Skip to main content

Differential Scanning Calorimetry of Proteins

  • Chapter
Proteins: Structure, Function, and Engineering

Part of the book series: Subcellular Biochemistry ((SCBI,volume 24))

Abstract

Differential scanning calorimetry (DSC) is a powerful technique to characterize temperature-induced conformational changes in proteins and other biological macromolecules. In fact, DSC studies on protein thermal denaturation have played a central role in the development of current views about the factors that determine protein stability. Reviews on the various aspects of this technique are available in the literature (see, for instance, Privalov, 1979, 1982, 1989; Mateo, 1984; Sturtevant, 1987; Sanchez-Ruiz and Mateo, 1987; Freire et al., 1990) and, consequently, this chapter will mainly focus on recent developments in the field. The relevant features of the DSC experiment and the preliminary data analysis will be outlined in this section, and the well-known equilibrium thermodynamics procedures for the analysis of the DSC profiles will be briefly summarized in Section 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arriaga, P., Menendez, M., Villacorta, J. M., and Laynez, J., 1992, Differential scanning calorimetric study of the thermal unfolding of β-lactamase I from Bacillus cereus. Biochemistry 31:6603–6607.

    PubMed  CAS  Google Scholar 

  • Azuaga, A. I., Galisteo, M. L., Mayorga, O. L., Cortijo, M., and Mateo, P. L., 1992, Heat and cold denaturation of β-Iactoglobulin B, FEBS Lett. 309:258–260.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. L., 1986, Temperature dependence of the hydrophobic interaction in protein folding, Proc. Natl. Acad. Sci. USA 83:8069–8072.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. L., and Muller, N., 1992, Relation between the convergence temperatures T*h, and T*s in protein unfolding, Proc. Natl. Acad. Sci. USA 89:7110–7113.

    PubMed  CAS  Google Scholar 

  • Becktel, W. J., and Schellman, J. A., 1987, Protein stability curves, Biopolymers 26:1859–1877.

    PubMed  CAS  Google Scholar 

  • Bolen, D. W., and Santoro, M. M., 1988, Unfolding free energy determined by the linear extrapolation method. 2. Incorporation of ΔG°N-U values in a thermodynamic cycle, Biochemistry 27:8069–8074.

    PubMed  CAS  Google Scholar 

  • Brandts, J. F., and Lin, L-N., 1990, Study of strong to ultratight protein interactions using differential scanning calorimetry, Biochemistry 29:6927–6940.

    PubMed  CAS  Google Scholar 

  • Brandts, J. F., Hu, C. Q., and Lin, L-N., 1989, A simple model for proteins with interacting domains. Applications to scanning calorimetry data, Biochemistry 28:8588–8596.

    PubMed  CAS  Google Scholar 

  • Chen, B., and Schellman, J. A., 1989, Low-temperature unfolding of a mutant of phage T4 lysozyme. 1. Equilibrium studies, Biochemistry 28:685–691.

    PubMed  CAS  Google Scholar 

  • Chen, B., Baase, W. A., and Schellman, J. A., 1989, Low temperature unfolding of a mutant of phage T4 lysozyme. 2. Kinetic investigations. Biochemistry 28:691–699.

    PubMed  CAS  Google Scholar 

  • Chen, B., Baase, W. A., Nicholson, H., and Schellman, J. A., 1992, Folding kinetics of T4 lysozyme and nine mutants at 12°C, Biochemistry 31:1464–1476.

    PubMed  CAS  Google Scholar 

  • Chothia, C., 1976, The nature of the accessible and buried surfaces in proteins, J. Mol. Biol. 105:1–14.

    PubMed  CAS  Google Scholar 

  • Conejero-Lara, F., Mateo, P. L., Aviles, F. X., and Sanchez-Ruiz, J. M. 1991a, Effect of Zn2+ on the thermal denaturation of carboxypeptidase B, Biochemistry 30:2067–2072.

    PubMed  CAS  Google Scholar 

  • Conejero-Lara, F., Sanchez-Ruiz, J. M., Mateo, P. L., Burgos, F. J., Vendrell, J., and Aviles, F. X., 1991b, Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain, Eur. J. Biochem. 220:663–670.

    Google Scholar 

  • Creighton, T. E., 1990, Protein folding, Biochem. J. 270:1–16.

    PubMed  CAS  Google Scholar 

  • Dill, K. A., 1985, Theory for the folding and stability of globular proteins, Biochemistry 24:1501–1509.

    PubMed  CAS  Google Scholar 

  • Dill, K. A., 1990, Dominant forces in protein folding. Biochemistry 29:7133–7155.

    PubMed  CAS  Google Scholar 

  • Dill, K. A., and Shortle, D., 1991, Denatured states of proteins, Annu. Rev. Biochem. 60:795–825.

    PubMed  CAS  Google Scholar 

  • Doig, A. J., and Williams, D. H., 1992, Why water-soluble, compact, globular proteins have similar specific enthalpies of unfolding at 110°C, Biochemistry 31:9371–9375.

    PubMed  CAS  Google Scholar 

  • Filimonov, V. V., Matveyev, S. V., Potekhin, S. A., and Privalov, P. L., 1982, Thermodynamic analysis of scanning microcalorimetric data, Mol. Biol. 16:551–562.

    CAS  Google Scholar 

  • Fischer, G., and Schmid, F. X., 1990, The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry 29:2205–2212.

    PubMed  CAS  Google Scholar 

  • Freire, E., and Biltonen, R. L., 1978, Statistical mechanical deconvolution of thermal transitions in macromolecules. I. Theory and applications to homogeneous systems, Biopolymers 17:463–479.

    CAS  Google Scholar 

  • Freire, E., and Murphy, K. P., 1991, The molecular basis of co-operativity in protein folding, J. Mol. Biol. 222:687–698.

    PubMed  CAS  Google Scholar 

  • Freire, E., van Osdol, W. W., Mayorga, O. L., and Sanchez-Ruiz, J. ML, 1990, Calorimetrically determined dynamics of complex unfolding transitions in proteins, Annu. Rev. Biophys. Biophys. Chem. 19:159–188.

    PubMed  CAS  Google Scholar 

  • Freire, E., Murphy, K. P., Sanchez-Ruiz, J. M., Galisteo, M. L., and Privalov, P. L., 1992, The molecular basis of co-operativity in protein folding. Thermodynamic dissection of interdomain interactions in phosphoglycerate kinase, Biochemistry 31:250–256.

    PubMed  CAS  Google Scholar 

  • Fu, L., and Freire, E., 1992, On the origin of the enthalpy and entropy convergence temperatures in protein folding. Proc. Natl. Acad. Sci. USA 89:9335–9338.

    PubMed  CAS  Google Scholar 

  • Galisteo, M. L., and Sanchez-Ruiz, J. M., 1993, Kinetic study into the irreversible thermal denaturation of bacteriorhodopsin, Eur. Biophys. J. 22:25–30.

    CAS  Google Scholar 

  • Galisteo, M. L., Mateo, P. L., and Sanchez-Ruiz, J. M., 1991, Kinetic study on the irreversible thermal denaturation of yeast phosphoglycerate kinase, Biochemistry 30:2061–2066.

    PubMed  CAS  Google Scholar 

  • Gill, S. J., Richey, B., Bishop, G., and Wyman, J., 1985, Generalized binding phenomena in an allosteric macromolecule, Biophys. Chem. 21:1–14.

    PubMed  CAS  Google Scholar 

  • Goins, B., and Freire, E., 1988, Thermal stability and intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside G MI, Biochemistry 27:2046–2052.

    PubMed  CAS  Google Scholar 

  • Green, S. M., Meeker, A. K., and Shortle, D., 1992, Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: Evidence for mutational effects on the free energy of the denatured state, Biochemistry 31:5717–5728.

    PubMed  CAS  Google Scholar 

  • Griko, Yu. V., and Privalov, P. L., 1992, Calorimetric study of the heat and cold denaturation of β-lactoglobulin. Biochemistry 31:8810–8815.

    PubMed  CAS  Google Scholar 

  • Griko, Yu. V., Privalov, P. L., Sturtevant, J. M., and Venyamov, S. Yu., 1988a. Cold denaturation of staphylococcal nuclease, Proc. Natl. Acad. Sci. USA 85:3343–3347.

    PubMed  CAS  Google Scholar 

  • Griko, Yu. V., Privalov, P. L., Venyamov, S. Yu., and Kutishenko, V. P., 1988b, Thermodynamic study of the apomyoglobin structure, J. Mol. Biol. 202:128–138.

    Google Scholar 

  • Griko, Yu. V., Venyamov, S. Yu., and Privalov, P. L., 1989, Heat and cold denaturation of phosphoglycerate kinase (interaction of domains), FEBS Lett. 244:276–278.

    PubMed  CAS  Google Scholar 

  • Guzman-Casado, M., Parody-Morreale, A., Mateo, P. L., and Sanchez-Ruiz, J. M., 1990, Differential scanning calorimetry of lobster hemocyanin, Eur. J. Biochem. 188:181–185.

    PubMed  CAS  Google Scholar 

  • Hernandez-Arana, A., Rojo-Dominguez, A., Altamirano, M. M., and Calcagno, M. L., 1993, Differential scanning calorimetry of the irreversible denaturation of Escherichia coli glucosamine-6-phosphate deaminase, Biochemistry 32:3644–3648.

    PubMed  CAS  Google Scholar 

  • Honig, B., Sharp, K., and Yang, A-S., 1993, Macroscopic models of aqueous solutions: Biological and chemical applications, J. Phys. Chem. 97:1101–1109.

    CAS  Google Scholar 

  • Hu, C-Q., Sturtevant, J. M., Thomson, J. A., Erickson, R. E., and Pace, C. N., 1992, Thermodynamics of ribonuclease T1 denaturation. Biochemistry 31:4876–4882.

    PubMed  CAS  Google Scholar 

  • Jencks, W. P., 1987, Catalysis in Chemistry and Enzymology, Dover Publications Inc., New York.

    Google Scholar 

  • Klibanov, A. M., and Ahern, T. J., 1987, Thermal stability of proteins, in Protein Engineering (D. L. Oxender and C. F. Fox, eds.), pp. 213–218, Alan R. Liss, New York.

    Google Scholar 

  • Krishnan, K. S., and Brandts, J. F., 1978, Scanning calorimetry. Methods Enzymol. 49:3–14.

    CAS  Google Scholar 

  • Lee, B., 1991, Isoenthalpic and isoentropic temperatures and the thermodynamics of protein denaturaiton, Proc. Natl. Acad. Sci. USA 88:5154–5158.

    PubMed  CAS  Google Scholar 

  • Lee, B., and Richards, F. M., 1971, The interpretation of protein structures: estimation of static accessibility, J. Mol. Biol. 55:379–400.

    PubMed  CAS  Google Scholar 

  • Lepock, J. R., Rodhal, A. ML, Zhang, M. L., Heynen, M. L., Waters, B., and Cheng, K. H., 1990, Thermal denaturation of the Ca2+-ATPase of sarcoplasmic reticulum reveals two thermodynamically independent domains, Biochemistry 29:681–689.

    PubMed  CAS  Google Scholar 

  • Lepock, J. R., Ritchie, K. P., Kolios, M. C, Rodahl, A. M., Heinz, K. A., and Kruuv, J., 1992, Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation, Biochemistry 31:12706–12712.

    PubMed  CAS  Google Scholar 

  • Lopez-Mayorga, O., and Freire, E., 1987, Dynamic analysis of differential scanning calorimetry data, Biophys. Chem. 87:87–96.

    Google Scholar 

  • Lumry, R., and Eyring, E., 1954, Conformation changes of proteins, J. Phys. Chem. 58:110–120.

    CAS  Google Scholar 

  • Makhatadze, G. I., and Privalov, P. L., 1990, Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: Hydration effect, J. Mol. Biol. 213:375–384.

    PubMed  CAS  Google Scholar 

  • Makhatadze, G. I., and Privalov, P. L., 1993, Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration, J. Mol. Biol. 232:639–659.

    PubMed  CAS  Google Scholar 

  • Manly, S. P., Matthews, K. S., and Sturtevant, J. M., 1985, Thermal denaturation of the core protein of the lac repressor, Biochemistry 24:3842–3846.

    PubMed  CAS  Google Scholar 

  • Mateo, P. L., 1984, Differential scanning calorimetry of protein solutions, in Thermochemistry and Its Applications to Chemical and Biochemical Systems (R. da Silva, ed.), pp. 541–568, Reidel, Dordrecht.

    Google Scholar 

  • Matouschek, A., Kellis, J. T., Serrano, L., and Fersht, A. R., 1989, Mapping the transition state and pathway of protein folding by protein engineering, Nature 340:122–126.

    PubMed  CAS  Google Scholar 

  • Merabet, E. K., Walker, M. C., Yuen, H. K., and Sikorski, J. A., 1993, Differential scanning calorimetric study of 5-enolpyruvoil shikimate-3-phosphate synthase and its complexes with shikimate-3-phosphate and glyphosate: Irreversible thermal transitions, Biochim. Biophys. Acta 1161:272–278.

    PubMed  CAS  Google Scholar 

  • Morin, P. E., Diggs, D., and Freire, E., 1990, Thermal stability of membrane-reconstituted yeast cytochrome c oxidase. Biochemistry 29:781–788.

    PubMed  CAS  Google Scholar 

  • Murphy, K. P., and Freire, E., 1992, Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv. Prot. Chem. 43:313–361.

    CAS  Google Scholar 

  • Murphy, K. P., and Gill, S. J., 1990, Group additivity thermodynamics for dissolution of solid cyclic dipeptides in water, Thermochim. Acta 172:11–20.

    CAS  Google Scholar 

  • Murphy, K. P., and Gill, S. J., 1991, Solid model compounds and the thermodynamics of protein unfolding, J. Mol. Biol. 222:699–709.

    PubMed  CAS  Google Scholar 

  • Murphy, K. P., Privalov, P. L., and Gill, S. J., 1990, Common features of protein unfolding and dissolution of hydrophobic compounds. Science 247:559–561.

    PubMed  CAS  Google Scholar 

  • Murphy, K. P., Bhakuni, V., Xie, D., and Freire, E., 1992, Molecular basis of co-operativity in protein folding. III. Structural identification of cooperative folding units and folding intermediates, J. Mol. Biol. 227:293–306.

    PubMed  CAS  Google Scholar 

  • Novokhatny, V. V., Kudinov, S. A., and Privalov, P. L., 1984, Domains in human plasminogen, J. Mol. Biol. 179:215–232.

    PubMed  CAS  Google Scholar 

  • Pace, C. N., 1992, Contribution of the hydrophobic effect to globular protein stability. J. Mol. Biol. 226:29–35.

    PubMed  CAS  Google Scholar 

  • Pace, C. N., and Laurents, D. V., 1989, A new method for determining the heat capacity change for protein folding, Biochemistry 28:2520–2525.

    PubMed  CAS  Google Scholar 

  • Pantoliano, M. W., Withlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., and Bryan, P. N., 1989, Large increases in general stability for subtilisin BPN’ through incremental changes in the free energy of unfolding, Biochemistry 28:7205–7213.

    PubMed  CAS  Google Scholar 

  • Plaza del Pino, I. M., Pace, C. N., and Freire, E., 1992, Temperature and guanidine hydrochloride dependence of the structural stability of ribonuclease T, Biochemistry 31:11196–11202.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., 1979, Stability of proteins. Small globular proteins, Adv. Prot. Chem. 33:167–241.

    CAS  Google Scholar 

  • Privalov, P. L., 1980, Scanning microcalorimeters for studying macromolecules, Pure Appl. Chem. 52:479–497.

    CAS  Google Scholar 

  • Privalov, P. L., 1982, Stability of proteins. Proteins which do not present a single cooperative system. Adv. Prot. Chem. 35:1–104.

    CAS  Google Scholar 

  • Privalov, P. L., 1989, Thermodynamic problems of protein structure, Anna. Rev. Biophys. Biophys. Chem. 18:47–69.

    CAS  Google Scholar 

  • Privalov, P. L., 1990, Cold denaturation of proteins, Crit. Rev. Biochem. Mol. Biol. 25:281–306.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., and Gill, S. J., 1988, Stability of protein structure and hydrophobic interaction, Adv. Prot. Chem. 39:191–234.

    CAS  Google Scholar 

  • Privalov, P. L., and Khechinashvili, N. N., 1974, A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study, J. Mol. Biol. 86:665–684.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., and Makhatadze, G. I., 1990, Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects, J. Mol. Biol. 213:385–391.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., and Makhatadze, G. I., 1992, Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding, J. Mol. Biol. 224:715–723.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., and Makhatadze, G. I., 1993, Contribution of hydration to protein folding thermodynamics. II. The entropy of Gibbs energy of hydration. J. Mol. Biol. 232:660–679.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., Plotnikov, V. V., and Filimonov, V. V., 1975, Precision scanning microcalorimeter for the study of liquids, J. Chem. Thermodyn. 7:41–47.

    CAS  Google Scholar 

  • Privalov, P. L., Griko, Yu. V., Venyamov, S. Yu., and Kutyshenko, V. P., 1986, Cold denaturation of myoglobin, J. Mol. Biol. 190:487–498.

    PubMed  CAS  Google Scholar 

  • Privalov, P. L., Tiktopulo, E. I., Venyaminov, S. Y., Griko, Y. V., Makhatadze, G. I., and Khechinashvili, N. N., 1989, Heat capacity and conformation of proteins in the denatured state, J. Mol. Biol. 205:737–750.

    PubMed  CAS  Google Scholar 

  • Ramsay, G., and Freire, E., 1990, Linked thermal and solute perturbation analysis of cooperative domains interactions in proteins. Structural stability of diphteria toxin, Biochemistry 29:8677–8683.

    PubMed  CAS  Google Scholar 

  • Robert, C. H., Gill, S. J., and Wyman, J., 1988, Quantitative analysis of linkage in macromolecules when one ligand is present in limited total quantity. Biochemistry 27:6829–6835.

    PubMed  CAS  Google Scholar 

  • Sanchez-Ruiz, J. M., 1992, Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry, Biophys. J. 61:921–935.

    PubMed  CAS  Google Scholar 

  • Sanchez-Ruiz, J. M., and Mateo, P. L., 1987, Differential scanning calorimetry of membrane proteins. Cell Biol. Rev. 11:15–45.

    CAS  Google Scholar 

  • Sanchez-Ruiz, J. M., Lopez-Lacomba, J. L., Cortijo, M., and Mateo, P. L., 1988a, Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27:1648–1652.

    PubMed  CAS  Google Scholar 

  • Sanchez-Ruiz, J. M., Lopez-Lacomba, J. L., Mateo, P. L., Vilanova, M., Serra, M. A., and Aviles, F. X., 1988b, Analysis of the thermal unfolding of porcine procarboxypeptidase A and its functional pieces by differential scanning calorimetry, Eur. J. Biochem. 176:225–230.

    PubMed  CAS  Google Scholar 

  • Santoro, M. M., and Bolen, D. W., 1988, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants. Biochemistry 27:8063–8068.

    PubMed  CAS  Google Scholar 

  • Schellman, J. A., 1987, The thermodynamic stability of proteins, Annu. Rev. Biophys. Chem. 16:115–137.

    CAS  Google Scholar 

  • Scholtz, J. M., Marqusee, S., Baldwin, R. L., York, E. J., Stewart, J. M., Santoro, M., and Bolen, D. W., 1991, Calorimetric determination of the enthalpy change for the α-helix to coil transition of an alanine peptide in water, Proc. Natl. Acad. Sci. USA 88:2854–2858.

    PubMed  CAS  Google Scholar 

  • Shirley, B. A., Stanssens, P., Hahn, U., and Pace, C. N., 1992, Contribution of hydrogen bonding to the conformational stability of ribonuclease T1, Biochemistry 31:725–732.

    PubMed  CAS  Google Scholar 

  • Shortle, D., 1993, Denatured states of proteins and their roles in folding and stability, Curr. Opin. Struc. Biol. 3:66–74.

    CAS  Google Scholar 

  • Shortle, D., Stites, W. E., and Meeker, A. K., 1990, Contributions of large hydrophobic amino acids to the stability of staphylococal nuclease, Biochemistry 29:8033–8041.

    PubMed  CAS  Google Scholar 

  • Shortle, D., Chan, H. S., and Dill, K., 1992, Modeling the effects of mutations on the denatured states of proteins, Protein Sci. 1:201–215.

    PubMed  CAS  Google Scholar 

  • Shrake, A., and Rupley, J. A., 1973, Environment and exposure to solvent of protein atoms. Lysozyme and insuline, J. Mol. Biol. 79:351–372.

    PubMed  CAS  Google Scholar 

  • Spolar, R. S., Livingstone, J. R., and Record, M. T., 1992, Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of non-polar and polar surface from water. Biochemistry 31:3947–3955.

    PubMed  CAS  Google Scholar 

  • Stearman, R. S., Frankel, A. D., Freire, E., Liu, B., and Pabo, C. O., 1988, Combining thermostable mutations increases the stability of λ repressor, Biochemistry 27:7571–7574.

    PubMed  CAS  Google Scholar 

  • Sturtevant, J. M., 1977, Heat capacity and entropy changes in processes involving proteins, Proc. Natl. Acad. Sci. USA 74:2236–2240.

    PubMed  CAS  Google Scholar 

  • Sturtevant, J. M., 1987, Biochemical applications of differential scanning calorimetry, Annu. Rev. Phys. Chem. 38:463–488.

    CAS  Google Scholar 

  • Takahashi, K., and Sturtevant, J. M., 1981, Thermal denaturation of Streptomyces subtilisin inhibitor, subtilisin BPN′, and the inhibitor-subtilisin complex. Biochemistry 20:6185–6190.

    PubMed  CAS  Google Scholar 

  • Tamura, A., Kimura, K., Takahara, H., and Akasaka, K., 1991, Cold denaturation and heat denaturation of Streptomyces subtilisin inhibitor. 1. CD and DSC studies, Biochemistry 30:11307–11313.

    PubMed  CAS  Google Scholar 

  • Wyman, J., and Gill, S. J., 1990, Binding and Linkage. Functional Chemistry of Biological Macro-molecules, University Science Books, Mill Valley, California.

    Google Scholar 

  • Xie, D., Bhakuni, V., and Freire, E., 1991, Calorimetric determination of the energetics of the molten globule intermediate in protein folding: Apo-α-lactalbumin, Biochemistry 30:10673–10678.

    PubMed  CAS  Google Scholar 

  • Yang, A-S., Sharp, K. A., and Honig, B., 1992, Analysis of the heat capacity dependence of protein folding, J. Mol. Biol. 227:889–900.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanchez-Ruiz, J.M. (1995). Differential Scanning Calorimetry of Proteins. In: Biswas, B.B., Roy, S. (eds) Proteins: Structure, Function, and Engineering. Subcellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1727-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1727-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1729-4

  • Online ISBN: 978-1-4899-1727-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics