Skip to main content

Raman Spectroscopy of Proteins and Their Assemblies

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 24))

Abstract

Laser Raman spectroscopy, like infrared spectroscopy, is a method for determining molecular structure by measuring the energies (frequencies) of molecular vibrations. Although the two methods differ fundamentally in the mechanisms of interaction between radiation and matter, one obtains in both cases a vibrational spectrum consisting of a number of discrete bands, the frequencies and intensities of which are determined by the nuclear masses in motion, the equilibrium molecular geometry, and the molecular force field. An important advantage of Raman over infrared spectroscopy for biological applications is the virtual transparency of water (both H2O and D2O) in the Raman effect. This greatly simplifies the analysis of aqueous solutions and facilitates the investigation of hydrogen-isotope exchange phenomena. Changes in molecular geometry—particularly the conformational transitions characteristic of biological macromolecules—can produce large shifts in Raman band positions, often referred to as frequency shifts, empowering the technique in the diagnosis of protein secondary structure, determination of side-chain configurations, and detection of interacting side-chain groups. Since the molecular geometry and force field may be sensitive to interactions between molecules, the Raman method also has the potential for investigating intermolecular interactions, including the formation of biologically important protein complexes. Raman spectroscopy is gaining wide use as a method for probing protein structure, dynamics, assembly, and recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, J. B., Ros, M., Raap, J., Lugtenburg, J., and Mathies, R. A., 1992, Time-resolved ultraviolet resonance Raman studies of protein structure: Application to bacteriorhodopsin, Biochemistry 31:5328–5334.

    Article  PubMed  CAS  Google Scholar 

  • Asher, S. A., 1993, UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry, Parts I and II, Anal. Chem. 65:59A-66A, 201A–210A.

    PubMed  CAS  Google Scholar 

  • Aubrey, K. L., and Thomas, G. J., Jr., 1991, Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, fl) incorporating specifically-deuterated alanine and tryptophan side chains, Biophys. J. 60:1337–1349.

    Article  PubMed  CAS  Google Scholar 

  • Austin, J. C., Jordan, T., and Spiro, T. G., 1993, Ultraviolet resonance Raman studies of proteins and related model compounds, in Advances in Spectroscopy, Vol. 20, Part A (R. J. H. Clark and R. E. Hester, eds.), pp. 55–127, Wiley, New York.

    Google Scholar 

  • Bamford, J. K. H., Bamford, D. H., Li, T., and Thomas, G. J., Jr., 1993, Structural studies of the enveloped dsRNA bacteriophage ϕ6 of Pseudomonas syringae by Raman spectroscopy: II. Nucleocapsid structure and thermostability of the virion, nucleocapsid and polymerase complex, J. Mol. Biol. 230:473–482.

    Article  PubMed  CAS  Google Scholar 

  • Bandekar, J., 1992. Amide modes and protein conformation, Biochim. Biophys. Acta 1120:123–143.

    Article  PubMed  CAS  Google Scholar 

  • Benevides, J. M., Tsuboi, M., Wang, A. H.-J., and Thomas, G. J., Jr., 1993, Local Raman tensors of double-helical DNA in the crystal: A basis for determining DNA residue orientations, J. Am. Chem. Soc. 115:5351–5359.

    Article  CAS  Google Scholar 

  • Braiman, M. S., Mogi, T. Stern, L. J., Khorana, H. G., and Rothschild, K. J., 1988, Vibrational spectroscopy of bacteriorhodopsin mutants, Proteins: Struct. Fund. Genet. 3:219–229.

    Article  CAS  Google Scholar 

  • Carey, P. R., 1982, Biochemical Applications of Raman and Resonance Raman Spectroscopies. Academic Press, London.

    Google Scholar 

  • Chiou, S-H., Lee, B-S., and Yu. N-T., 1992, Structural analysis and comparison of cobrotoxin and cardiotoxins by near-IR Fourier transform Raman spectroscopy, Biochem. Int. 26:747–758.

    PubMed  CAS  Google Scholar 

  • Copeland, R. A., and Spiro, T. G., 1986, Ultraviolet Raman hypochromism of the tropomyosin amide modes: A new method for estimating α-helical content in proteins, J. Am. Chem. Soc. 108:1281–1285.

    Article  CAS  Google Scholar 

  • Englander, S. W., and Kallenbach, N. R., 1984, Hydrogen exchange and structural dynamics of proteins and nucleic acids, Q. Rev. Biophys. 4:521–655.

    Google Scholar 

  • Englander, S. W., and Mayne, L., 1992, Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR, Annu. Rev. Biophys. Biomol. Struct. 21:243–265.

    Article  PubMed  CAS  Google Scholar 

  • Greve, J., and Puppels, G. J., 1993, Raman microspectroscopy of single whole cells, in Advances in Spectroscopy, Vol. 20, Part A (R. J. H. Clark and R. E. Hester eds.). pp. 231–265, Wiley, New York.

    Google Scholar 

  • Harada, I., and Takeuchi, H., 1986, Raman and ultraviolet resonance Raman spectra of proteins and related compounds, in Advances in Spectroscopy, Vol. 13 (R. J. H. Clark and R. E. Hester, eds.), pp. 113–175, Wiley, New York.

    Google Scholar 

  • Harada, I., Takamatsu, T., Tasumi, M., and Lord, R. C, 1982, Raman spectroscopic study of the interaction between sulfate anion and an imidazolium ring in ribonuclease A, Biochemistry 21:3674–3677.

    Article  PubMed  CAS  Google Scholar 

  • Harada, I., Miura, T., and Takeuchi, H., 1986, Origin of the doublet at 1360 and 1340 cm−1 in the Raman spectra of tryptophan and related compounds, Spectrochim. Acta 42A:307–312.

    CAS  Google Scholar 

  • Hartman, K. A., and Thomas, G. J., Jr., 1985, The identification, interactions and structure of viruses by Raman spectroscopy, in Instrumental Methods for Rapid Microbiological Analysis (W. H. Nelson ed.), pp. 91–134, VCH Publishers, New York.

    Google Scholar 

  • Hildebrandt, P. G., Copeland, R. A., Spiro, T. G., Otlewski, J., Laskowski, M., Jr., and Prendergast, F. G., 1988, Tyrosine hydrogen-bonding and environmental effects in proteins probed by ultraviolet resonance Raman spectroscopy, Biochemistry 27:5426–5433.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, H., Kamoto, R., Uchida, S., Ishitani, Y, Ozaki, Y, Iriyama, K., Tsukie, E., Shibata, F., Ishihara, F., and Kameda, H., 1987, Raman microprobe and Fourier transform-infrared microsampling studies of the microstructure of gallstones, Appl. Spectrosc. 41:407–412.

    Article  CAS  Google Scholar 

  • Kaminaka, S., and Kitagawa, T., 1992, Time-resolved UV resonance Raman study on Bohr effects of hemoglobin, J. Am. Chem. Soc. 114:3256–3260.

    Article  CAS  Google Scholar 

  • Kaminaka, S., Ogura, T., and Kitagawa, T, 1990, Time-resolved ultraviolet resonance Raman study of the photolysis of carbomonoxyhemoglobin. Relaxation of the globin structure, J. Am. Chem. Soc. 112:23–27.

    Article  CAS  Google Scholar 

  • Kitagawa, T., Azuma, T., and Hamaguchi, K., 1979, The Raman spectra of Bence-Jones proteins. Disulfide stretching frequencies and dependence of Raman intensity of tryptophan residues on their environments, Biopolymers 18:451–465.

    Article  CAS  Google Scholar 

  • Krimm, S., and Bandekar, J., 1986, Vibrational analysis of proteins, Adv. Protein Chem. 3:181–364.

    Article  Google Scholar 

  • Li, H., and Thomas, G. J., Jr., 1991, Cysteine conformation and sulfhydryl interactions in proteins and viruses 1. Correlation of the Raman S-H band with hydrogen bonding and intramolecular geometry in model compounds, J. Am. Chem. Soc. 113:456–462.

    Article  CAS  Google Scholar 

  • Li, H., Wurrey, C. J., and Thomas, G. J., Jr., 1992, Cysteine conformation and sulfhydryl interactions in proteins and viruses. 2. Normal coordinate analysis of the cysteine side chain in model compounds, J. Am. Chem. Soc. 114:7463–7469.

    Article  CAS  Google Scholar 

  • Li, H., Hanson, C., Fuchs, J. A., Woodward, C., and Thomas, G. J., Jr., 1993, Determination of the pKa values of active-center cysteines, cysteines-32 and-35, in E. coli thioredoxin by Raman spectroscopy, Biochemistry 32:5800–5808.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Chen, Z., Johnson, J. E., and Thomas, G. J., Jr., 1990, Structural studies of bean pod mottle virus, capsid and RNA in crystal and solution states by laser Raman spectroscopy. Biochemistry 29:5018–5026.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Bamford, D. H., Bamford, J. K. H., and Thomas, G. J., Jr., 1993a, Structural studies of the enveloped dsRNA bacteriophage ϕ6 of Pseudomonas syringae by Raman spectroscopy: I. The virion and its membrane envelope, J. Mol. Biol. 230:461–472.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Johnson, J. E., and Thomas, G. J., Jr., 1993b, Raman dynamic probe of hydrogen exchange in bean pod mottle virus: Base-specific retardation of exchange in packaged ssRNA, Biophys. J., 65:1963–1972.

    Article  PubMed  CAS  Google Scholar 

  • Miura, T., Takeuchi, H., and Harada, I., 1988, Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry 27:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Miura, T., Takeuchi, H., and Harada, I., 1989, Tryptophan Raman bands sensitive to hydrogen bonding and side-chain conformation, J. Raman Spectrosc. 20:667–671.

    Article  CAS  Google Scholar 

  • Miura, T., Takeuchi, H., and Harada, I., 1991, Raman spectroscopic characterization of tryptophan side chains in lysozyme bound to inhibitors: Role of the hydrophobic box in the enzymatic function. Biochemistry 30:6074–6080.

    Article  PubMed  CAS  Google Scholar 

  • Moënne-Loccoz, P., and Peticolas, W. L., 1992, Ultraviolet resonance Raman evidence for a change of hydrophobicity of the retinal pocket in the M state of bacteriorhodopsin, J. Am. Chem. Soc. 114:5893–5894.

    Article  Google Scholar 

  • Monod, J., Wyman, J., and Changeux, J. P., 1965, Nature of allosteric transitions, J. Mol. Biol. 12:88–118.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, Y., Hirakawa, A. Y., and Tsuboi, M., 1978, Resonance Raman spectroscopy of nucleic acids, in Advances in Infrared and Raman Spectroscopy, Vol. 5 (R. J. H. Clark and R. E. Hester, eds.), pp. 217–275, Heyden, London.

    Google Scholar 

  • Perutz, M. F., Hasnain, S. S., Dukl, P. J., Sessler, J. L., and Hahn, J. E., 1982, Stereochemistry of iron in deoxyhemoglobin, Nature 295:535–538.

    Article  PubMed  CAS  Google Scholar 

  • Prevelige, P. E., Jr., Thomas, D., King, J., Towse, S. A., and Thomas, G. J., Jr., 1990, Conformational states of the bacteriophage P22 capsid subunit in relation to self-assembly, Biochemistry 29:5626–5633.

    Article  PubMed  CAS  Google Scholar 

  • Prevelige, P. E., Thomas, D., Aubrey, K. L., Towse, S. A., and Thomas, G. J., Jr., 1993, Subunit conformational changes accompanying bacteriophage P22 capsid maturation, Biochemistry 32:537–543.

    Article  PubMed  CAS  Google Scholar 

  • Puppels, G. J., de Mul, F. F. M., Otto, C., Greve, J., Robert-Nicoud, M., Arndt-Jovin, D. J., and Jovin, T. M., 1990, Studying single living cells and chromosomes by confocal Raman micro-spectroscopy. Nature 347:301–303.

    Article  PubMed  CAS  Google Scholar 

  • Rath, P., Krebs, M. P., He, Y., Khorana, H. G., and Rothschild, K. J., 1993, Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185 → Phe, Biochemistry 32:2272–2281.

    Article  PubMed  CAS  Google Scholar 

  • Rava, R. P., and Spiro, T. G., 1985, Ultraviolet resonance Raman spectra of insulin and α-lactalbumin with 218-and 200-nm laser excitation, Biochemistry 24:1861–1865.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, K. R., Su, C, Subramaniam, S., and Spiro, T. G., 1992, Hemoglobin R → T structural dynamics from simultaneous monitoring of tyrosine and tryptophan time-resolved UV resonance Raman signals, J. Am. Chem. Soc. 114:3697–3709.

    Article  CAS  Google Scholar 

  • Sargent, D., Benevides, J. M., Yu, M.-H., King, J., and Thomas, G. J., Jr., 1988, Secondary structure and thermostability of the phage P22 tailspike: XX. Analysis by Raman spectroscopy of the wild-type protein and a temperature-sensitive folding mutant, J. Mol. Biol. 199:491–502.

    Article  PubMed  CAS  Google Scholar 

  • Shaanan, B., 1983, Structure of human oxyhemoglobin at 2.1 A resolution, J. Mol. Biol. 171:31–59.

    Article  PubMed  CAS  Google Scholar 

  • Siamwiza, M. N., Lord, R. C., Chen, M. C, Takamatsu, T., Harada, I., Matsuura, H., and Shimanouchi, T., 1975, Interpretation of the doublet at 850 and 830 cm−1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14:4870–4876.

    Article  PubMed  CAS  Google Scholar 

  • Song, S., and Asher, S. A., 1988, Assignment of a new conformation-sensitive UV resonance Raman band in peptides and proteins, J. Am. Chem. Soc. 110:8547–8548.

    Article  CAS  Google Scholar 

  • Song, S., and Asher, S. A., 1989, UV resonance Raman studies of peptide conformation in poly(L-Iysine), poly(L-glutamic acid), and model complexes: The basis for protein secondary structure determinations, J. Am. Chem. Soc. 111:4295–4305.

    Article  CAS  Google Scholar 

  • Su, C., Park, Y. D., Liu, G.-Y., Spiro, T. G., 1989, Hemoglobin quaternary structure change monitored directly by transient UV resonance Raman spectroscopy, J. Am. Chem. Soc. 111:3457–3459.

    Article  CAS  Google Scholar 

  • Sugeta, H., Go, A., and Miyazawa, T., 1972, S-S and C-S stretching vibrations and molecular conformations of dialkyl disulfides and cystine, Chem. Lett. 83–86.

    Google Scholar 

  • Sureau, F., Chinsky, L., Amirand, C., Ballini, J. P., Duquesne, M., Laigle, A., Turpin, P. Y., and Vigny, P., 1990, An ultraviolet micro-Raman spectrometer: Resonance Raman spectroscopy within single living cells, Appl. Spectrosc. 44:1047–1051.

    Article  CAS  Google Scholar 

  • Takesada, H., Nakanishi, M., Hirakawa, A. Y., and Tsuboi, M., 1976, Hydrogen-deuterium exchange of the tryptophan residues in bovine α-lactalbumin, Biopolymers 15:1929–1938.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, H., and Harada, I., 1986, Normal coordinate analysis of the indole ring, Spectrochim. Acta 42A: 1069–1078.

    CAS  Google Scholar 

  • Takeuchi, H., Watanabe, N., and Harada, I., 1988, Vibrational spectra and normal coordinate analysis of p-cresol and its deuterated analogs, Spectrochim. Acta 44A:749–761.

    CAS  Google Scholar 

  • Takeuchi, H., Watanabe, N., Satoh, Y., and Harada, I., 1989, Effects of hydrogen bonding on the tyrosine Raman bands in the 1300-1150 cm−1 region, J. Raman Spectrosc. 20:233–237.

    Article  CAS  Google Scholar 

  • Takeuchi, H., Kimura, Y., Koitabashi, I., and Harada, I., 1991, Raman bands of N-deuterated histidinium as markers of conformation and hydrogen bonding, J. Raman Spectrosc. 22:233–236.

    Article  CAS  Google Scholar 

  • Tasumi, M., Harada, I., Takamatsu, T., and Takahashi, S., 1982, Raman studies on L-histidine and related compounds in aqueous solutions, J. Raman Spectrosc. 12:149–151.

    Article  CAS  Google Scholar 

  • Thomas, G. J., Jr., 1987, Viruses and nucleoproteins, in Biological Applications of Raman Spectros-copy. Vol. 1, Raman Spectra and the Conformations of Biological Macromolecules (T. G. Spiro ed.), pp. 135–201, Wiley-Interscience, London.

    Google Scholar 

  • Thomas, G. J., Jr., and Kyogoku, Y., 1977, Biological science, in Infrared and Raman Spectroscopy, Part C, Practical Spectroscopy Series, Vol. 1 (E. G. Brame, Jr. and J. G. Grasselli eds.), pp. 717–872, Dekker, New York.

    Google Scholar 

  • Thomas, G. J., Jr. and Tsuboi, M., 1993, in Advances in Biophysical Chemistry, Vol. 3 (C. A. Bush ed.), pp. 1–70, JAI Press, Greenwich, CT.

    Google Scholar 

  • Thomas, G. J., Jr., Prescott, B., and Day, L. A., 1983, Structure similarity, difference and variability in the filamentous viruses fd, Ifl, IKe, Pfl, Xf and Pf3, J. Mol. Biol. 165:321–356.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. J., Jr., Prescott, B., Benevides, J. M., and Weiss, M. A., 1986, The N-terminal domain of the lambda repressor: Investigation of secondary structure and tyrosine hydrogen bonding in wild-type and mutant sequences by Raman spectroscopy, Biochemistry 25:6768–6778.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. J., Jr., Prescott, B., and Urry, D. W., 1987, Raman amide bands of type-II β-turns in cyclo-(VPGVG)3 and poly-(VPGVG) and implications for protein secondary structure analysis, Biopolymers 26:921–934.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. J., Jr., Becka, R., Sargent, D., Yu, M.-H., and King, J., 1990, Conformational stability of P22 tailspike proteins carrying temperature-sensitive-folding mutations, Biochemistry 29:4181–4187.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi, M., Ikeda, T., and Ueda, T., 1991a, Raman microscopy of a small uniaxial crystal, J. Raman Spectrosc. 22:619–626.

    Article  CAS  Google Scholar 

  • Tsuboi, M., Kaneuchi, F., Ikeda, T., and Akahane, K., 1991b, Infrared and Raman microscopy of fowl feather barb, Can. J. Chem. 69:1752–1757.

    Article  Google Scholar 

  • Tuma, R., Vohnik, S., Li, H., and Thomas, G. J., Jr., 1993, Cysteine conformation and sulthydryl interations in proteins and viruses. 3. Quantitative Measurement of the Raman S-H band intensity and frequency, Biophys. J., 65:1066–1072.

    Article  PubMed  CAS  Google Scholar 

  • Uchida, K., Harada, I., Nakauchi, Y., and Maruyama, K., 1991, Structural properties of connectin studied by ultraviolet resonance Raman spectroscopy and infrared dichroism, FEBS Lett. 295:35–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miura, T., Thomas, G.J. (1995). Raman Spectroscopy of Proteins and Their Assemblies. In: Biswas, B.B., Roy, S. (eds) Proteins: Structure, Function, and Engineering. Subcellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1727-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1727-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1729-4

  • Online ISBN: 978-1-4899-1727-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics