Skip to main content

Compact Intermediates States in Protein Folding

  • Chapter
Proteins: Structure, Function, and Engineering

Part of the book series: Subcellular Biochemistry ((SCBI,volume 24))

Abstract

Recently there has been growing recognition of the existence and importance of compact intermediate states of proteins. Such species have been observed under both transient (refolding kinetics) and equilibrium conditions. It is clear that for many proteins most denaturing conditions do not lead to a fully unfolded protein (random coil), but rather to species with substantial secondary structure and substantial compactness, relative to the fully unfolded state. In addition, there is now good experimental data to demonstrate the existence of two classes of compact denatured states of proteins: compact intermediates, in the thermodynamic sense (i.e., a minimum in the free energy profile for the reaction), and compact substates of the unfolded state (Palleros et al., 1993). It is important to note that it is often experimentally difficult to distinguish between these two types of compact denatured states, especially by spectral methods. Recent reviews of compact denatured states, and particularly the molten globule, include those of Dill and Shortle (1991), Ptitsyn (1987, 1992), Kuwajima (1989), Christensen and Pain (1991), and Baldwin and Roder (1991). Theoretical models for the existence of two classes of denatured states have been presented by Dill and co-workers (Alonso et al., 1991), Ptitsyn (1987, 1992), and Finkelstein and Shakhnovich (1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandrescu, A. T., Evans, P. A., Pitkeathly, M., Baum, J., and Dobson, C. M., 1993, Structure and dynamics of the acid-denatured molten globule state of α-lactulbumin: A two-dimensional NMR study, Biochemistry 32:1707–1718.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, D. O. V., Dill, K. A., and Stigter, D., 1991, The three states of globular proteins: Acid denaturation, Biopolymers 31:1631–1749.

    Article  PubMed  CAS  Google Scholar 

  • Amir, D., Krausz, S., and Haas, E., 1992, Detection of local structures in reduced unfolded bovine pancreatic trypsin inhibitor, Proteins: Struct. Fund. Genet. 13:162–173.

    Article  CAS  Google Scholar 

  • Aune, K. C., Salahuddin, A., Zarlengo, M. H., and Tanford, C., 1967, Evidence for residual structure in acid-and heat-denatured proteins, J. Biol. Chem. 242:4486–4489.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. L., 1991, Molten globules: Specific or nonspecific folding intermediates? Chemtracts, Biochem. Mol. Biol. 2:379–389.

    CAS  Google Scholar 

  • Baldwin, R. L., 1993, Pulsed H/D exchange studies of folding intermediates, Curr. Opin. Struct. Biol. 3:84–91.

    Article  CAS  Google Scholar 

  • Baldwin, R. L., and Roder, H., 1991, Characterizing protein folding intermediates, Curr. Biol. 1991:218–220.

    Article  Google Scholar 

  • Ballery, N., Desmadril, M., Minard, P., and Yon, J. M., 1993, Characterization of an intermediate in the folding pathway of phosphoglycerate kinase: Chemical reactivity of genetically introduced cysteinyl residues during the folding process, Biochemistry 32:708–714.

    Article  PubMed  CAS  Google Scholar 

  • Barrick, D., and Baldwin, R. L., 1993, Three-state analysis of sperm whale apomyoglobin folding, Biochemistry 32:3790–3796.

    Article  PubMed  CAS  Google Scholar 

  • Bastiras, S., and Wallace, J. C., 1992, Equilibrium denaturation of recombinant porcine growth hormone, Biochemistry 31:9304–9309.

    Article  PubMed  CAS  Google Scholar 

  • Baum, J., Dobson, C. M., Evans, P. A., and Hanley, C, 1989, Characterization of a partly folded protein by NMR methods: studies on the molten globule state of guinea-pig α-lactalbumin, Biochemisstry 28:7–13.

    Article  CAS  Google Scholar 

  • Beckmann, R. P., Mizzen, L. A., and Welch, W. J., 1990, Interactions of hsp70 with newly synthesized proteins: implications for protein folding and assembly, Science 248:850–854.

    Article  PubMed  CAS  Google Scholar 

  • Blewitt, M. G., Chung, L. A., and London, E., 1985, Effect of pH on the conformation of diphtheria toxin and its implications for membrane penetration, Biochemistry 24:5458–5464.

    Article  PubMed  CAS  Google Scholar 

  • Bowler, B. E., May, K., Zaragoza, T., York, P., Dong, A., and Caughey, W. S., 1993, Destabilizing effects of replacing a surface lysine of cytochrome c with aromatic amino acids: Implications for the denatured state, Biochemistry 32:183–190.

    Article  PubMed  CAS  Google Scholar 

  • Brazhnikov, E. V., Chirgadze, YU. N., Dolgikh, D. A., and Ptitsyn, O. B., 1985, Noncooperative temperature melting of a globular protein without specific tertiary structure: Acid form of bovine carbonic anhydrase B, Biopolymers 24:1899–1907.

    Article  PubMed  CAS  Google Scholar 

  • Brems, D. N., and Havel, H. A., 1989, Folding of bovine growth hormone is consistent with molten globule hypothesis, Proteins: Struct. Fund. Genet. 5:93–95.

    Article  CAS  Google Scholar 

  • Bychkova, V. E., Pain, R. H., and Ptitsyn, O. B., 1988, The “molten globule” state is involved in the translocation of proteins across membranes? FEBS Lett. 238:231–234.

    Article  PubMed  CAS  Google Scholar 

  • Bychkova, V. E., Berni, R., Rossi, G. L., Kutyshenko, V. P., Ptitsyn, O. B., 1992, Retinol-binding protein is in the molten globule state at low pH, Biochemistry 31:7566–7571.

    Article  PubMed  CAS  Google Scholar 

  • Bycroft, M., Matouschek, A., Kellis, J. T., Jr., Serrano, L., and Fersht, A. R., 1990, Detection and characterization of a folding intermediate in barnase by NMR, Nature 346:488–490.

    Article  PubMed  CAS  Google Scholar 

  • Calciano, L. J., Escobar, W. A., Millhauser, G. L., Miick, S. M., Rubaloff, J., Todd, A. P., and Fink, A. L., 1993, Side-chain mobility of the β-lactamase A state probed by electron spin resonance spectroscopy, Biochemistry 32:5644–5649.

    Article  PubMed  CAS  Google Scholar 

  • Chaffotte, A., Guillou, Y, Delepierre, M., Hinz, H.-J., and Goldberg, M. E., 1991, The isolated C-terminal (F2) fragment of the Echerichia coli tryptophan synthase B2-subunit folds into a stable, organized nonnative conformation, Biochemistry 30:8067–8074.

    Article  PubMed  CAS  Google Scholar 

  • Chaffotte, A. F., Guillou, Y, and Goldberg, M. E., 1992a, Kinetic resolution of peptide bond and side chain far-UV circular dichroism during the folding of hen egg white lysoszyme, Biochemistry 31:9694–9702.

    Article  PubMed  CAS  Google Scholar 

  • Chaffotte, A. F., Cadieux, C, Guillou, Y., and Goldberg, M. E., 1992b, A Possible initial folding intermediate: The C-terminal proteolytic domain of tryptophan synthase β chains folds in less than 4 milliseconds into a condensed state with non-native-like secondary structure, Biochemistry 31:4303–4308.

    Article  PubMed  CAS  Google Scholar 

  • Chan, H. S., and Dill, K. A., 1990, Origins of structure in globular proteins, Proc. Natl. Acad. Sci. USA 87:6388–6392.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H., and Pain, R. H., 1991, Molten globule intermediates and protein folding. Eur. Biophys. J. 19:221–230.

    Article  PubMed  CAS  Google Scholar 

  • Chyan, C.-L., Wormald, C, Dobson, C. M., Evans, P. A., and Baum, J., 1993, Structure and stability of the molten globule state of guinea-pig α-lactalbumin: A hydrogen exchange study, Biochemistry 32:5681–5691.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, J. L., and Randolph, T. W., 1992, Mechanism of polyethylene glycol interaction with the molten globule folding intermediate of bovine carbonic anhydrase B, J Biol. Chem. 267:3147–3153.

    PubMed  CAS  Google Scholar 

  • Cleland, J. L., and Wang, D. I. C., 1990, Refolding and aggregation of bovine carbonic anhydrase B: Quasi-elastic light scattering analysis, Biochemistry 29:11072–11078.

    Article  PubMed  CAS  Google Scholar 

  • Daggett, V., and Levitt, M., 1992, A model of the molten globule state from molecular dynamics simulations, Proc. Natl. Acad. Sci. USA 89:5142–5146.

    Article  PubMed  CAS  Google Scholar 

  • DeFelippis, M. R., Alter, L. A., Pekar, A. H., Havel, H. A., and Brems, D. N., 1993, Evidence for a self-associating equilibrium intermediate during folding of human growth hormone, Biochemistry 32:1555–1562.

    Article  PubMed  CAS  Google Scholar 

  • Dill, K. A., and Shortle, D., 1991, Denatured states of proteins, Annu. Rev. Biochem. 60:795–825.

    Article  PubMed  CAS  Google Scholar 

  • Dolgikh, D. A., Gilmanshin, R. L, Brazhnikov, E. V., Bychkova, V. E., Semisotnov, G. V., Venyaminov, S. Y., and Ptitsyn, O. B., 1981, α-Lactalbumin: Compact state with fluctuating tertiary structure? FEBS Lett. 136:311–315.

    Article  PubMed  CAS  Google Scholar 

  • Dolgikh, D. A., Kolomiets, A. P., Bolotina, I. A., and Ptitsyn, O. B., 1984, “Molten-globule” state accumulates in carbonic anhydrase folding, FEBS Lett. 165:88–92.

    Article  PubMed  CAS  Google Scholar 

  • Dolgikh, D., Abaturov, L., Bolotina, I., Brazhnikov, E., Bychkova, V., Gilmanshin, R., Lebedev, Y., Semisotnov, G., Tiktopulo, E., and Ptitsyn, O. B., 1985, Compact state of a protein molecule with pronounced small-scale mobility: Bovine α-lactalbumin, Eur. Biophys. J. 13:109–121.

    Article  PubMed  CAS  Google Scholar 

  • Dryden, D., and Weir, M. P., 1991, Evidence for an acid-induced molten globule state in inter-leukin-2; a fluorescence and circular dichroism study, Biochim. Biophys. Acta 1078:94–100.

    Article  PubMed  CAS  Google Scholar 

  • Ebert, B., Semisotnov, G. V., and Rodionova, N. A., 1990, Studies on globular protein refolding kinetics by ESR stopped flow spectroscopy, Studia Biophysica 37:125–132.

    Google Scholar 

  • Englander, S. W., and Mayne, L., 1992, Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR, Annu. Rev. Biophys. Biomol. Struct. 21:243–265.

    Article  PubMed  CAS  Google Scholar 

  • Ewbank, J. J., and Creighton, T. E., 1993a, Pathway of disulfide-coupled unfolding and refolding of bovine α-lactalbumin, Biochemistry 32:3677–3693.

    Article  PubMed  CAS  Google Scholar 

  • Ewbank, J. J., and Creighton, T. E., 1993b, Structural characterization of the disulfide folding intermediates of bovine a-lactalbumin, Biochemistry 32:3694–3707.

    Article  PubMed  CAS  Google Scholar 

  • Fink, A. L., Calciano, L. J., Goto, Y, and Palleros, D. R., 1990, Acid-denatured states of proteins, in Current Research in Protein Chemistry (J. Villafranca, ed.), pp. 417–424, Academic Press, New York.

    Google Scholar 

  • Fink, A. L., Calciano, L. J., Goto, Y, Nishimura, M., and Swedberg, S. A., 1993, Characterization of the stable, acid-induced, molten globule-like state of staphylococcal nuclease, Protein Sci. 2:1155–1160.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, A. V., and Shakhnovich, E. I., 1989, Theory of cooperative transitions in protein molecules. II. Phase diagram for a protein molecule in solution, Biopolymers 28:1681–1694.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, J. M., Kataoka, ML, Shortle, D., and Engelman, D. M., 1992, Truncated staphylococcal nuclease is compact but disordered, Proc. Natl. Acad. Sci. USA 89:748–752.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M. E., Semisotnov, G. V., Friguet, B., Kuwajima, K., Ptitsyn, O. B., and Sugai, S., 1990, An early immunoreactive folding intermediate of the tryptophan synthase β2 subunit is a “molten globule,” FEBS Lett. 263:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y, and Fink, A. L., 1989, Conformational states of β-lactamase: Molten-globule states at acidic and alkaline pH with high salt, Biochemistry 28:945–952.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., and Fink, A. L., 1990, Phase diagram for acidic conformational states of apomyoglobin, J. Mol. Biol. 214:803–805.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., Calciano, L. J., and Fink, A. L., 1990a, Acid-induced folding of proteins, Proc. Natl. Acad. Sci. USA 87:573–577.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., Takahashi, N., and Fink, A. L., 1990b, Mechanism of acid-induced folding of proteins, Biochemistry 29:3480–3488.

    Article  PubMed  CAS  Google Scholar 

  • Gottfried, D. S., and Haas, E., 1992, Nonlocal interactions stabilize compact folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor, Biochemistry 31:12353–12362.

    Article  PubMed  CAS  Google Scholar 

  • Griko, Y. V., Privalov, P. L., Venyaminov, S. Y. and Kutyshenko, V., 1988. Thermodynamic study of the apomyoglobin structure, J. Mol. Biol. 202:127–138.

    Article  PubMed  CAS  Google Scholar 

  • Hamada, D., Hoshino, M., Kataoka, M., Fink, A. L., and Goto, Y, 1993, Intermediate conformational states of apocytochrome c, Biochemistry 32:10351–10358.

    Article  PubMed  CAS  Google Scholar 

  • Harding, M. M., Williams, D. H., and Woolfson, D. N., 1991, Characterization of a partially denatured state of a protein by two-dimensional NMR: Reduction of the hydrophobic interactions in ubiquitin, Biochemistry 30:3120–3128.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, M., and Yamashita, H., 1991, Partially folded state of the disulfide-reduced N terminal half-molecule of ovotransferrin as a renaturation intermediate, J. Biol. Chem. 266:14631–14638.

    Google Scholar 

  • Horowitz, P. M., and Xu, R., 1992, Acid pH-induced conformational changes in bovine liver rhodanese, J. Biol. Chem. 267:19464–19469.

    PubMed  CAS  Google Scholar 

  • Hua, Q. X., Ladbury, J. E., and Weiss, M. A., 1993, Dynamics of monomeric insulin analogue: Testing the molten-globule hypothesis, Biochemistry 32:1433–1442.

    Article  PubMed  CAS  Google Scholar 

  • Hughson, F. M., and Baldwin, R. L., 1989, Use of site-directed mutagenesis to destabilize native apomyoglobin relative to folding intermediates, Biochemistry 28:4415–4422.

    Article  PubMed  CAS  Google Scholar 

  • Hughson, F. M., Wright, P. E., Baldwin, R. L., 1990, Structural characterization of a partly folded apomyoglobin intermediate. Science 249:1544–1548.

    Article  PubMed  CAS  Google Scholar 

  • Hughson, F. M., Barrick, D., and Baldwin, R. L., 1991, Probing the stability of a partly folded apomyoglobin intermediate by side-directed mutagenesis, Biochemistry 30:4113–4118.

    Article  PubMed  CAS  Google Scholar 

  • Ikeguchi, M., Kuwajima, K., Mitani, M., and Sugai, S., 1986a, Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: A comparative study of the folding reactions of α-lactalbumin and lysozyme, Biochemistry 25:6965–6972.

    Article  PubMed  CAS  Google Scholar 

  • Ikeguchi, M., Kuwajima, K., and Sugai, S., 1986b, Ca2+-induced alteration in the unfolding behavior of α-lactalbumin, J. Biochem. 99:1191–1201.

    PubMed  CAS  Google Scholar 

  • Jagannadham, M. V., and Balasubramanian, D., 1985, The molten globular intermediate form in the folding pathway of human carbonic anhydrase B, FEBS Lett. 188:326–330.

    Article  PubMed  CAS  Google Scholar 

  • James, E., Wu, P. G., Stites, W., and Brand, L., 1992, Compact denatured state of a staphylococcal nuclease mutant by guanidinium as determined by resonance energy transfer, Biochemistry 31:10217–10225.

    Article  PubMed  CAS  Google Scholar 

  • Jeng, M.-F., Englander, S. W., Elöve, G. A., Wand, A. J., and Roder, H., 1990, Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR, Biochemistry 29:10433–10437.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J. X., Abrams, F. S., and London, E., 1991, Folding changes in membrane-inserted diphtheria toxin that may play important roles in its translocation, Biochemistry 30:3857–3864.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka, M., Hagihara, Y., Mihara, K., and Goto, Y., 1993, Molten globule of cytochrome c studied by small angle x-ray scattering, J. Mol. Biol. 229:591–596.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., and Kim, H., 1986, Fusion of phospholipid vesicles induced by α-lactalbumin at acidic pH, J. Am. Chem. Soc. 25:7867–7874.

    CAS  Google Scholar 

  • Kuroda, Y., Kidokoro, S.-I., and Wada, A., 1992, Thermodynamic characterization of cytochrome c at low pH: Observation of the molten globule state and of the cold denaturation process, J. Mol. Biol. 223:1139–1153.

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima, K., 1989, The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure, Proteins: Struct. Funct. Genet. 6:87–103.

    Article  CAS  Google Scholar 

  • Kuwajima, K., Hiraoka, Y., Ikeguchi, M., and Sugai, S., 1985, Comparison of the transient folding intermediates in lysozyme and a-lactalbumin, Biochemistry 24:874–881.

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S., and Nagamura, T., 1987, Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism, FEBS Lett. 221:115–118.

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima, K., Sakuraoka, A., Fueki, S., Yoneyama, M., and Sugai, S., 1988, Folding of carp parvalbumin studied by equilibrium and kinetic circular dichroism spectra, Biochemistry 27:7419–7428.

    Article  CAS  Google Scholar 

  • Kuwajima, K., Garvey, E. P., Finn, B. E., Matthews, C. R., and Sugai, S., 1991, Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy, Biochemistry 30:7693–7703.

    Article  PubMed  CAS  Google Scholar 

  • Lakey, J. H., Gonzalez-Mafias, J. M., van der Goot, F. G., and Pattus, F., 1992, The membrane insertion of colicins, FEBS Lett. 307:26–29.

    Article  PubMed  CAS  Google Scholar 

  • Lala, A. K., and Kaul, P., 1992, Increased exposure of hydrophobic surface in molten globule state of a-lactalbumin, J. Biol. Chem. 267:19914–19918.

    PubMed  CAS  Google Scholar 

  • Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M. K., and Hartl, F. U., 1992, Successive action of DnaK, DnaJ, and GroEL along the pathway of chaperone-mediated protein folding, Nature 356:383–689.

    Article  Google Scholar 

  • Lecomte, J. T. J., and Matthews, C. R., 1993, Unraveling the mechanism of protein folding: New tricks for an old problem, Protein Eng. 6:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Lehrman, S. R., Duls, J. L., Havel, H. A., Haskell, R. J., Putman, S. D., and Tomich, C.-S. C., 1991, Site-directed mutagenesis to probe protein folding: Evidence that the formation and aggregation of a bovine growth hormone folding intermediate are dissociable processes, Biochemistry 30:5777–5784.

    Article  PubMed  CAS  Google Scholar 

  • Leistler, B., Herold, M., and Kirschner, K., 1992, Collapsed intermediates in the reconstitution of dimeric aspartate aminotransferase from Escherichia coli, Eur. J. Biochem. 205:603–611.

    Article  PubMed  CAS  Google Scholar 

  • Mann, C. J., and Matthews, C. R., 1993, Structure and stability of an early folding intermediate of Escherichia coli trp aporepressor measured by far-UV stopped-flow circular dichroism and 8-anilino-l-naphthalene sulfonate binding, Biochemistry 32:5282–5290.

    Article  PubMed  CAS  Google Scholar 

  • Mark, A. E., and, van Gunsteren, W. F., 1992, Simulation of the thermal denaturation of hen egg white lysozyme: Trapping the molten globule state, Biochemistry 31:7745–7748.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, L.-G., and Jonsson, B.-H., 1993, Characterization of folding intermediates of human carbonic anhydrase II: Probing substructure by chemical labeling of SH groups introduced by site-directed mutagenesis, Biochemistry 32:224–231.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., Langer, T., Boteva, R., Schramel, A., Hoewich, A. L., and Hartl, F. U., 1991, Chaperonin-mediated protein folding at the surface of GroEL through a “molten globule”-like intermediate, Nature 352:36–42.

    Article  PubMed  CAS  Google Scholar 

  • Mitaku, S., Ishido, S., Hirano, Y., Itoh, H., Kataoka, R., and Saitô, N., 1991, Hydrophobic core of molten-globule state of bovine carbonic anhydrase B, Biophys. Chem. 40:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Nicoli, D. F., and Benedek, G. B., 1976, Study of thermal denaturation of lysozyme and other globular proteins, Biopolymers 151:2421–2437.

    Article  Google Scholar 

  • Ohgushi, M., and Wada, A., 1983, “Molten-globule state”: A compact form of globular proteins with mobile side-chains, FEBS Lett. 164:21–24.

    Article  PubMed  CAS  Google Scholar 

  • Palleros, D. R., Reid, K. L., McCarty, J. S., Walker, G. C, and Fink, A. L., 1992, DnaK, hsp73, and their molten globules, J. Biol. Chem. 267:5279–5285.

    PubMed  CAS  Google Scholar 

  • Palleros, D. R., Shi, L., Reid, K. L., and Fink, A. L., 1993, Three-state denaturation of DnaK induced by guanidine hydrochloride: Evidence for an expandable intermediate, Biochemistry 32:4314–4321.

    Article  PubMed  CAS  Google Scholar 

  • Peng, X., Jonas, J., and Silva, J. L., 1993, Molten-globule conformation of arc repressor monomers determined by high-pressure 1H NMR spectroscopy, Proc. Natl. Acad. Sci. USA 90:1776–1780.

    Article  PubMed  CAS  Google Scholar 

  • Ptitsyn, O. B., 1987, Protein folding: Hypotheses and experiments, Protein Chem. 6:273–293.

    Article  CAS  Google Scholar 

  • Ptitsyn, O. B., 1992, The molten globule state, in Protein Folding (T. E. Creighton, ed.), pp. 243–300, W. H. Freeman, New York.

    Google Scholar 

  • Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E., and Razgulyaev, O. I., 1990, Evidence for a molten globule state as a general intermediate in protein folding, FEBS Lett. 262:20–24.

    Article  PubMed  CAS  Google Scholar 

  • Radford, S. E., Dobson, C. M., and Evans, P. A., 1992, The folding of hen lysozyme involves partially structured intermediates and multiple pathways, Nature 358:302–307.

    Article  PubMed  CAS  Google Scholar 

  • Rajendran, S., and Prakash, V., 1992, Association of proteins in acidic solutions—a case study with β-globulin, Int. J. Biol. Macromol. 14:298–304.

    Article  PubMed  CAS  Google Scholar 

  • Robson, B., and Pain, R., 1976a, The mechanism of folding of globular proteins, Biochem. J. 155:325–330.

    PubMed  CAS  Google Scholar 

  • Robson, B., and Pain, R., 1976b, The mechanism of folding of globular proteins, Biochem. J. 155:331–344.

    PubMed  CAS  Google Scholar 

  • Semisotnov, G. V., Rodionova, N. A., Kutyshenko, V. P., Ebert, B., Blanck, J., and Ptitsyn, O. B., 1987, Sequential mechanism of refolding of carbonic anhydrase B, FEBS Lett. 224:9–13.

    Article  PubMed  CAS  Google Scholar 

  • Semisotnov, G. V., Rodionova, N. A., Razgulyaev, O. I., Uversky, V. N., Gripas, A. F., and Gilmanshin, R. I., 1991, Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe, Biopolymers 31:119–128.

    Article  PubMed  CAS  Google Scholar 

  • Shortle, D., 1987, Equilibrium and kinetic intermediates in protein folding: An alternative explanation, in Protein Structure, Folding, and Design 2 (Dale L. Oxender, ed.), pp. 353–361, Alan R. Liss, New York.

    Google Scholar 

  • Sosnick, T. R., and Trewhella, J., 1992, Denatured states of ribonuclease a have compact dimensions and residual secondary structure, Biochemistry 31:8329–8335.

    Article  PubMed  CAS  Google Scholar 

  • Stigter, D., and Dill, K. A., 1990, Charge effects on folded and unfolded proteins, Biochemistry 29:1262–1271.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, T., Kuwajima, K., and Sugai, S., 1991, Folding of staphylococcal nuclease A studied by equilibrium and kinetic circular dichroism spectra, Biochemistry 30:2698–2706.

    Article  PubMed  CAS  Google Scholar 

  • Tandon, S., and Horowitz, P. M., 1989, Reversible folding of rhodanese, J. Biol. Chem. 264:9859–9866.

    PubMed  CAS  Google Scholar 

  • Tirado-Rives, J., and Jorgensen, W. L., 1993, Molecular dynamics simulations of the unfolding of apomyoglobin in water, Biochemistry 32:4175–4184.

    Article  PubMed  CAS  Google Scholar 

  • Uversky, V. N., Leontiev, V. V., and Gudkov, A. T., 1992a, Triple point mutatin Asp 10→ His, Asn 101 → Asp, Arg 148 → Ser in T4 phage lysozyme leads to the molten globule, Protein Engineer. 5:781–783.

    Article  CAS  Google Scholar 

  • Uversky, V. N., Semisotnov, G. V., Pain, R. H., and Ptytsyn, O. B., 1992b, “All-or-none” mechanism of the molten globule unfolding, FEBS Lett. 314:89–92.

    Article  PubMed  CAS  Google Scholar 

  • van der Goot, F. G., Gonzalez-Manas, J. M., Lakey, J. H., and Pattus, F., 1991, A “molten globule” membrane-insertion intermediate of the poreforming domain of colicin A, Nature 354:408–410.

    Article  PubMed  Google Scholar 

  • van der Goot, F. G., Lakey, J. H., and Pattus, F., 1992, The molten globule intermediate for protein insertion or translocation through membranes, Trends Cell Biol. 2:343–348.

    Article  PubMed  Google Scholar 

  • Varley, P., Gronenborn, A. M., Christensen, H., Wingfield, P. T., Pain, R. H., and Clore, G. M., 1993, Kinetics of folding of the all-β sheet protein interleukin-lβ, Science 260:1110–1113.

    Article  PubMed  CAS  Google Scholar 

  • Xie, D., Bhakuni, V., and Freire, E., 1991, Calorimetric determination of the energetics of the molten globule intermediate in protein folding: Apo α-lactalbumin, Biochemistry 30:10673–10678.

    Article  PubMed  CAS  Google Scholar 

  • Yutani, K., Ogasahara, K., and Kuwajima, K., 1992, Absence of the thermal transition in apo α-lactalbumin in the molten globule state: A study by differential scanning in microcalorimetry, J. Mol. Biol. 228:347–350.

    Article  PubMed  CAS  Google Scholar 

  • Zerovnik, E., Jerala, R., Kroon-Zitko, L., Turk, V., and Pain, R. H., 1992, Denaturation of Stefin B by GuHCl, pH and heat; evidence for molten globule intermediates, Biol. Chem. Hoppe-Seyler 373:453–458.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J.-M., and London, E., 1986, Similarity of the conformation of diphtheria toxin at high temperature to that in the membrane-penetrating low-pH state, Proc. Natl. Acad. Sci. USA 83:2002–2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fink, A.L. (1995). Compact Intermediates States in Protein Folding. In: Biswas, B.B., Roy, S. (eds) Proteins: Structure, Function, and Engineering. Subcellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1727-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1727-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1729-4

  • Online ISBN: 978-1-4899-1727-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics