Chem. 260:10208–10216.

    PubMed  CAS  Google Scholar 

  • Bibring, T., and Baxandall, J., 1977, Tubulin synthesis in sea urchin embryos: Almost all tubulin of the first cleavage mitotic apparatus derives from the unfertilized egg, Dev. Biol. 55:191–195.

    Article  PubMed  CAS  Google Scholar 

  • Boekelheide, K., 1987, 2,5-hexanedione alters microtubule assembly. II Enhanced polymerization of crosslinked tubulin, Toxicol. Appl. Pharmacol. 88:383–396.

    Article  PubMed  CAS  Google Scholar 

  • Boggs, B. A., Minotti, A. M., Loeb, L. M., Cook, R., and Cabrai, R, 1988, Mutations affecting assembly of beta-tubulin localize to a region near the carboxyl terminus, J. Biol. Chem. 263:14566–14573.

    PubMed  CAS  Google Scholar 

  • Bond, J. R, Fredovich-Keil, J. L., Pillus, L., Mulligan, R. C., and Solomon, R, 1986, A chickenyeast chimeric beta-tubulin protein is incorporated into mouse microtubules in vivo, Cell 44:461–468.

    Article  PubMed  CAS  Google Scholar 

  • Borisy, G. G., and Taylor, E. W., 1967, The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein, J. Cell Biol. 34:525–533.

    Article  PubMed  CAS  Google Scholar 

  • Breitling, F., and Little, M., 1986, Carboxy-terminal regions on the surface of tubulin and microtubules: Epitope locations of YOL/34, DM1A and DM1B, J. Mol. Biol. 189:367–370.

    Article  PubMed  CAS  Google Scholar 

  • Brown, H. R., and Erickson, H. P., 1983, Assembly of proteolytically cleaved tubulin, Arch. Biochem. Biophys. 220:46–51.

    Article  PubMed  CAS  Google Scholar 

  • Bryan, J., 1974, Biochemical properties of microtubules, Fed. Proc. 33:152–157.

    PubMed  CAS  Google Scholar 

  • Bulinski, J. C., Richards, J. E., and Piperno, G., 1988, Posttranslational modification of α-tubulin: Detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells, J. Cell Biol. 106:1213–1220.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne, R. D., 1991, High molecular weight microtubule-associated proteins of brain, in The Neuronal Cytoskeleton (R. D. Burgoyne, ed.), pp. 75–91, Wiley-Liss, New York.

    Google Scholar 

  • Burns, R. G., 1991a, α-, β-, and Îł-tubulins: Sequence comparisons and structural constraints, Cell Motil. Cytoskel. 20:181–189.

    Article  CAS  Google Scholar 

  • Burns, R. G., 1991b, Properties and assembly of neuronal microtubules in vitro, in The Neuronal Cytoskeleton (R. D. Burgoyne, ed.), pp. 93–119, Wiley-Liss, New York.

    Google Scholar 

  • Burns, R. G., and Surridge, C., 1990, Analysis of β-tubulin sequences reveals highly conserved, coordinated amino acid substitutions. Evidence that these “hot spots” are directly involved in the conformational change required for dynamic instability, FEBS Lett 271:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Byard, E. H., and Lange, B. M., 1991, Tubulin and microtubules, Essays Biochem. 26:13–25.

    PubMed  CAS  Google Scholar 

  • Cambray-Deakin, M. A., 1991, Cytoskeleton of the growing axon, in The Neuronal Cytoskeleton (R. D. Burgoyne, ed.), pp. 233–255, Wiley-Liss, New York.

    Google Scholar 

  • Carlier, M.-F, 1989, Role of nucleotide hydrolysis in the dynamics of actin filaments and microtubules, Int. Rev. Cytol. 115:139–170.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, S. J., and Bulinski, J. C., 1992, Microtubule stabilization by assembly-promoting microtubule-associated proteins: A repeat performance, Cell Motil. Cytoskel. 23:236–243.

    Article  CAS  Google Scholar 

  • Chavan, A. J., Kim, H., Haley, B. E., and Watt, D. S., 1990, A photoreactive phosphonamide derivative of GTP for the identification of the GTP-binding domain of tubulin, Bioconjugat. Chem. 1:337–344.

    Article  CAS  Google Scholar 

  • Chene, P., Mazarguil, H., and Wright, M., 1992, Microtubule assembly protects the region 28-38 of the β-tubulin subunit, Cell Motil. Cytoskel. 22:25–37.

    Article  CAS  Google Scholar 

  • Cleveland, D. W., and Sullivan, K. F., 1985, Molecular biology and genetics of tubulin, Annu. Rev. Biochem. 54:331–365.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, D. W., Joshi, H. C., and Murphy, D. B., 1990, Tubulin site interpretation (letter), Nature 344:389.

    Article  PubMed  CAS  Google Scholar 

  • Correia, J. J., and Williams, R. C., 1983, Mechanisms of assembly and disassembly of microtubules, Annu. Rev. Biophys. Bioeng. 12:211–235.

    Article  PubMed  CAS  Google Scholar 

  • Cross, D., Dominguez, J., Maccioni, R. B., and Avila, J., 1991, MAP-1 and MAP-2 binding sites at the C-terminus of β-tubulin. Studies with synthetic tubulin peptides, Biochemistry 30:4362–4366.

    Article  PubMed  CAS  Google Scholar 

  • Crate, B. E., and VanBuskirk, R. G., 1992, A casein kinase-like kinase phosphorylates beta-tubulin and may be a microtubule-associated protein, J. Neurochem. 59:2017–2023.

    Article  Google Scholar 

  • Curry, A. M., and Rosenbaum, J. L., 1993, Flagellar radial spoke: A model molecular genetic system for studying organelle assembly, Cell Motil. Cytoskel. 24:224–232.

    Article  CAS  Google Scholar 

  • DeBrabander, M., DeMey, J., Geuns, G., Nuydens, R., Aerts, F., Willebrords, R., and Moeremans, M., 1985, Microtubules in cell organization and motility, in Hormones and Cell Regulation (J. E. Dumont, B. Hamprecht, and J. Nunez, eds.), pp. 85–104, Elsevier/North Holland, New York.

    Google Scholar 

  • de la Vina, S., Andreu, D., Medrano, F. J., Nieto, J. M., and Andreu, J. M., 1988, Tubulin structure probed with antibodies to synthetic peptides. Mapping of three major types of limited proteolysis fragments, Biochemistry 27:5352–5365.

    Article  PubMed  Google Scholar 

  • Denoulet, P., Edde, B., Pinto-Henrique, D., Koulakoff, A., Berwald-Netter, Y., and Gros, F., 1988, The increase of tubulin heterogeneity during differentiation of neurons in primary culture is controlled mainly at the post-translational level, in Structure and Functions of the Cytoskeleton (B. A. F. Rousset, ed.), pp. 231–237, John Libbey Eurotext Ltd, London.

    Google Scholar 

  • Dentier, W. L., 1980, Microtubule-membrane interactions in cilia. I. Isolation and characterization of ciliary membranes from Tetrahymena pyriformis, J. Cell Biol. 84:364–380.

    Article  Google Scholar 

  • Detrich, H. W., III, and Williams, R. C., Jr., 1978, Reversible dissociation of the aβ dimer of tubulin from bovine brain, Biochemistry 17:3900–3907.

    Article  PubMed  CAS  Google Scholar 

  • Detrich, H. W., III, Williams, R. C., Jr., and Wilson, L., 1982, Effect of colchicine binding on the reversible dissociation of the tubulin dimer, Biochemistry 21:2392–2400.

    Article  PubMed  CAS  Google Scholar 

  • Draber, P., Draberova, E., Linhartova, I., and Viklicky, V., 1989, Differences in the exposure of C-and N-terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies, J. Cell Sci. 92:519–528.

    PubMed  CAS  Google Scholar 

  • Dustin, P., 1984, Microtubules, Springer-Verlag, New York.

    Book  Google Scholar 

  • Edde, B., Rossier, J., LeCaer, J. P., Desbruyeres, E., Gros, F., and Denoulet, P., 1990, Posttranslational glutamylation of alpha-tubulin, Science 247:83–85.

    Article  PubMed  CAS  Google Scholar 

  • Edde, B., Rossier, J., LeCaer, J. P., Prome, J. C, Desbruyeres, E., Gros, F., and Denoulet, P., 1992, Polyglutamylated alpha-tubulin can enter the tyrosination/detyrosination cycle, Biochemistry 31:403–410.

    Article  PubMed  CAS  Google Scholar 

  • Eigsti, O. J., and Dustin, P., 1955, Colchicine—In Agriculture, Medicine, Biology, and Chemistry, Iowa State College Press, Ames.

    Google Scholar 

  • Eipper, B. A., 1974, Properties of rat brain tubulin, J. Biol. Chem. 249:1407–1416.

    PubMed  CAS  Google Scholar 

  • Engelborghs, Y., 1990, Dynamic aspects of microtubule assembly, in Microtubule Proteins (J. Avila, ed.), pp. 1–36, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Fackenthal, J. D., Turner, F. R., and Raff, E. C., 1993, Tissue-specific microtubule functions in Drosophila spermatogenesis require the β2-tubulin isotype-specific carboxy terminus, Dev. Biol. 158:213–227.

    Article  PubMed  CAS  Google Scholar 

  • Farr, G. W., and Sternlicht, H., 1992, Site-directed mutagenesis of the GTP-binding domain of β-tubulin, J. Mol. Biol. 221:301–321.

    Google Scholar 

  • Floyd, L. F., Barnes, L. D., and Williams, R. F., 1989, Photoaffinity labeling of tubulin with (2-nitro-4-azidophenyl) deacetylcolchicine: Direct evidence for two colchicine binding sites, Biochemistry 28:8515–8525.

    Article  PubMed  CAS  Google Scholar 

  • Fontana, A., Fassina, G., Vita, C, Dalzoppo, D., Zamai, M., and Zambonin, M., 1986, Correlation between sites of limited proteolysis and segmental mobility in thermolysin, Biochemistry 25:1847–1851.

    Article  PubMed  CAS  Google Scholar 

  • Fosket, D. E., and Morejohn, L. C., 1992, Structural and functional organization of tubulin, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:201–240.

    Article  CAS  Google Scholar 

  • Fridovich-Keil, J. L., Bond, J. F., and Solomon, F., 1987, Domains of β-tubulin essential for conserved function in vivo, Mol. Cell. Biol. 7:3792–3798.

    PubMed  CAS  Google Scholar 

  • Frigon, R. P., and Timasheff, S. N., 1975, Magnesium-induced self-association of calf brain tubulin. I. Stoichiometry, Biochemistry 14:4559–4566.

    Article  PubMed  CAS  Google Scholar 

  • Gaertig, J., Thatcher, T. H., McGrath, K. E., Callahan, R. C., and Gorovsky, M. A., 1993, Perspectives on tubulin isotype and function and evolution based on the observation that Tetrahymena thermophila microtubules contain a single α-and β-tubulin, Cell Motil. Cytoskel. 25:243–253.

    Article  CAS  Google Scholar 

  • George, H. J., Misra, L., Field, D. J., and Lee, J. C., 1981, Polymorphism of brain tubulin, Biochemistry 20:2402–2409.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, T., LeBivic, A., Quaroni, A., and Rodriguez-Boulan, E., 1991, Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco-2 intestinal epithelial cells, J. Cell Biol. 113:275–288.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, I., Teichman, A., Dodmont, H. J., Behar, L., and Littauer, U. Z., 1985, Regulation of three beta-tubulin mRNAs during rat brain development, EMBO J. 4:3667–3673.

    PubMed  CAS  Google Scholar 

  • Goldsmith, M., Connolly, J. A., Kumar, N., Wu, J., Yarbrough, L. R., and van der Kooy, D., 1991, Conserved β-tubulin binding domain for the microtubule-associated motors underlying sperm motility and fast axonal transport, Cell Motil. Cytoskel. 20:249–262.

    Article  CAS  Google Scholar 

  • Graff, R. D., Philbert, M. A., Lowndes, H. E., and Reuhl, K. R., 1993, The effect of glutathione depletion on methyl mercury-induced microtubule disassembly in cultured embryonal carcinoma cells, Toxicol. Appl. Pharmacol. 120:20–28.

    Article  PubMed  CAS  Google Scholar 

  • Grain, J., 1986, The cytoskeleton in protists: Nature, structure, and functions, Int. Rev. Cytol. 104:153–249.

    Article  PubMed  CAS  Google Scholar 

  • Greer, K., and Rosenbaum, J. L., 1989, Post-translational modifications of tubulin, in Cell Movement, vol. 2: Kinesin, dynein, and microtubule dynamics (F. D. Warner and J. R., Mclntosh, eds.), pp. 47–66, Alan R. Liss, New York.

    Google Scholar 

  • Hamel, E., 1990, Interactions of tubulin with small ligands, in Microtubule Proteins (J. Avila, ed.), pp. 89–192, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Hamel, E., 1992, Natural products which interact with tubulin in the vinca domain: Maytansine, rhizoxin, phomopsin A, dolastatins 10 and 15 and halichondrin B, Pharmacol. Ther. 55:31–51.

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves, A. J., Wandosell, F., and Avila, J., 1986, Phosphorylation of tubulin enhances its interaction with membranes, Nature 323:827–828.

    Article  PubMed  CAS  Google Scholar 

  • Harris, P. J., Clason, E. L., and Prier, K. R., 1989, Tubulin polymerization in unfertilized sea-urchin eggs induced by elevated temperature, J. Cell Sci. 93:9–17.

    PubMed  CAS  Google Scholar 

  • Harrison, B. C., Marchese-Ragona, S. P., Gilbert, S. P., Cheng, N., Steven, A. C., and Johnson, K. A., 1993, Decoration of the microtubule surface by one kinesin head per tubulin heterodimer, Nature 362:73–75.

    Article  PubMed  CAS  Google Scholar 

  • Hastie, S. B., 1991, Interactions of colchicine with tubulin, Pharmacol. Ther. 51:377–401.

    Article  PubMed  CAS  Google Scholar 

  • Hesse, J., Thierauf, M., and Ponstingl, H., 1987, Tubulin sequence region β 155-174 is involved in binding exchangable guanosine triphosphate, J. Biol. Chem. 262:15472–15475.

    PubMed  CAS  Google Scholar 

  • Hiller, G., and Weber, K., 1978, Radioimmunoassay for tubulin: A quantitative comparison of the tubulin content of different established tissue culture cells and tissues, Cell 14:795–804.

    Article  PubMed  CAS  Google Scholar 

  • Himes, R. H., 1991, Interactions of the catharanthus (Vinca) alkaloids with tubulin and microtubules, Pharmacol. Ther. 51:257–267.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., 1991, Molecular architecture and dynamics of the neuronal cytoskeleton, in The Neuronal Cytoskeleton (R. D. Burgoyne, ed.), pp. 5–74, Wiley-Liss, New York.

    Google Scholar 

  • Horio, T., Uzawa, S., Jung, M. K., Oakley, B. R., Tanaka, K., and Yanagida, M., 1991, The fission yeast Îł-tubulin is essential for mitosis and is localized at microtubule organizing centers, J. Cell Sci. 99:693–700.

    PubMed  CAS  Google Scholar 

  • Hoyle, H. D., and Raff, E. C, 1990, Drosophila beta tubulin isoforms are not functionally equivalent, J. Cell Biol. 111:1009–1026.

    Article  PubMed  CAS  Google Scholar 

  • Huang, B., 1990, Genetics and biochemistry of centrosomes and spindle poles, Curr. Opinion Cell Biol. 2:28–32.

    Article  PubMed  CAS  Google Scholar 

  • Hussey, P. J., Lloyd, C. W., and Gull, K., 1988, Differential and developmental expression of β-tubulins in a higher plant, J. Biol. Chem. 263:5474–5479.

    PubMed  CAS  Google Scholar 

  • Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R., 1988, Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium, J. Biol. Chem. 263:17857–17871.

    PubMed  CAS  Google Scholar 

  • Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., and Mitchison, T. J., 1992, Role of GTP hydrolysis in microtubule dynamics: Information from a slowly hydrolyzable analogue, GMPCPP, Mol. Biol. Cell 3:1155–1167.

    PubMed  CAS  Google Scholar 

  • Ikeda, Y., and Steiner, M., 1979, Phosphorylation and protein kinase activity of platelet tubulin, J. Biol. Chem. 254:66–74.

    PubMed  CAS  Google Scholar 

  • Iwasaki, S., 1993, Antimitotic agents: Chemistry and recognition of tubulin molecule, Med. Res. Rev. 13:183–198.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, H. C., and Cleveland, D. W., 1990, Diversity among tubulin subunits: Toward what functional end? Cell Motil. Cytoskel. 16:159–163.

    Article  CAS  Google Scholar 

  • Joshi, H. C, Palacios, M. J., McNamara, L., and Cleveland, D. W., 1992, Îł-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation, Nature 356:80–83.

    Article  PubMed  CAS  Google Scholar 

  • Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., and Holmes, K. C., 1990, Atomic structure of the actin: DNase I complex, Nature 347:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki, T., Fujita-Yamaguchi, Y., Nishida, E., Takaku, F., Akiyama, T., Kathuria, S., Akanuma, Y., and Kasuga, M., 1985, Phosphorylation of tubulin and microtubule-associated proteins by the purified insulin receptor kinase, J. Biol. Chem. 260:4016–4020.

    PubMed  CAS  Google Scholar 

  • Kambadur, R., Lewis, M., Chang, S., and Flavin, M., 1990, Characterization of putative cytoskeletal proteins from a trypanosomatid and their comparative binding to microtubules and soluble tubulin, J. Biol. Chem. 265:20959–20965.

    PubMed  CAS  Google Scholar 

  • Kanazawa, K., and Timasheff, S. N., 1989, Preparation and characterization of des-C-terminal tubulin, J. Protein Chem. 8:131–147.

    Article  PubMed  CAS  Google Scholar 

  • Katz, W. S., and Solomon, F., 1988, Diversity among beta-tubulins: A carboxy-terminal domain of yeast beta-tubulin is not essential in vivo, Mol. Cell Biol 8:2730–2736.

    PubMed  CAS  Google Scholar 

  • Kirchner, K., and Mandelkow, E.-M., 1985, Tubulin domains responsible for assembly of dimers and protofilaments, EMBO J. 4:2397–2402.

    PubMed  CAS  Google Scholar 

  • Kreis, T. E., 1987, Microtubules containing detyrosinated tubulin are less dynamic, EMBO J. 9:2597–2606.

    Google Scholar 

  • Lacey, E., 1988, The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles, Int. J. Parasitol. 18:885–936.

    Article  PubMed  CAS  Google Scholar 

  • Laver, W. G., Air, G. M., Webster, R. G., and Smith-Gill, S. J., 1990, Epitopes on protein antigens: Misconceptions and realities, Cell 61:553–556.

    Article  PubMed  CAS  Google Scholar 

  • LeDizet, M., and Piperno, G., 1987, Identification of an acetylation site of Chlamydomonas α-tubulin, Proc. Natl. Acad. Sci. USA 84:5720–5724.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G., 1993, Non-motor microtubule-associated proteins, Curr. Opinion Cell Biol. 5:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. C., Frigon, R. P., and Timasheff, S. N., 1973, The chemical characterization of calf brain microtubule protein subunits, J. Biol. Chem. 248:7253–7262.

    PubMed  CAS  Google Scholar 

  • Lee, M. K., Tuttle, J. B., Rebhun, L. I., Cleveland, D. W., and Frankfurter, A., 1990, The expression and posttranslational modification of a neuron-specific β-tubulin isotype during chick embryogenesis, Cell Motil. Cytoskel. 17:118–132.

    Article  CAS  Google Scholar 

  • Lemischka, I. R., Farmer, S., Racaniello, V. R., and Sharp, P. A., 1981, Nucleotide sequence and evolution of a mammalian alpha-tubulin messenger RNA, J. Mol. Biol. 151:101–120.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., and Cowan, N. J., 1990, Tubulin genes: Structure, expression, and regulation, in Microtubule Proteins (J. Avila, ed.), pp. 37–66, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • L’Hernault, S. W., and Rosenbaum, J. L., 1985, Chlamydomonas α-tubulin is posttranslationally modified by acetylation on the eta-amino group of a lysine, Biochemistry 24:473–478.

    Article  PubMed  Google Scholar 

  • Lin, C. M., Ho, H. H., Petit, G. R., and Hamel, E., 1989, Antimitotic natural products combretastatin A-4 and combretastatin A-2: Studies on the mechanism of their inhibition of the binding of colchicine to tubulin, Biochemistry 28:6984–6991.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X.-L., Lin, Y.-Z., Koelsch, G., Gustchina, A., Wlodawer, A., and Tang, J., 1992, Enzymatic activities of two-chain pepsinogen, two-chain pepsin, and the amino-terminal lobe of pepsinogen, J. Biol. Chem. 267:17257–17263.

    PubMed  CAS  Google Scholar 

  • Linck, R. W., 1989, Microtubule structure and function, in Cell Movement, vol. 2, Kinesin, Dynein, and Microtubule Dynamics (F. D. Warner and J. R. Mclntosh, eds.), pp. 13–21, Alan R. Liss, New York.

    Google Scholar 

  • Linse, K., and Mandelkow, E.-M., 1988, The GTP-binding peptide of β-tubulin: Localization by direct photoaffinity labeling and comparison with nucleotide-binding proteins, J. Biol. Chem. 263:15205–15210.

    PubMed  CAS  Google Scholar 

  • Littauer, U. Z., Biveon, D., Thierauf, M., Ginzburg, I., and Ponstingl, H., 1986, Common and distinct tubulin binding sites for microtubule-associated proteins, Proc. Natl. Acad. Sci. USA 83:7162–7166.

    Article  PubMed  CAS  Google Scholar 

  • Little, M., and Seehaus, T., 1988, Comparative analysis of tubulin sequences, Comp. Biochem. Physiol. 90B:655–670.

    CAS  Google Scholar 

  • Lobert, S., and Correia, J. J., 1991, Studies of crystallization conditions for native and subtilisin-cleaved pig brain tubulin, Arch. Biochem. Biophys. 290:93–102.

    Article  PubMed  CAS  Google Scholar 

  • Lobert, S., and Correia, J. J., 1992, Subtilisin cleavage of tubulin heterodimers and polymers, Arch. Biochem. Biophys. 296:152–160.

    Article  PubMed  CAS  Google Scholar 

  • Lopata, M. A., and Cleveland, D. W., 1987, In vivo microtubules are copolymers of available β-tubulin isotypes: Localization of each of six vertebrate β-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens, J. Cell Biol. 105:1707–1720.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, L. A., and Sheetz, M. P., 1993, Steric inhibition of cytoplasmic dynein and kinesin motility by MAP2, Cell Motil. Cytoskel. 24:1–16.

    Article  CAS  Google Scholar 

  • Luduena, R. R., 1993, Are tubulin isotypes functionally significant, Mol. Biol. Cell 4:445–457.

    PubMed  CAS  Google Scholar 

  • Luduena, R. F., Shooter, E. M., and Wilson, L., 1977, Structure of the tubulin dimer, J. Biol. Chem. 252:7006–7014.

    PubMed  CAS  Google Scholar 

  • Luduena, R. F., Zimmerman, H.-P., and Little, M., 1988, Identification of the phosphorylated β-isotype in differentiated neuroblastoma ceils, FEBS Lett. 230:142–146.

    Article  PubMed  CAS  Google Scholar 

  • Luduena, R. F., Banerjee, A., and Khan, I. A., 1992, Tubulin structure and biochemistry, Curr. Opinion Cell Biol. 4:53–57.

    Article  PubMed  CAS  Google Scholar 

  • Lupas, A., VanDyke, M., and Stock, J., 1991, Predicting coiled coils from protein sequences, Science 252:1162–1164.

    Article  PubMed  CAS  Google Scholar 

  • Maccioni, R. B., Serrano, L., Avila, J., and Cann, J. R., 1986, Characterization and structural aspects of the enhanced assembly of tubulin after removal of its carboxyl-terminal domain, Eur. J. Biochem. 156:375–381.

    Article  PubMed  CAS  Google Scholar 

  • Maccioni, R. B., Rivas, C. I., and Vera, J. C., 1988, Differential interaction of synthetic peptides from the carboxyl-terminal regulatory domain of tubulin with microtubule-associated proteins, EMBO J. 7:1957–1963.

    PubMed  CAS  Google Scholar 

  • MacRae, T. H., and Langdon, C. M., 1989, Tubulin synthesis, structure, and function: What are the relationships? Biochem. Cell. Biol. 67:770–790.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow, E.-M., Herrmann, M., and Ruhl, U., 1985, Tubulin domains probed by limited proteolysis and subunit-specific antibodies, J. Mol. Biol. 185:311–327.

    Article  PubMed  CAS  Google Scholar 

  • Matesic, D. F., Philp, N. J., Murray, J. M., and Liebman, P. A., 1992, Tubulin in bovine rod outer segments, J. Cell Sci. 103:157–166.

    PubMed  CAS  Google Scholar 

  • Matsuzaki, F., Matsumoto, S., and Yahara, I., 1988, Truncation of the carboxy-terminal domain of yeast β-tubulin causes temperature-sensitive growth and hypersensitivity to antimitotic drugs, J. Cell Biol. 107:1427–1435.

    Article  PubMed  CAS  Google Scholar 

  • Matten, W. T., Aubry, M., West, J., and Maness, P. F., 1990, Tubulin is phosphorylated at tyrosine by pp60c-src in nerve growth cone membranes, J. Cell Biol. 111:1959–1970.

    Article  PubMed  CAS  Google Scholar 

  • May, G. S., 1989, The highly divergent β-tubulins of Aspergillus nidulans are functionally interchangeable, J. Cell Biol. 109:2267–2274.

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar, M., Parrack, P. K., Mukhopadhyay, K., and Bhattacharyya, B., 1992, Bis-ANS as a specific inhibitor for microtubule-associated protein induced assembly of tubulin, Biochemistry 31:6470–6474.

    Article  PubMed  CAS  Google Scholar 

  • Mejillano, M. R., and Himes, R. H., 1989, Tubulin dimer dissociation detected by fluorescence anisotropy, Biochemistry 28:6518–6524.

    Article  PubMed  CAS  Google Scholar 

  • Mejillano, M. R., and Himes, R. H., 1991, Assembly properties of tubulin after carboxyl group modification, J. Biol. Chem. 266:657–664.

    PubMed  CAS  Google Scholar 

  • Mejillano, M. R., Tolo, E. T., Williams, R. C. Jr., and Himes, R. H., 1992, The conversion of tubulin carboxyl groups to amides has a stabilizing effect in microtubules, Biochemistry 31:3478–3483.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, T., and Kirschner, M. W., 1984, Dynamic instability of microtubule growth, Nature 312:237–242.

    Article  PubMed  CAS  Google Scholar 

  • Morejohn, L. C., and Fosket, D. E., 1991, The biochemistry of compounds with anti-microtubule activity in plant cells, Pharmacol. Ther. 51:217–230.

    Article  PubMed  CAS  Google Scholar 

  • Mornet, D., and Ue, K., 1984, Proteolysis and structure of skeletal muscle actin, Proc. Natl. Acad. Sci. USA 81:3680–3684.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, K., Parrack, P. K., and Bhattacharyya, B., 1990, The carboxy terminus of the α subunit of tubulin regulates its interaction with colchicine, Biochemistry 29:6845–6850.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J. M., 1984, Disassembly and reconstitution of a membrane-microtubule complex, J. Cell Biol. 98:1481–1487.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, B. R., Oakley, C. E., Yoon, Y., and Jung, M. K., 1990, Îł-Tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61:1289–1301.

    Article  PubMed  CAS  Google Scholar 

  • Oakley, C. E., and Oakley, B. R., 1989, Identification of Îł-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans, Nature 338:662–66

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, E. T., Voter, W. A., and Erickson, H. P., 1987, GTP hydrolysis during microtubule assembly, Biochemistry 26:4148–4156.

    Article  PubMed  Google Scholar 

  • Ortiz, M., Lagos, R., and Monasterio, O., 1993, Interaction between the C-terminal peptides of tubulin and tubulin S detected with the fluorescent probe 4′,6-diamidino-2-phenylindole, Arch. Biochem. Biophys. 303:159–164.

    Article  PubMed  CAS  Google Scholar 

  • Otter, A., and Kotovych, G., 1988, The solution conformation of the synthetic tubulin fragment Actubulin-α(430-441)-amide based on two-dimensional ROESY experiments, Can J. Chem. 66:1814–1820.

    Article  CAS  Google Scholar 

  • Otter, A., Scott, P. G., Maccioni, R. B., and Kotovych, G., 1991, The solution conformation of tubulin β(422-434)-NH2 and its Nac-DATADEQG-NH2 fragment based on NMR, Biopolymers 31:449–458.

    Article  PubMed  CAS  Google Scholar 

  • Pabo, C. O., Sauer, R. T., Sturtevant, J. M., and Ptashne, M., 1979, The Îł repressor contains two domains, Proc. Natl. Acad. Sci. USA 76:1608–1612.

    Article  PubMed  CAS  Google Scholar 

  • Panda, D., Roy, S., and Bhattacharyya, B., 1992, Reversible dimer dissociation of tubulin S and tubulin detected by fluorescence anisotropy, Biochemistry 31:9709–9716.

    Article  PubMed  CAS  Google Scholar 

  • Paschal, B. M., Obar, R. A., and Valee, R. B., 1989, Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin, Nature 342:569–572.

    Article  PubMed  CAS  Google Scholar 

  • Peyrot, V., Briand, C., and Andreu, J. M., 1990, C-terminal cleavage of tubulin by subtilisin enhances ring formation, Arch. Biochem. Biophys. 279:328–337.

    Article  PubMed  CAS  Google Scholar 

  • Piperno, G., LeDizet, M., and Chang, X. J., 1987, Microtubules containing acetylated α-tubulin in mammalian cells in culture, J. Cell Biol. 104:289–302.

    Article  PubMed  CAS  Google Scholar 

  • Ponstingl, H., Little, M., Krauhs, E., and Kempf, T., 1979, Carboxy-terminal amino acid sequence of a-tubulin from porcine brain, Nature 282:423–424.

    Article  PubMed  CAS  Google Scholar 

  • Ponstingl, H., Little, M., and Krauhs, E., 1984, Tubulins, Peptide Protein Rev. 2:1–81.

    CAS  Google Scholar 

  • Ponstingl, H., Little, M., Kempf, T., Krauhs, E., and Ade, W., 1990, Mapping of ligand binding sites, epitopes, and posttranslational modifications on protein sequences—Tubulin as an example, in Laboratory Methodology in Biochemistry: Amino Acid Analysis and Protein Sequencing (C. Fini, A. Floridi, U. N. Finelli, and S. Wittman-Liebold], eds.), pp. 151–171, CRC Press, Boca Raton, Florid

    Google Scholar 

  • Porter, K., 1966, Cytoplasmic microtubules and their function, in CIBA Foundation Symposium: Principles of Biomolecular Organization (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 308–356, Little, Brown, Boston.

    Google Scholar 

  • Potchoo, Y., Braguer, D., Peyrot, V., Chauvet-Monges, A. M., Sari, J. C., and Crevat, A., 1986, In vitro inhibition of microtubule assembly by disulfiram, Int. J. Clin. Pharmacol. 24:499–504.

    CAS  Google Scholar 

  • Prescott, A. R., Foster, K. E., Warn, R. M., and Gull, K., 1989, Incorporation of tubulin from an evolutionarily diverse source, Physarum polycephalum, into the microtubules of a mammalian cell, J. Cell Sci. 92:595–605.

    CAS  Google Scholar 

  • Purich, D. L., and Scaife, R. M., 1985, Microtubule cytoskeleton proteins as targets for covalent interconverting enzymes, Curr. Top. Cell. Regul. 27:107–116.

    PubMed  CAS  Google Scholar 

  • Raff, R. A., and Kaumeyer, J. F., 1973, Soluble microtubule proteins of the sea urchin embryo: Partial characterization of the proteins and behaviour of the pool in early development, Dev. Biol. 32:309–320.

    Article  PubMed  CAS  Google Scholar 

  • Raffaelli, N., Scaife, R. M., and Purich, D. L., 1992, ADP ribosylation of chicken red cell tubulin and inhibition of microtubule self-assembly in vitro by the NAD+-dependent avian ADP ribosyl transferase, Biochem. Biophys. Res. Commun. 184:414–418.

    Article  PubMed  CAS  Google Scholar 

  • Rao, S., Horwitz, S. B., and Ringel, I., 1992, Direct photoaffinity labeling of tubulin with taxol, J. Natl. Cancer Insi. 84:785–788.

    Article  CAS  Google Scholar 

  • Redeker, V., LeCaer, J. P., Rossier, J., and Prome, J. C., 1991, Structure of the polyglutamyl side chain posttranslationally added to α-tubulin, J. Biol. Chem. 266:23461–23466.

    PubMed  CAS  Google Scholar 

  • Redeker, V., Melki, R., Prome, D., LeCaer, J. P., and Rossier, J., 1992, Structure of tubulin C-terminal domain obtained by subtilisin treatment. The major alpha and beta tubulin isotypes from pig brain are glutamylated, FEBS Lett. 313:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J., Hull, W. E., Ponstingl, H., and Himes, R. H., 1992, Conformational properties of the β(400–436) and β(400–445) C-terminal peptides of porcine brain tubulin, Biochemistry 31:11888–11895.

    Article  PubMed  CAS  Google Scholar 

  • Richards, F. M., and Vithayathil, P. J., 1959, The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components, J. Biol. Chem. 234:1459–1465.

    PubMed  CAS  Google Scholar 

  • Ringel, I., and Sternlicht, H., 1984, Carbon-13 nuclear magnetic resonance study of microtubule protein: Evidence for a second colchicine site involved in the inhibition of microtubule assembly, Biochemistry 23:5644–5653.

    Article  PubMed  CAS  Google Scholar 

  • Rodionov, V. I., Gyoeva, F. K., Kashina, A. S., Kuznetsov, S. A., and Gelfand, V. I., 1990, Microtubule-associated proteins and microtubule-based translocatores have different binding sites on tubulin molecule, J. Biol. Chem. 265:5702–5707.

    PubMed  CAS  Google Scholar 

  • Rowinsky, E. K., and Donehower, R. C., 1991, The clinical pharmacology and use of anti-microtubule agents in cancer chemotherapeutics, Pharmacol. Ther. 52:35–84.

    Article  PubMed  CAS  Google Scholar 

  • Roychowdhury, S., Wang, N., and Rasenick, M. M., 1993, G protein binding and G protein activation by nucleotide transfer involve distinct domains on tubulin: Regulation of signal transduction by cytoskeletal elements, Biochemistry 32:4955–4961.

    Article  PubMed  CAS  Google Scholar 

  • Rudiger, M., Plessman, U., Klöppel, K.-D., Wehland, J., and Weber, K., 1992, Class II tubulin, the major brain β tubulin isotype is polyglutamylated on glutamic acid residue 435, FEBS Lett. 308:101–105.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., 1993, Podophyllotoxin, steganacin, and combretastatin; natural products which interact with tubulin at the colchicine site, Pharmacol. Ther. 59:163–228.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., and Lippoldt, R. E., 1991, Thermodynamics of the reversible monomer-dimer association of tubulin, Biochemistry 30:3511–3517.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., and Varma, J. K., 1993, Molecular mechanism of colchicine action: Induced unfolding of beta tubulin, Biochemistry 32:13560–13565.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., and Wolff, J., 1986, Proteolysis of tubulin and the substructure of the tubulin dimer, J. Biol. Chem. 261:9070–9076.

    PubMed  CAS  Google Scholar 

  • Sackett, D. L., and Wolff, J., 1987, Nile red as a polarity sensitive fluorescent probe of hydrophobic surfaces, Anal. Biochem. 167:228–234.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., Bhattacharyya, B., and Wolff, J., 1985, Tubulin carboxyl terminii determine polymerization efficiency, J. Biol. Chem. 260:43–45.

    PubMed  CAS  Google Scholar 

  • Sackett, D. L., Bhattacharyya, B., and Wolff, J., 1986, Promotion of tubulin assembly by carboxyterminal charge reduction, Ann. NY Acad. Sci. 466:460–466.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., Zimmerman, D. A., and Wolff, J., 1989, Tubulin dimer dissociation and proteolytic accessibility, Biochemistry 28:2662–2667.

    Article  PubMed  CAS  Google Scholar 

  • Sackett, D. L., Knutson, J. R., and Wolff, J., 1990, Hydrophobic surfaces of tubulin studied by steady state and time-resolved fluorescence of Nile red, J. Biol. Chem. 25:14889–14906.

    Google Scholar 

  • Safa, A. R., Hamel, E., and Felsted, R. L., 1987, Photoaffinity labeling of tubulin subunits with a photoactive analogue of vinblastine, Biochemistry 26:97–102.

    Article  PubMed  CAS  Google Scholar 

  • Sager, P. R., Doherty, R. A., and Olmsted, J. B., 1983, Interaction of methylmercury with microtubules in cultured cells and in vitro, Exp. Cell Res. 146:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Scaife, R. M., Wilson, L., and Purich, D. L., 1992, Microtubule protein ADP-ribosylation in vitro leads to assembly inhibition and rapid depolymerization, Biochemistry 31:310–316.

    Article  PubMed  CAS  Google Scholar 

  • Schatz, P. J., Solomon, F., and Botstein, D., 1986, Genetically essential and nonessential α-tubulin genes specify functionally interchangeable proteins, Mol. Cell Biol. 6:3722–3733.

    PubMed  CAS  Google Scholar 

  • Schatz, P. J., Georges, G. E., Solomon, F., and Botstein, D., 1987, Insertions of up to 17 amino acids into a region of a-tubulin do not disrupt function in vivo, Mol. Cell Biol. 7:3799–3805.

    PubMed  CAS  Google Scholar 

  • Schulze, E., Asai, D. J., Bulinski, J. C., and Kirschner, M., 1987, Posttranslational modification and microtubule stability, J. Cell Biol. 105:2167–2177.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, L., and Avila, J., 1985, The interaction between subunits in the tubulin dimer, Biochem. J. 230:551–556.

    PubMed  CAS  Google Scholar 

  • Serrano, L., and Avila, J., 1990, Structure and function of tubulin regions, in Microtubule Proteins (J. Avila, ed.), pp. 67–88, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Serrano, L., Avila, J., and Maccioni, R. B., 1984a, Controlled proteolysis of tubulin by subtilisin: Location of the site for MAP2 interaction, Biochemistry 23:4675–4681.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, L., de la Torre, J., Maccioni, R. B., and Avila, J., 1984b, Involvement of the carboxylterminal domain of tubulin in the regulation of its assembly, Proc. Natl. Acad. Sci. USA 81:5989–5993.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, L., Valencia, A., Caballero, R., and Avila, J., 1986, Localization of the high affinity calcium-binding site on tubulin molecule, J. Biol. Chem. 261:7076–7081.

    PubMed  CAS  Google Scholar 

  • Serrano, L., Wandosell, F., de la Torre, J., and Avila, J., 1988, Effect of specific proteolytic cleavages on tubulin polymer formation, Biochem. J. 252:683–691.

    PubMed  CAS  Google Scholar 

  • Shivanna, B. D., Mejillano, M. R., Williams, T. D., and Himes, R. H., 1993, Exchangeable GTP binding site of β-tubulin: Identification of cysteine 12 as the major site of cross-linking by direct photoaffinity labeling, J. Biol. Chem. 268:127–132.

    PubMed  CAS  Google Scholar 

  • Siflow, C. D., 1991, Why do tubulin gene families lack diversity in flagellate/ciliate protists? Protoplasma 164:9–11.

    Article  Google Scholar 

  • Siflow, C. D., Oppenheimer, D. G., Kopczak, S. D., Ploense, S. E., Ludwig, S. R., Haas, N., and Snustad, D. P., 1987, Plant tubulin genes: structure and differential expression during development, Dev. Genet. 8:435–460.

    Article  Google Scholar 

  • Sioussat, T. M., and Boekelheide, K., 1989, Selection of a nucleation-promoting element following chemical modification of tubulin, Biochemistry 28:4435–4443.

    Article  PubMed  CAS  Google Scholar 

  • Skoufias, D. A., and Scholey, J. M., 1993, Cytoplasmic microtubule-based motor proteins, Curr. Opin. Cell Biol. 5:95–104.

    Article  PubMed  CAS  Google Scholar 

  • Slautterback, D. B., 1963, Cytoplasmic microtubules. I. Hydra, J. Cell Biol. 18:367–388.

    Article  PubMed  CAS  Google Scholar 

  • Somers, M., Engelborghs, Y., and Baert, J., 1990, Analysis of the binding of glyceraldehyde-3-phosphate dehydrogenase to microtubules, the mechanism of bundle formation and the linkage effect, Eur. J. Biochem. 193:437–444.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, M., 1983, Membrane-bound tubulin in human platelets, Biochim. Biophys. Acta 729:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, T., Evans, L., and Kirschner, M., 1991, Gamma-tubulin is a highly conserved component of the centrosome, Cell 65:825–836.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, R. E., 1981, Chemical differences distinguish ciliary membrane and axonemal tubulins, Biochemistry 20:4716–4723.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, R. E., 1986, Membrane tubulin, Biol. Cell 57:95–110.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, R. E., 1991, Tubulin in sea urchin embryonic cilia: characterization of the membrane-periaxonemal matrix, J. Cell Sci. 100:521–531.

    PubMed  CAS  Google Scholar 

  • Sternlicht, H., Yaffe, M. B., and Farr, G. W., 1987, A model of the nucleotide-binding site in tubulin, FEBS Lett. 214:226–235.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, R. J., Farrell, K. W, and Wilson, L., 1990, Role of GTP hydrolysis in microtubule polymerization: Evidence for a coupled hydrolysis mechanism, Biochemistry 29:6489–6498.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, K. F., 1988, Structure and utilization of tubulin isotypes, Annu. Rev. Cell. Biol. 4:687–716.

    Article  PubMed  CAS  Google Scholar 

  • Suprenant, K. A., and Rebhun, L. I., 1983, Assembly of unfertilized sea urchin egg tubulin at physiological temperatures, J. Biol. Chem. 258:4518–4525.

    PubMed  CAS  Google Scholar 

  • Szasz, J., Yaffe, M. B., Elzinga, M., Blank, G. S., and Sternlicht, H., 1986, Microtubule assembly is dependent on a cluster of basic residues in a-tubulin, Biochemistry 25:4572–4582.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, W. C., 1982, The cyclic tyrosination/detyrosination of alpha tubulin, Methods Cell Biol. 24:235–255.

    Article  PubMed  CAS  Google Scholar 

  • Unger, E., Bohm, K. J., and Vater, W., 1990, Structural diversity and dynamics of microtubules and polymorphic tubulin assemblies, Electron Microscop. Rev. 3:355–395.

    Article  CAS  Google Scholar 

  • Uppuluri, S., Knipling, L., Sackett, D., and Wolff, J., 1993, Location of the colchicine binding site of tubulin, Proc. Natl. Acad. Sci. USA 90:11598–11602.

    Article  PubMed  CAS  Google Scholar 

  • Vera, J., Rivas, C. I., and Maccioni, R. B., 1988, Antibodies to synthetic peptides from the tubulin regulatory domain interact with tubulin and microtubules, Proc. Natl. Acad. Sci. USA 85:6763–6767.

    Article  PubMed  CAS  Google Scholar 

  • Vera, J. C., Rivas, C. I., and Maccioni, R. B., 1989, Biochemical dissection of the role of the one-kilodalton carboxyl-terminal moiety of tubulin in its assembly into microtubules, Biochemistry 28:333–339.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, D. G., Margolis, R. L., and Mottet, N. K., 1985, The effects of methyl mercury binding to microtubules, Toxicol. Appl. Pharmacol. 80:473–486.

    Article  PubMed  CAS  Google Scholar 

  • Wade, R. H., and Chretien, D., 1993, Cryoelectron microscopy of microtubules, J. Struct. Biol. 110:1–27.

    Article  PubMed  CAS  Google Scholar 

  • Walker, R. A., and Sheetz, M. P., 1993, Cytoplasmic microtubule-associated motors, Annu. Rev. Biochem. 62:429–451.

    Article  PubMed  CAS  Google Scholar 

  • Wallin, M., Deinum, J., and Friden, B., 1985, Interaction of estramustine phosphate with microtubule-associated proteins, FEBS Lett. 179:289–293.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J. L., Keith, T. J., and Knull, H. R., 1989, Glycolytic enzyme interactions with tubulin and microtubules, Biochim. Biophys. Acta 999:64–70.

    Article  PubMed  CAS  Google Scholar 

  • Wandosell, F., Serrano, L., and Avila, J., 1987, Phosphorylation of tubulin carboxy terminal tyrosine prevents its incorporation into microtubules, J. Biol. Chem. 262:8268–8273.

    PubMed  CAS  Google Scholar 

  • Wang, N., and Rasenick, M. M., 1991, Tubulin-G protein interactions involve microtubule polymerization domains, Biochemistry 30:10957–10965.

    Article  PubMed  CAS  Google Scholar 

  • Webster, D. R., and Borisy, G. G., 1989, Microtubules are acetylated in domains that turn over slowly, J. Cell Sci. 92:57–65.

    PubMed  Google Scholar 

  • Webster, D. R., Wehland, J., Weber, K., and Borisy, G. G., 1990, Detyrosination of alpha tubulin does not stabilize microtubules in vivo, J. Cell Biol. 111:113–132.

    Article  PubMed  CAS  Google Scholar 

  • Wehland, J., Schroder, H. C., and Weber, K., 1984, Amino acid sequence requirements in the epitope recognized by the a-tubulin specific rat monoclonal antibody YL 1/2, EMBO J. 3:1295–1300.

    PubMed  CAS  Google Scholar 

  • Weisenberg, R. C., Deery, W. J., and Dickinson, P. J., 1976, Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubule, Biochemistry 15:4248–4254.

    Article  PubMed  CAS  Google Scholar 

  • White, E. A., Burton, P. R., and Himes, R. H., 1987, Polymorphic assembly of subtilisin-cleaved tubulin, Cell Motil. Cytoskel. 7:31–38.

    Article  CAS  Google Scholar 

  • Wilson, L., and Friedkin, M., 1967, The biochemical events of mitosis. II. The in vivo and in vitro binding of colchicine in grasshopper embryos and its possible relation to inhibition of mitosis, Biochemistry 6:3126–3135.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J., and Knipling, L., 1993, The antimicrotubule properties of benzophenanthridine alkaloids, Biochemistry 32:13334–13339.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J., Knipling, L., Cahnmann, H. J., and Palumbo, G., 1991, Direct photoaffinity labeling of tubulin with colchicine, Proc. Natl. Acad. Sci. USA 88:2820–2824.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J., Hwang, J., Sackett, D. L., and Knipling, L., 1992, Colchicine photosensitizes tubulin dimerization, Biochemistry 31:3935–3940.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Jung, M. K., and Oakley, B. R., 1991, Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome, Cell 65:817–823.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, R. P., Oskarsson, ML, Paules, R. S., Schulz, N., Cleveland, D., and Vande Woude, G. F., 1991, Ability of the c-mos product to associate with and phosphorylate tubulin, Science 251:671–675.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, S. B., and Minton, A., 1993, Macromolecular crowding: biochemical, biophysical, and physiological consequences, Annu. Rev. Biophys. Biomol. Struct. 22:27–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sackett, D.L. (1995). Structure and Function in the Tubulin Dimer and the Role of the Acidic Carboxyl Terminus. In: Biswas, B.B., Roy, S. (eds) Proteins: Structure, Function, and Engineering. Subcellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1727-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1727-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1729-4

  • Online ISBN: 978-1-4899-1727-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics