Skip to main content

Intracellular Factors Involved in Gene Expression of Human Retroviruses

  • Chapter
The Retroviridae

Part of the book series: The Viruses ((VIRS))

Abstract

Retroviruses contain a limited genetic repertoire. Though a number of these viruses contain transactivator proteins that increase their level of gene expression, they all require host cell transcription factors that bind to their long terminal repeat (LTR) in order to modulate basal level gene expression. Following retrovirus integration into the host-cell genome, proviral gene regulation occurs in a manner similar to that of endogenous cellular genes. The integrated provirus is flanked by two LTRs with the 5′ LTR element serving as the binding site for the cellular transcription factors and transcription initiation. A variety of modulators of different cellular signal transduction pathways are able to directly alter the binding or activity of cellular transcription factors that attach to both viral and cellular promoters. Activation of these specific transcription factors have profound effects on retroviral gene expression as will be discussed in this chapter. Unique features in the DNA and RNA regulatory regions of the 5′ proviral LTR also render it a target for various viral transactivator proteins such as the Tat proteins of human immunodeficiency virus (HIV) types 1 and 2 (see Chapters 1 and 3, this volume); the Tax proteins of human T-cell leukemia virus (HTLV) types I and II (Green and Chen, 1994); and the Bel protein of human foamy virus (HFV) or the human spuma retrovirus (HSRV) (see Chapter 4, this volume). In addition to the direct effects of transactivators on viral gene expression, other virally encoded regulatory proteins such as the Rev protein of HIV and the Rex protein of HTLV-I and -II also act in concert with cellular factors to affect the differential splicing and nuclear transport of the viral mRNAs, thereby indirectly modulating the level of viral expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, Y., Copeland, T. D., Hatanaka, M., and Oroszlan, S., 1993, Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23, J. Biol. Chem. 268:13930–13934.

    PubMed  CAS  Google Scholar 

  • Adams, M., Sharmeen, L., Kimpton, J., Romeo, J. M., Garcia, J. V., Peterlin, B. M., Groudine, M., and Emerman, M., 1994, Cellular latency in human immunodeficiency virus-infected individuals with high CD4 levels can be detected by the presence of promoter-proximal transcripts, Proc. Natl. Acad. Sci. USA 91:3862–3866.

    PubMed  CAS  Google Scholar 

  • Adya, N., Zhao, L.-J., Huang, W., Boros, I., and Giam, C.-Z., 1994, Expansion of CREB’s DNA recognition specificity by Tax results from interaction with Ala-Ala-Arg at positions 282–284 near the conserved DNA-binding domain of CREB, Proc. Natl. Acad. Sci. USA 91:5642–5646.

    PubMed  CAS  Google Scholar 

  • Aguzzi, A., 1993, The foamy virus family: Molecular biology, epidemiology and neuropathology, Biochim. Biophys. Acta. 1155:1–24.

    PubMed  CAS  Google Scholar 

  • Ahmad, N., and Venkatesan, S., 1988, Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR, Science 241:1481–1485.

    PubMed  CAS  Google Scholar 

  • Aiken, C., Konner, J., Landau, N. R., Lenburg, M. E., and Trono, D., 1994, Nef induces CD4 endocytosis: Requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain, Cell 76:853–864.

    PubMed  CAS  Google Scholar 

  • Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T., and Kishimoto, T., 1990, A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family, EMBO J. 9:1897–1906.

    PubMed  CAS  Google Scholar 

  • Allan, J. S., Coligan, J. E., Lee, T.-H., McLane, M. E., Kanki, P. J., Groopman, J. E., and Essex, M., 1985, A new HTLV-III/LAV encoded antigen detected by antibodies from AIDs patients, Science 230:810–813.

    PubMed  CAS  Google Scholar 

  • Alonso, A., Derse, D., and Peterlin, B. M., 1992, Human chromosome 12 is required for optimal interactions between tat and TAR of human immunodeficiency virus type 1 in rodent cells, J. Virol. 66:4617–4621.

    PubMed  CAS  Google Scholar 

  • Altman, R., Harrich, D., Garcia, J. A., and Gaynor, R. B., 1988, Human T-cell leukemia virus types I and II exhibit different DNase I protection patterns, J. Virol. 62:1339–1346.

    PubMed  CAS  Google Scholar 

  • Anderson, S., Shugars, D. C., Swanstrom, R., and Garcia, J. V., 1993, Nef from primary isolates of human immunodeficiency virus type 1 suppresses surface CD4 expression in human and mouse T cells, J. Virol. 67:49223–49231.

    Google Scholar 

  • Anderson, S. J., Lenburg, M., Landau, N. R., and Garcia, J. V., 1994, The cytoplasmic domain of CD4 is efficient for its down-regulation from the cell surface by human immunodeficiency virus type 1 Nef, J. Virol. 68:3092–3101.

    PubMed  CAS  Google Scholar 

  • Angel, P., Allegretto, E. A., Okino, S. T., Hattori, K., Boyle, W. J., Hunter, T., and Karin, M., 1988, Oncogene jun encodes a sequence-specific trans-activator similar to AP-1, Nature 332:166–171.

    PubMed  CAS  Google Scholar 

  • Arany, Z., Sellers, W. R., Livingston, D. M., and Eckner, R., 1994, ElA-associated p300 and CREB-associated CBP belong to a conserved family of coactivators, Cell 77:709–800.

    Google Scholar 

  • Armstrong, A. P., Franklin, A. A., Uittenbogaard, M. N., Giebler, H. A., and Nyborg, J. K., 1993, Pleiotropic effect of the human T-cell leukemia virus Tax protein on the DNA binding activity of eukaryotic transcription factors, Proc. Natl. Acad. Sci. USA 90:7303–7307.

    PubMed  CAS  Google Scholar 

  • Arya, S. K., Beaver, B., Jagodziniski, L., Ensoli, B., Kanki, P. J., Albert, J., Fenyo, E.-M., Biberfeld, G., Zagury, J. F., Laure, F., Essex, M., Norrby, E., Wong-Staal, F., and Gallo, R. C., 1987, New human and simian HIV-related retroviruses possess functional transactivator (tat) gene, Nature 328:548–550.

    PubMed  CAS  Google Scholar 

  • Bachelerie, F., Alcami, J., Hazan, U., Israel, N., Goud, B., Arenzana-Seisdedos, F., and Virelizier, J.-L., 1990, Constitutive expression of human immunodeficiency virus (HIV) nef protein in human astrocytes does not influence basal or induced HIV long terminal repeat activity, J. Virol. 64:3059–3062.

    PubMed  CAS  Google Scholar 

  • Bachelerie, F., Alcami, J., Arenzana-Seisdedos, F., and Virelizier, J.-L., 1991, HIV enhancer activity perpetuated by NF-KB induction on infection of monocytes, Nature 350:709–712.

    PubMed  CAS  Google Scholar 

  • Baeuerle, P. A., and Baltimore, D., 1988a, IKB: A specific inhibitor of the NF-KB transcription factor, Science 242:540–546.

    PubMed  CAS  Google Scholar 

  • Baeuerle, P. A., and Baltimore, D., 1988b, Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-KB transcription factor, Cell 53:211–217.

    PubMed  CAS  Google Scholar 

  • Baeuerle, P. A., and Baltimore, D., 1989, A 65-kD subunit of active NF-KB is required for inhibition by IKB, Genes Dev. 3:1689–1698.

    PubMed  CAS  Google Scholar 

  • Baldwin, J., A. S., LeClair, K. P., Singh, H., and Sharp, P. A., 1990, A large protein containing zinc finger domains binds to related sequence elements in the enhancers of the class I major histocompatibility complex promoter, Proc. Natl. Acad. Sci. USA 85:723–727.

    Google Scholar 

  • Ballard, D., Bohnlein, E., Lowenthal, J., Wano, Y., Franza, B., and Greene, W., 1988, HTLV-I Tax induces cellular proteins that activate the KB element in the IL-2 receptor-alpha gene, Science 241:1652–1655.

    PubMed  CAS  Google Scholar 

  • Ballard, D. W., Walker, W. H., Doerre, S., Sista, P., Molitor, J. A., Dixon, E. P., Peffer, N. J., Hannink, M., and Greene, W. C., 1990, The v-rel oncogene encodes a K enhancer binding protein that inhibits NF-KB function, Cell 63:803–814.

    PubMed  CAS  Google Scholar 

  • Bandres, J. C., and Ratner, L., 1994, Human immunodeficiency virus type 1 Nef protein down-regulates transcription factors NF-KB and AP-1 in human T cells in vitro after T-cell receptor stimulation, J. Virol. 68:3243–3249.

    PubMed  CAS  Google Scholar 

  • Baunach, G., Maurer, B., Hahn, H., Kranz, M., and Rethwilm, A., 1993, Functional analysis of human foamy virus accessory reading frames, J. Virol. 67:5411–5418.

    PubMed  CAS  Google Scholar 

  • Beato, M., 1989, Gene regulation by steroid hormones, Cell 56:335–344.

    PubMed  CAS  Google Scholar 

  • Beg, A. A., and Baldwin, Jr., A. S., 1993, The IKB proteins: Multifunctional regulators of Rel/NF-KB transcription factors, Genes Dev. 7:2064–2070.

    PubMed  CAS  Google Scholar 

  • Beg, A. A., Ruben, S. M., Scheinman, R. I., Haskill, S., Rosen, C. A., and Baldwin, Jr., A. S., 1992, IKB interacts with the nuclear localization sequences of the subunits of NF-KB: A mechanism for cytoplasmic retention, Genes Dev. 6:1899–1913.

    PubMed  CAS  Google Scholar 

  • Beimling, R, and Moelling, K., 1992, Direct interaction of CREB protein with 21 bp Tax-responsive elements of HTLV-I LTR, Oncogene 7:257–262.

    PubMed  CAS  Google Scholar 

  • Bennett, V., 1992, Ankyrins: Adaptors between diverse plasma membrane proteins and the cytoplasm, J. Biol. Chem. 267:8703–8706.

    PubMed  CAS  Google Scholar 

  • Beraud, C., Sun, S.-C., Ganchi, R, Ballard, D. W., and Greene, W. C., 1994, Human T-cell leukemia virus type I tax associates with and is negatively regulated by the NF-KB2 p100 gene product: Implications for viral latency, Mol. Cell. Biol. 14:1374–1382.

    PubMed  CAS  Google Scholar 

  • Berger, S. L., Pina, B., Silverman, N., Marcus, G. A., Agapite, J., Regier, J. L., Triezenberg, S. L., and Guarente, L., 1992, Genetic isolation of ADA2: A potential transcriptional adaptor required for function of certain acidic activation domains, Cell 70:251–265.

    PubMed  CAS  Google Scholar 

  • Berkhout, B., and Jeang, K.-T., 1989, Trans-activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting hairpin: A quantitative analysis, J. Virol. 63:5501–5504.

    PubMed  CAS  Google Scholar 

  • Berkhout, B., and Jeang, K.-T., 1992, Functional roles for the TATA promoter and enhancers in basal and tat-induced expression of human immunodeficiency virus type 1 long terminal repeat, J. Virol. 66:139–149.

    PubMed  CAS  Google Scholar 

  • Berkhout, B., Silverman, R. H., and Jeang, K.-T., 1989, tat trans-activates the human immunodeficiency virus through a nascent RNA target, Cell 59:273–282.

    PubMed  CAS  Google Scholar 

  • Berkhout, B., Gatignol, A., Silver, J., and Jeang, K.-T, 1990, Efficient trans-activation by the HIV-2 tat protein requires a duplicated TAR RNA structure, Nucleic Acids Res. 18:1839–1846.

    PubMed  CAS  Google Scholar 

  • Bhat, N. K., Thompson, C. B., Lindsten, T., June, C. H., Fujiwara, S., Koizumi, S., Fisher, R. J., and Papas, T. S., 1990, Reciprocal expression of human ETS1 and ETS2 genes during T-cell activation: Regulatory role for the protooncogene ETS1, Proc. Natl. Acad. Sci. USA 87:3723–3727.

    PubMed  CAS  Google Scholar 

  • Blair, W. S., Bogerd, H. P., and Cullen, B. R., 1994, Genetic analysis indicates that the human foamy viruses bel-1 protein contains a transcriptional activation domain of the acidic class, J. Virol. 68:3803–3808.

    PubMed  CAS  Google Scholar 

  • Blank, V., Kourilsky, P., and Israel, A., 1992, NF-KB and related proteins: Rel/dorsal homologies meet ankyrin-like repeats, Trends Biochem. Sci. 17:135–140.

    PubMed  CAS  Google Scholar 

  • Bogerd, H. P., Fridell, R. A., Blair, W. S., and Cullen, B. R., 1993, Genetic evidence that the tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus, J. Virol. 67:5030–5034.

    PubMed  CAS  Google Scholar 

  • Bohmann, D., Bos, T. J., Admon, A., Nishimura, T., Vogt, P. K., and Tjian, R., 1987, Human protooncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1, Science 238:1386–1392.

    PubMed  CAS  Google Scholar 

  • Bohnlein, E., Lowenthal, J., Siekevitz, M., Ballard, D., Franza, B., and Greene, W., 1988, The same inducible nuclear protein(s) regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV, Cell 53:827–836.

    PubMed  CAS  Google Scholar 

  • Bohnlein, E., Siekevitz, M., Ballard, D. W., Lowenthal, J. W., Rimsky, L., Bogerd, H., Hoffman, J., Wano, Y., Franza, B. R., and Greene, W. C., 1989, Stimulation of the human immunodeficiency virus type 1 enhancer by the human T-cell leukemia virus type I tax gene product involves the action of the inducible cellular proteins, J. Virol. 63:1578–1586.

    PubMed  CAS  Google Scholar 

  • Boise, L. H., Petryniak, B., Mao, X., June, C. H., Wang, C.-Y., Lindsten, T., Bravo, R., Kovary, K., Leiden, J. M., and Thompson, C. B., 1993, The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and JunB, Mol. Cell. Biol. 13:1911–1919.

    PubMed  CAS  Google Scholar 

  • Bosselut, R., Duvall, J. F., Gegonne, A., Bailly, M., Hemar, A., Brady, J., and Ghysdeal, J., 1990, The product of the c-ets-1 proto-oncogene and the related Ets-2 protein act as transcriptional activators of the long terminal repeat of human T cell leukemia virus HTLV-I, EMBO J. 9:3137–3144.

    PubMed  CAS  Google Scholar 

  • Bosselut, R., Lim, F., Romond, P.-C., Frampton, J., Brady, J., and Ghysdael, J., 1992, Myb protein binds to multiple sites in the human T cell lymphotropic virus type I long terminal repeat and transactivate LTR-mediated expression, Virology 186:764–769.

    PubMed  CAS  Google Scholar 

  • Bours, V., Villalobos, J., Burd, P. R., Kelly, K., and Siebenlist, U., 1990, Cloning of a mitogen-inducible gene encoding a KB DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs, Nature 348:76–80.

    PubMed  CAS  Google Scholar 

  • Bours, V., Franzoso, G., Azarenko, V., Park, S., Kanno, T., Brown, K., and Siebenlist, U., 1993, The onco protein Bcl-3 directly transactivates through KB motifs via association with DNA-binding p50B homodimers, Cell 72:729–739.

    PubMed  CAS  Google Scholar 

  • Brady, H. J. M., Pennington, D. J., Miles, C. G., and Dzierzak, E. A., 1993, CD4 cell surface downregulation in HIV-1 Nef transgenic mice is a consequence of intracellular sequestration, EMBO J. 12:4923–4932.

    PubMed  CAS  Google Scholar 

  • Brady, J. N., Jeang, K.-T., Duvall, J., and Khoury, G., 1987, Identification of p40x-responsive regulatory sequences within human T-cell leukemia virus type I long terminal repeat, J. Virol. 61:2175–2181.

    PubMed  CAS  Google Scholar 

  • Briggs, M. R., Kadogona, J. T., Bell, S. P., and Tjian, R., 1986, Purification and biochemical characterization of the promoter-specific transcriptional factor, Sp1, Science 234:47–52.

    PubMed  CAS  Google Scholar 

  • Brindle, P. K., and Montminy, M. R., 1992, The CREB family of transcription activators, Curr. Opin. Genet Dev. 2:199–204.

    PubMed  CAS  Google Scholar 

  • Brindle, P., Linke, S., and Montminy, M., 1993, Protein-kinase A-dependent activator in transcription factor CREB reveals new role for CREM repressor, Nature 364:821–824.

    PubMed  CAS  Google Scholar 

  • Brown, K., Park, S., Kanno, T., Franzoso, G., and Siebenlist, U. 1993. Mutual regulation of the transcriptional activator NF-KB and its inhibitor, IKB-α, Proc. Natl. Acad. Sci. USA 90:2532–2536.

    PubMed  CAS  Google Scholar 

  • Calnan, B. J., Tidor, B., Biancalana, S., Hudson, D., and Frankel, A. D., 1991a, Arginine mediated RNA recognition: The arginine fork, Science 252:1167–1172.

    PubMed  CAS  Google Scholar 

  • Calnan, B. J., Biancalana, S., Hudson, D., and Frankel, A. D., 1991b, Analysis of arginine-rich peptides from the HIV tat protein reveals unusual features of RNA-protein recognition, Genes Dev. 5:201–210.

    PubMed  CAS  Google Scholar 

  • Calvert, I., Peng, Z.-Q., Kung, H.-F., and Raziuddin, 1991. Cloning and characterization of a novel sequence-specific DNA-binding protein recognizing the negative regulatory element (NRE) region of the HIV-1 long terminal repeat, Gene 101:171–176.

    PubMed  CAS  Google Scholar 

  • Carlsson, P., Waterman, M. L., and Jones, K. A., 1993, The hLEF/TCF-1α HMG protein contains a context-dependent transcriptional activation domain that induces the TCRα enhancer in T cells, Genes Dev. 7:2418–2430.

    PubMed  CAS  Google Scholar 

  • Caron, C., Rousset, R., Beraud, C., Moncollin, V, Egly, J.-M., and Jalinot, P., 1993, Functional and biochemical interaction of the HTLV-I Tax1 transactivator with TBP, EMBO J. 11:4269–4278.

    Google Scholar 

  • Castigli, E., Chatila, T. A., and Geha, R. S., 1993, A protein of the AP-1 family is a component of nuclear factor of activated T cells, J. Immunol. 150:3284–3290.

    PubMed  CAS  Google Scholar 

  • Castrop, J., van Norren, K., and Clevers, H., 1992, A gene family of HMG-box transcription factors with homology to TCF-1, Nucleic Acids Res. 20:611.

    PubMed  CAS  Google Scholar 

  • Chang, Y., and Jeang, K.-T., 1992, The basic RNA-binding domain of HIV-2 tat contributes to preferential trans-activation of a TAR2-containing LTR, Nucleic Acids Res. 20:5465–5472.

    PubMed  CAS  Google Scholar 

  • Chen, H., and Yoshimura, F., 1994, Identification of a region of a murine leukemia virus long terminal repeat with novel transcriptional regulatory activities, J. Virol. 86:3308–3316.

    Google Scholar 

  • Cheng, Q., Cant, C. A., Moll, T., Hofer-Warbinek, R., Wagner, E., Birnstiel, M. L., Bach, F. H., and de Martin, R., 1994, NF-KB subunit-specific regulation of the IKBα promoter, J. Biol. Chem. 269:13551–13557.

    PubMed  CAS  Google Scholar 

  • Cheng-Mayer, C., Iannello, P., Shaw, K., Luciw, P. A., and Levy, J. A., 1989, Differential effects of nef on HIV replication: Implications for viral pathogenesis in the host, Science 246:1629–1632.

    PubMed  CAS  Google Scholar 

  • Chiao, P. J., Miyamoto, S., and Verma, I. M., 1994, Autoregulation of IKBα activity, Proc. Natl. Acad. Sci. USA 91:28–32.

    PubMed  CAS  Google Scholar 

  • Chiu, R., Imagawa, M., Imbra, R. J., Bockoven, J. R., and Karin, M., 1987, Multiple cis- and transacting elements mediate the transcriptional response to phorbol esters, Nature 329:648–651.

    PubMed  CAS  Google Scholar 

  • Chiu, R., Boyle, W. J., Meek, J., Smeal, T., Hunter, T., and Karin, M., 1988, The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes, Cell 54:541–552.

    PubMed  CAS  Google Scholar 

  • Chrivia, J. C., Kwok, R. P. S., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H., 1993, Phosphorylated CREB binds specifically to the nuclear protein CBP, Nature 365:855–859.

    PubMed  CAS  Google Scholar 

  • Clark, N. M., Smith, M. J., Hilfinger, J. M., and Markovitz, D. M., 1993, Activation of the human T-cell leukemia virus type I enhancer is mediated by binding sites for Elf-1 and the pets factor, J. Virol. 67:5522–5528.

    PubMed  CAS  Google Scholar 

  • Cooney, A. J., Tsai, S. Y., O’Malley, B. W., and Tsai, M., 1991, Chicken ovalbumin upstream promoter transcription factor binds to a negative regulatory region in the human immunodeficiency virus type 1 long terminal repeat, J. Virol. 65:2853–2860.

    PubMed  CAS  Google Scholar 

  • Cooney, A. J., Leng, X., Tsai, S. Y., O’Malley, B. W., and Tsai, M.-J., 1993, Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transcription by the vitamin D, thyroid hormone and retinoic acid receptors, J. Biol. Chem. 268:4152–4160.

    PubMed  CAS  Google Scholar 

  • Cordingley, M. G., LaFemina, R. L., Callahan, P. L., Condra, J. H., Sardana, V. V., Graham, D. J., Nguyen, T. M., LeGrow, K., Gotlib, L., Schlabach, A. J., and Colonno, R. J., 1990, Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro, Proc. Natl. Acad. Sci. USA 87:8985–8989.

    PubMed  CAS  Google Scholar 

  • Courey, A. J., and Tjian, R., 1988, Analysis of Spl in vivo reveals multiple domains, including a novel glutamine-rich activation motif, Cell 55:1085–1097.

    Google Scholar 

  • Courey, A. J., Holtzman, D. A., Jackson, S. P., and Tjian, R., 1989, Synergistic activation by the glutamine-rich domains of human transcription factor p1, Cell 59:829–836.

    Google Scholar 

  • Crabtree, G. R., 1989, Contingent genetic regulatory events in T-lymphocyte activation, Science 243:355–361.

    PubMed  CAS  Google Scholar 

  • Cross, S. L., Feinberg, M. B., Wolf, J. B., Holbrook, N. J., Wong-Staal, F., and Leonard, W. J., 1987, Regulaton of the human interleukin-2 receptor a chain promoter; activation of a nonfunctional promoter by the transactivator gene of HTLV-I, Cell 49:47–56.

    PubMed  CAS  Google Scholar 

  • Cullen, B. R., 1986, Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism, Cell 46:423–426.

    Google Scholar 

  • Cullen, B. R., and Malim, M. H., 1991, The HIV-1 Rev protein: Prototype of a novel class of eukaryotic post-transcriptional regulators, Trends Biochem. Sci. 16:346–350.

    PubMed  CAS  Google Scholar 

  • Curran, T, and Franza, Jr., B. R., 1988, Fos and Jun: The AP-1 connection, Cell 55:395–397.

    PubMed  CAS  Google Scholar 

  • Dasgupta, P., Saikumar, P., Reddy, C. D., and Reddy, E. P., 1990, Myb protein binds to human immunodeficiency virus 1 long terminal repeat (LTR) sequences and transactivates LTR-mediated transcription, Proc. Natl. Acad. Sci. USA 87:8090–8094.

    PubMed  CAS  Google Scholar 

  • Davis, N. S., Ghosh, S., Simmons, D. L., Tempst, P., Liou, H.-C., Baltimore, D., and Bose, Jr., H. R., 1991, Rel-associated pp40: An inhibitor of the Rel family of transcription factors, Science 253:1268–1271.

    PubMed  CAS  Google Scholar 

  • Dayton, A. I., Sodroski, J. G., Rosen, C. A., Goh, W. C., and Haseltine, W. A., 1986, The trans-activator gene of the human T-cell lymphotropic virus type III is required for replication, Cell 941:947.

    Google Scholar 

  • Demczuk, S., Harbers, M., and Vennstrom, B., 1993, Identification and analysis of all components of a gel retardation assay by combination with immunoblotting, Proc. Natl. Acad. Sci. USA 90:2574–2578.

    PubMed  CAS  Google Scholar 

  • de Ronde, A., Klaver, B., Keulen, W., Smit, L., and Goudsmit, J., 1992, Natural HIV-1 Nef accelerates virus replication in primary human lymphocytes, Virology 188:391–395.

    PubMed  Google Scholar 

  • Desai, K., Loewenstein, P. M., and Green, M., 1991, Isolation of a cellular protein that binds to the human immunodeficiency virus Tat protein and can potentiate transactivation of the viral promoter, Proc. Natl. Acad. Sci. USA 88:8875–8879.

    PubMed  CAS  Google Scholar 

  • Desai-Yajnik, V., and Samuels, H. H., 1993, The NF-KB and Spl motifs of the human immunodeficiency virus type 1 long terminal repeat function as novel thyroid hormone response elements, Mol. Cell. Biol. 13:5057–5069.

    PubMed  CAS  Google Scholar 

  • Devary, Y., Rosette, C., DiDonato, J. A., and Karin, M., 1993, NF-KB activation by ultraviolet light not dependent on a nuclear signal, Science 261:1442–1445.

    PubMed  CAS  Google Scholar 

  • Diamond, M. I., Miner, J. N., Yoshinaga, S. K., and Yamamoto, K. R., 1990, Transcriptional factor interactions: Selectors of positive or negative regulation from a single DNA element, Science 249:1266–1272.

    PubMed  CAS  Google Scholar 

  • Dingwall, C., Ernberg, I., Gait, M. J., Green, S. M., Heaphy, S., Karn, J., Lowe, A. D., Singh, M., and Skinner, M. A., 1990, HIV-1 Tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure, EMBO J. 9:4145–4153.

    PubMed  CAS  Google Scholar 

  • Drapkin, R., Merino, A., and Reinberg, D., 1993, Regulation of RNA polymerase II transcription, Curr. Opin. Cell Biol. 5:469–476.

    PubMed  CAS  Google Scholar 

  • Du, H., Roy, A. L., and Roeder, R. G., 1993, Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters, EMBO J. 12:501–511.

    PubMed  CAS  Google Scholar 

  • Duh, E. J., Maury, W. J., Folks, T. M., Fauci, A. S., and Rabson, A. B., 1989, Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through the induction of nuclear factor binding to the NF-KB sites in the long terminal repeat, Proc. Natl. Acad. Sci. USA 86:5974–5978.

    PubMed  CAS  Google Scholar 

  • Durrand, D. B., Shaw, J.-R, Bush, M. R., Replogie, R. E., Belagaje, R., and Crabtree, G. R., 1988, Characterization of antigen receptor response elements within the interleukin-2 enhancer, Mol. Cell. Biol. 8:1715–1724.

    Google Scholar 

  • Dynlacht, B. D., Hoey, T., and Tjian, R., 1991, Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation, Cell 66:563–576.

    PubMed  CAS  Google Scholar 

  • Elangovan, B., Subramanian, T., and Chinnadurai, G., 1992, Functional comparison of the basic domains of the Tat proteins of human immunodeficiency virus types 1 and 2 in trans activation, J. Virol. 66:2031–2036.

    PubMed  CAS  Google Scholar 

  • Emanuel, P. A., and Gilmour, D. S., 1993, Transcription factor TFIID recognizes DNA sequences downstream of the TATA element in the Hsp70 heat shock gene, Proc. Natl. Acad. Sci. USA 90:8449–8453.

    PubMed  CAS  Google Scholar 

  • Emerman, M., Guyader, M., Montagnier, L., Baltimore, D., and Muesing, M. A., 1987, The specificity of the human immunodeficiency virus type 2 transactivator is different from that of human immunodeficiency virus type 1, EMBO J. 6:3755–3760.

    PubMed  CAS  Google Scholar 

  • Fan, C.-M., and Maniatis, T., 1990, A DNA-binding protein containing two widely separated zinc finger motifs that recognize the same DNA sequence, Genes Dev. 4:29–42.

    PubMed  CAS  Google Scholar 

  • Fan, C.-M., and Maniatis, T., 1991, Generation of p50 subunit of NF-KB by processing of p105 through an ATP-dependent pathway, Nature 354:395–398.

    PubMed  CAS  Google Scholar 

  • Feinberg, M. B., Baltimore, D., and Frankel, A. D., 1991, The role of tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation, Proc. Natl. Acad. Sci. USA 88:4045–4049.

    PubMed  CAS  Google Scholar 

  • Felber, B. K., Paskalis, H., Kleinman-Ewing, C., Wong-Staal, F., and Pavlakis, G. N., 1985, The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats, Science 229:675–679.

    PubMed  CAS  Google Scholar 

  • Feng, S., and Holland, E. C., 1988, HIV-1 tat trans-activation requires the loop sequence within TAR, Nature 334:165–167.

    PubMed  CAS  Google Scholar 

  • Fenrick, R., Malim, M. H., Hauber, J., Le, S.-Y., Maizel, J., and Cullen, B. R., 1989, Functional analysis of the tat trans activator of human immunodeficiency virus type 2, J. Virol. 63:5006–5012.

    PubMed  CAS  Google Scholar 

  • Ferreri, K., Gill, G., and Montminy, M., 1994, The cAMP-regulated transcriptional factor CREB interacts with a component of the TFIID complex, Proc. Natl. Acad. Sci. USA 91:1210–1213.

    PubMed  CAS  Google Scholar 

  • Fisher, A. G., Feinberg, M. B., Josephs, S. F., Harper, M. E., Marselle, L. M., Reyes, G., Gonda, M. A., Aldovini, A., Debouk, C., Gallo, R. C., and Wong-Staal, F., 1986, The trans-activator gene of HTLV-III is essential for virus replication, Nature 320:367–371.

    PubMed  CAS  Google Scholar 

  • Flanagan, W. M., Corthesy, B., Bram, R. J., and Crabtree, G. R., 1991, Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A., Nature 352:803–807.

    PubMed  CAS  Google Scholar 

  • Flugel, R. M., 1991, Spumaviruses: A group of complex retroviruses, J. Acquir. Immune Defic. Syndr. 4:739–750.

    PubMed  CAS  Google Scholar 

  • Folks, T. M., Justement, J., Kinter, A., Dinarello, C. A., and Fauci, A. S., 1987, Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line, Science 238:800–802.

    PubMed  CAS  Google Scholar 

  • Foulkes, N. S., and Sassone-Corsi, P., 1992, More is better: Activators and repressors from the same gene, Cell 68:411–414.

    PubMed  CAS  Google Scholar 

  • Foulkes, N. S., Borrelli, E., and Sassone-Corsi, P., 1991, CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription, Cell 64:739–749.

    PubMed  CAS  Google Scholar 

  • Franchini, G., Robert-Guroff, M., Ghrayeb, J., Chang, N. T., and Wong-Staal, F., 1986, Cytoplasmic localization of the HTLV-III 3′ Orf protein in cultured T cells, Virology 155:593–599.

    PubMed  CAS  Google Scholar 

  • Frankel, A. D., Bredt, D. S., and Pabo, C. O., 1988, Tat protein from human immunodeficiency virus forms a metal-linked dimer, Science 240:70–73.

    PubMed  CAS  Google Scholar 

  • Franklin, A. A., Kubik, M. F., Uittengogaard, M. N., Brauweiler, A., Utaisincharoen, P., Matthews, M.-A. H., Dynan, W. S., Hoeffler, J. P., and Nyborg, J. K., 1993, Transactivation by the human T-cell leukemia virus Tax protein is mediated through enhanced binding of activating transcription factor-2 (ATF-2) ATF-2 response and cAMP element-binding protein (CREB), J. Biol. Chem. 268:21225–21231.

    PubMed  CAS  Google Scholar 

  • Franza, Jr., B. R., Rauscher, III, F. J., Josephs, S. F., and Curran, T., 1988, The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites, Science 239:1150–1153.

    PubMed  CAS  Google Scholar 

  • Franzoso, G., Bours, V., Park, S., Tomita-Yamaguchi, M., Kelly, K., and Siebenlist, U., 1992, The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-KB-mediated inhibition, Nature 359:339–342.

    PubMed  CAS  Google Scholar 

  • Fujii, M., Sassone-Corsi, P., and Verma, I. M., 1988, c-fos promoter trans-activation by the tax1 protein of human T-cell leukemia virus type I, Proc. Natl. Acad. Sci. USA 85:8526–8530.

    PubMed  CAS  Google Scholar 

  • Fujii, M., Niki, T., Mori, T., Matsuda, T., Matsui, M., Nomura, N., and Seiki, M., 1991, HTLV-I Tax induces expression of various immediate early serum responsive genes, Oncogene 6:1023–1029.

    PubMed  CAS  Google Scholar 

  • Fujisawa, J.-I., Seiki, M., Kiyokawa, T., and Yoshida, M., 1985, Functional activation of the long terminal repeat of human T-cell leukemia virus type I by a transacting factor, Proc. Natl. Acad. Sci. USA 82:2277–2281.

    PubMed  CAS  Google Scholar 

  • Fujisawa, J., Seiki, M., Sato, M., and Yoshida, M., 1986, A transcriptional enhancer sequence of HTLV-I is responsible for trans-activation mediated by p40x of HTLV-I, EMBO J. 5:713–718.

    PubMed  CAS  Google Scholar 

  • Fujisawa, J., Toita, M., and Yoshida, M., 1989, A unique enhancer element for the trans activator (p40tax) of human T-cell leukemia virus type I that is distinct from cyclic AMP-and 12-O-tetradecanoylphorbol-13-acetate-responsive elements, J. Virol. 63:3234–3239.

    PubMed  CAS  Google Scholar 

  • Fujita, T., Noaln, G. P., Ghosh, S., and Baltimore, D., 1992, Independent modes of transcriptional activation by the p50 and p65 subunits of NF-KB, Genes Dev. 6:775–787.

    PubMed  CAS  Google Scholar 

  • Fujita, T., Nolan, G. P., Liou, H.-C., Scott, M. L., and Baltimore, D., 1993, The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-KB p50 homo-dimers, Genes Dev. 7:1354–1363.

    PubMed  CAS  Google Scholar 

  • Furth, P. A., Westphal, H., and Henninghausen, L., 1990, Expression from the HIV-LTR is stimulated by glucocorticoids and pregnancy, AIDS Res. Hum. Retroviruses 6:553–560.

    PubMed  CAS  Google Scholar 

  • Garcia, J. A., Wu, F. K., Mitsuyasu, R., and Gaynor, R. B., 1987, Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus, EMBO J. 6:3761–3770.

    PubMed  CAS  Google Scholar 

  • Garcia, J. A., Harrich, D., Pearson, L., Mitsuyasu, R., and Gaynor, R. B., 1988, Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat, EMBO J. 7:143–147.

    Google Scholar 

  • Garcia, J. A., Harrich, D., Soultanakis, E., Wu, F., Mitsuyasui, R., and Gaynor, R. B., 1989, Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation, EMBO J. 8:765–778.

    PubMed  CAS  Google Scholar 

  • Garcia, J. A., Ou, S.-H. I., Wu, F., Lusis, A. J., Sparkles, R. S., and Gaynor, R. B., 1992, Cloning and chromosomal mapping of a human immunodeficiency virus 1 “TATA” element modulatory factor, Proc. Natl. Acad. Sci. USA 89:9372–9376.

    PubMed  CAS  Google Scholar 

  • Garcia, J. V., and Miller, A. D., 1991, Serine phosphorylation-independent downregulation of cell-surface CD4 by nef, Nature 350:508–511.

    PubMed  CAS  Google Scholar 

  • Garcia, J. V, Alfano, J., and Miller, A. D., 1993, The negative effect of human immunodeficiency virus type 1 Nef on cell surface CD4 expression is not species specific and requires the cytoplasmic domain of CD4, J. Virol. 7:1511–1516.

    Google Scholar 

  • Garrett, E. D., He, F., Bogerd, H. P., and Cullen, B. R., 1993, Transcriptional trans activators of human and simian foamy viruses contain a small, highly conserved activation domain, J. Virol. 67:6824–6827.

    PubMed  CAS  Google Scholar 

  • Gatignol, A., Kumar, A., Rabson, A., and Jeang, K.-T., 1989, Identification of cellular proteins that bind to the human immunodeficiency virus type 1 trans-activation-responsive TAR element RNA., Proc. Natl. Acad. Sci. USA 86:7828–7832.

    PubMed  CAS  Google Scholar 

  • Gatignol, A., Buckler-White, A., Berkout, B., and Jeang, K.-T., 1991, Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR, Science 251:1597–1600.

    PubMed  CAS  Google Scholar 

  • Gatignol, A., Buckler, C., and Jeang, K.-T., 1993, Relatedness of an RNA-binding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila staufen, Mol. Cell. Biol. 13:2193–2202.

    PubMed  CAS  Google Scholar 

  • Gaynor, R. B., Kuwabara, M. D., Wu, F. K., Garcia, J. A., Harrich, D., Briskin, M., Wall, R., and Sigman, D. S., 1988, Repeated B motifs in the human immunodeficiency virus type 1 long terminal repeat terminal enhancer region do not exhibit cooperative factor binding, Proc. Natl. Acad. Sci. USA 85:9406–9410.

    PubMed  CAS  Google Scholar 

  • Gaynor, R., Soultanakis, E., Kuwabara, M., Garcia, J., and Sigman, D., 1989, Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus trans-activation region, Proc. Natl. Acad. Sci. USA 86:4858–4862.

    PubMed  CAS  Google Scholar 

  • Gegoone, A., Bosselut, R., Rose-Aimee, B., and Ghysdael, J., 1993, Synergistic activation of the HTLV-I LTR Ets-responsive region by transcription factors Ets1 and Sp1, EMBO J. 12:1169–1178.

    Google Scholar 

  • Gentz, R., Rauscher III, F. J., Abate, C., and Curran, T, 1989, Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains, Science 243:1695–1699.

    PubMed  CAS  Google Scholar 

  • Ghazal, P., Young, J., Giulietti, E., DeMattei, C., Garcia, J., Gaynor, R., Stenberg, R. M., and Nelson, J. A., 1991, A discrete cis element in the human immunodeficiency virus long terminal repeat mediates synergistic trans-activation by cytomegavirus immediate-early proteins, J. Virol. 65:6735–6742.

    PubMed  CAS  Google Scholar 

  • Ghosh, D., 1992, Glucocorticoid receptor-binding site in the human immunodeficiency virus long terminal repeat, J. Virol. 66:586–590.

    PubMed  CAS  Google Scholar 

  • Ghosh, S., Gifford, A. M., Riviere, L. R., Tempst, P., Nolan, G. P., and Baltimore, D., 1990, Cloning of the p50 DNA binding subunit of NF-KB: Homology to rel and dorsal, Cell 62:1019–1029.

    PubMed  CAS  Google Scholar 

  • Giacca, M., Gutierrez, M. I., Menzo, S., DiFagagna, F. D., and Falashi, A., 1992, A human binding site for transcription factor USF/MLTF mimics the negative regulatory element of human immunodeficiency virus type 1, Virology 186:133–147.

    PubMed  CAS  Google Scholar 

  • Giam, C.-Z., and Xu, Y.-L., 1989, HTLV-I tax gene product activates transcription via pre-existing cellular factors and cAMP responsive element, J. Biol. Chem. 264:15236–15241.

    PubMed  CAS  Google Scholar 

  • Giam, C.-Z., Nerenberg, M., Khoury, G., and Jay, G., 1986, Expression of the complete human T-cell leukemia virus type I pX coding sequence as a functional protein in Escherichia coli, Proc. Natl. Acad. Sci. USA 83:7192–7196.

    PubMed  CAS  Google Scholar 

  • Giese, K., and Grosschedl, R., 1993, LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites, EMBO J. 12:4667–4676.

    PubMed  CAS  Google Scholar 

  • Giese, K., Cox, J., and Grosschedl, R., 1992, The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures, Cell 69:185–195.

    PubMed  CAS  Google Scholar 

  • Gill, G., and Tjian, R., 1992, Eukaryotic coactivators associated with the TATA box binding protein, Curr. Opin. Genet. Dev. 2:236–242.

    PubMed  CAS  Google Scholar 

  • Gill, G., Pascal, E., Tseng, Z. H., and Tjian, R., 1994, A glutamine-rich hydrophilic patch in transcription factor Spl contacts the dTAF110 component of the drosophilia TFIID complex and mediates transcriptional activation, Proc. Natl. Acad. Sci. USA 91:192–196.

    PubMed  CAS  Google Scholar 

  • Gitlin, S. C., Bosselut, R., Gegonne, A., Ghysdael, J., and Brady, J. A., 1991, Sequence-specific interaction of the Etsl protein with the long terminal repeat of the human T-lymphotropic virus type 1, J. Virol. 65:5513–5523.

    PubMed  CAS  Google Scholar 

  • Gitlin, S. D., Dittmer, J., Shin, R. C., and Brady, J. N., 1993, Transcriptional activation of the human T-lymphotropic virus type 1 long terminal repeat by functional interaction of tax1 and ets1, J. Virol. 67:7307–7316.

    PubMed  CAS  Google Scholar 

  • Gonzalez, G. A., Yamamoto, K. K., Fisher, W. H., Karr, D., Menzel, P., Biggs, W., Vale, W. W., and Montminy, M. R., 1989, A cluster of phosphorylation sites on the cyclic-AMP regulated nuclear factor CREB predicted by its sequence, Nature 337:749–752.

    PubMed  CAS  Google Scholar 

  • Goodrich, J. A., and Tjian, R., 1994, TBP-TAF complexes: Selectivity factors for eukaryotic transcription, Curr. Opin. Cell Biol. 6:403–409.

    PubMed  CAS  Google Scholar 

  • Goodrich, J. A., Hoey, T., Thut, C. J., Admon, A., and Tjian, R., 1993, Drosophilia TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB, Cell 75:519–530.

    PubMed  CAS  Google Scholar 

  • Graeble, M. A., Churcher, M. J., Lowe, A. D., Gait, M. J., and Kam, J., 1993, Human immunodeficiency virus type 1 transactivator protein, tat, stimulates transcriptional read-through of distal terminator sequences in vitro, Proc. Natl. Acad. Sci. USA 90:6184–6188.

    PubMed  CAS  Google Scholar 

  • Green, P. L., and Chen, I. S. Y., 1994, Molecular features of the human T-cell leukemia virus: Mechanisms of transformation and leukemogenicity, in: The Retroviridae, Vol. 3 (J. A. Levy, ed.), pp. 277–311, Plenum Press, New York.

    Google Scholar 

  • Gregor, P. D., Sawadago, M., and Roeder, R. G., 1990, The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer, Genes Dev. 4:1730–1740.

    PubMed  CAS  Google Scholar 

  • Griffin, G. E., Leung, K., Folks, T. M., Kunkel, S., and Nabel, G. J., 1989, Activation of HIV gene expression during monocyte differentiation by induction on NF-KB Nature 339:70–73.

    PubMed  CAS  Google Scholar 

  • Grilli, M., Chiu, J. S., and Lenardo, M. J., 1993, NF-KB and Rel-participants in a multiform transcriptional regulatory system, Int. Rev. Cytol. 143:1–62.

    PubMed  CAS  Google Scholar 

  • Guy, B., Kieny, M. P., Riviere, Y., Le Peuch, C., Dott, K., Girard, M., Montagnier, L., and Lecocq, J.-P., 1987, HIV F/3′ orf encodes a phosphorylated GT-binding protein resembling an oncogene product, Nature 330:266–269.

    PubMed  CAS  Google Scholar 

  • Guyader, M., Emerman, M., Sonigo, P., Calvel, F., Montagnier, L., and Alizon, M., 1987, Genome organization and transactivation of the human immunodeficiency virus type 2, Nature 326:662–669.

    PubMed  CAS  Google Scholar 

  • Hai, T., Liu, F., Coukos, W. J., and Green, M. R., 1989, Transcription factor ATF cDNA clones: An extensive family of leucine zipper proteins able to selectively form DNA-binding hetero-dimers, Genes Dev. 3:2083–2090.

    PubMed  CAS  Google Scholar 

  • Halazonetis, T. D., Georgopoulous, K., Greenberg, M. E., and Leder, P., 1988, c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities, Cell 55:917–924.

    PubMed  CAS  Google Scholar 

  • Hammes, S. R., Dixon, E. P., Malim, M. H., Cullen, B. R., and Greene, W. C., 1989, Nef protein of human immunodeficiency virus type 1: Evidence against its role as a transcriptional inhibitor, Proc. Natl Acad. Sci. USA 86:9549–9553.

    PubMed  CAS  Google Scholar 

  • Hannibal, M. C., Markovitz, D. M., Clark, N., and Nabel, G. J., 1993, Differential activation of human immunodeficiency virus type 1 and 2 transcription by specific T-cell activation signals, J. Virol. 67:5035–5040.

    PubMed  CAS  Google Scholar 

  • Harada, S. K., Koyanagi, Y., Nakashima, H., Kobayashi, N., and Yamamoto, N., 1986, Tumor promoter, TPA enhances replication of HTLV-III/LAV, Virology 154:249–258.

    PubMed  CAS  Google Scholar 

  • Harrich, D., Garcia, J., Wu, F., Mitsuyasu, R., Gonzalez, J., and Gaynor, R., 1989, Role of Spl-binding domains in in vivo transcriptional regulation of the human immunodeficiency virus type 1 long terminal repeat, J. Virol. 63:2585–2591.

    PubMed  CAS  Google Scholar 

  • Harrich, D., Garcia, J., Mitsuyasu, R., and Gaynor, R., 1990, TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes, EMBO J. 9:4417–4423.

    PubMed  CAS  Google Scholar 

  • Harrich, D., Hsu, C., Race, E., and Gaynor, R. B., 1994, Differential growth kinetics are exhibited by HIV-1 TAR mutant viruses, J. Virol. 68:5899–5910.

    PubMed  CAS  Google Scholar 

  • Harris, M., and Coates, K., 1993, Identification of cellular proteins that bind to the human immunodeficiency virus type 1 nef gene product in vitro: A role for myristylation, J. Gen. Virol. 74:1581–1589.

    PubMed  CAS  Google Scholar 

  • Hart, C. E., Ou, C., Galphin, J. C., Moore, J., Bacheler, L. T., Wasmuth, J. J., Petteway, S. R., and Schochetman, G., 1989, Human chromosome 12 is required for elevated HIV-1 expression in human-hamster hybrid cells, Science 246:488–491.

    PubMed  CAS  Google Scholar 

  • Hart, C. E., Galphin, J. C., Westhafer, M. A., and Schochetman, G., 1993, TAR loop-dependent human immunodeficiency virus trans activation requires factors encoded on human chromosome 12, J. Virol. 67:5020–5024.

    PubMed  CAS  Google Scholar 

  • Haskill, S., Beg, A. A., Tompkins, S. M., Morris, J. S., Yurochko, A. D., Sampson-Johannes, A., Mondai, K., Ralph, P., and Baldwin Jr., A. S., 1991, Characterization of an immediate-early gene induced in adherent monocytes that encodes IKB-like activity, Cell 65:1281–1289.

    PubMed  CAS  Google Scholar 

  • Hatada, E. N., Nieters, A., Wulczyn, F. G., Naumann, M., Meyer, R., Nucifora, G., McKeithan, T. W., and Scheidereit, C., 1992, The ankyrin repeat domains of the NF-KB precursor p 105 and the proto-oncogene bcl-3 act as specific inhibitors of NF-KB binding, Proc. Natl. Acad. Sci. USA 89:2489–2493.

    PubMed  CAS  Google Scholar 

  • Hauber, J., and Cullen, B. R., 1988, Mutational analysis of the tarns-activation responsive region of the human immunodeficiency virus type 1 long terminal repeat, J. Virol. 62:673–679.

    PubMed  CAS  Google Scholar 

  • He, F., Sun, J. D., Garrett, E. D., and Cullen, B. R., 1993, Functional organization of the bel-1 trans activator of human foamy virus, J. Virol. 67:1896–1904.

    PubMed  CAS  Google Scholar 

  • He, Z., Brinton, B. T., Greenblatt, J., Hassell, J. A., and Ingles, C. J., 1993, The transactivator proteins VP16 and GAL4 bind replication factor A., Cell 73:1223–1232.

    PubMed  CAS  Google Scholar 

  • Heaphy, S., Dingwell, C., Ernberg, I., Gait, M. J., Green, S. M., Karn, J., Lowe, A., D., Singh, M., and Skinner, M. A., 1990, HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region, Cell 60:685–693.

    PubMed  CAS  Google Scholar 

  • Henkel, T., Zabel, U., van Zee, K., Muller, J. M., Fanning, E., and Baeuerle, P. A., 1992, Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-KB subunit, Cell 68:1121–1133.

    PubMed  CAS  Google Scholar 

  • Henkel, T., Machleidt, T., Alkalay, I., Kronke, M., Ben-Neriah, Y., and Baeurle, P. A., 1993, Rapid proteolysis of IKB-α is necessary for activation of transcription factor NF-KB, Nature 365:182–185.

    PubMed  CAS  Google Scholar 

  • Hernandez, N., 1993, TBP, a universal eukaryotic transcription factor? Genes Dev. 7:1291–1308.

    PubMed  CAS  Google Scholar 

  • Herrmann, C. H., and Rice, A. P., 1993, Specific interaction of the human immunodeficiency virus Tat proteins with a cellular protein kinase, Virology 197:601–608.

    PubMed  CAS  Google Scholar 

  • Hilfinger, J. M., Clark, N., Robinson, K., and Markovitz, D. M., 1993, Differential regulation of the human immunodeficiency virus type 2 enhancer in monocytes at various stages of differentiation, J. Virol. 67:4448–4453.

    PubMed  CAS  Google Scholar 

  • Hirai, H., Fujisawa, J., Suzuki, T., Ueda, K., Muramatsu, M., Tsuboi, A., Arai, N., and Yoshida, M., 1992, Transcriptional activator Tax of HTLV-I binds to the NF-KB precursor p105, Oncogene 7:1737–1742.

    PubMed  CAS  Google Scholar 

  • Hirai, H., Suzuki, T., Fujisawa, J., Inoue, J., and Yoshida, M., 1994, Tax protein of human T-cell leukemia virus type I binds to the ankyrin motifs of inhibitory factor KB and induces nuclear translocation of transcription factor NF-KB proteins for transcriptional activation, Proc. Natl. Acad. Sci. USA 91:3584–3588.

    PubMed  CAS  Google Scholar 

  • Hisatake, K., Haegawa, S., Takada, R., Nakatani, Y., Horikoshi, M., and Roeder, R. G., 1993, The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1, Nature 362:179–181.

    PubMed  CAS  Google Scholar 

  • Hoeffler, J. P., Meyer, T. E., Yun, Y., Jameson, J. L., and Habener, J. F., 1988, Cyclic AMP-responsive DNA-binding protein: Structure based on a cloned placental cDNA., Science 242:1430–1433.

    PubMed  CAS  Google Scholar 

  • Hoey, T., Weinzierl, R. O., Gill, G., Chen, J.-L., Dynlacht, B. D., and Tjian, R., 1993, Molecular cloning and functional analysis of drosophilia TAF110 reveal properties expected of coactivators, Cell 72:247–260.

    PubMed  CAS  Google Scholar 

  • Hoffmann, A., Sinn, E., Yamamoto, T., Wang, J., Roy, A., Horikoshi, M., and Roeder, R. G., 1990, Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID), Nature 346:387–390.

    CAS  Google Scholar 

  • Horikoshi, N., Maguire, K., Kralli, A., Maldonado, E., Reinberg, D., and Weinmann, R., 1991. Direct interaction between adenovirus E1A protein and the TATA box binding transcription factor IID, Proc. Natl. Acad. Sci. USA 88:5124–5128.

    PubMed  CAS  Google Scholar 

  • Hsu, W, Kerppola, T. K., Chen, P.-L., Curran, T., and Chen-Kiang, S., 1994, Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region, Mol. Cell. Biol. 14:268–276.

    PubMed  CAS  Google Scholar 

  • Hu, Y. F., Luscher, B., Admon, A., Mermod, N., and Tjian, R., 1990, Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity, Genes Dev. 4:1741–1752.

    PubMed  CAS  Google Scholar 

  • Huang, L.-M., and Jeang, K.-T., 1993, Increased spacing between Sp1 and TATAA renders human immunodeficiency virus type 1 replication defective: Implication for tat function, J. Virol. 67:6937–6944.

    PubMed  CAS  Google Scholar 

  • Ing, N. H., Beekman, J. M., Tsai, S. Y., Tsai, M.-J., and O’Malley, B. W., 1992, Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II), J. Biol. Chem. 267:17617–17623.

    PubMed  CAS  Google Scholar 

  • Ingles, C. J., Shales, M., Cress, W. D., Triezenberg, S. J., and Greenblatt, J., 1991, Reduced binding of TFIID to transcriptionally compromised mutants of VP16, Nature 351:588–590.

    PubMed  CAS  Google Scholar 

  • Inoue, J., Seiki, M., Taniguchi, T., Tsuru, S., and Yoshida, M., 1986, Induction of interleukin 2 receptor gene expression by p40x encoded by human T-cell leukemia virus type I, EMBO J. 5:2882–2888.

    Google Scholar 

  • Inoue J., Kerr, L. D., Kakizuka, A., and Verma, I. M., 1992a, IKBγ, a 70 kd protein identical to the C-terminal half of p110 NF-KB: A new member of the IKB family, Cell 68:1109–1120.

    PubMed  CAS  Google Scholar 

  • Inoue, J.-I., Kerr, L. D., Rashid, D., Davis, N., Bose, Jr., H. R., and Verma, I. M., 1992b, Direct association of pp40/IKBβ with rel/NF-KB transcription factors: Role of ankyrin repeats in the inhibition of DNA binding activity, Proc. Natl. Acad. Sci. USA 89:4333–43378.

    PubMed  CAS  Google Scholar 

  • Jackson, S. P., MacDonald, J. J., Lees-Miller, S., and Tjian, R., 1990, GC box binding induces phosphorylation of Spl by a DNA-dependent protein kinase, Cell 63:155–165.

    PubMed  CAS  Google Scholar 

  • Jain, J., McCaffrey, P. G., Valge-Archer, V. E., and Rao, A., 1992, Nuclear factor of activated T cells contains Fos and Jun, Nature 356:801–804.

    PubMed  CAS  Google Scholar 

  • Jain, J., McCaffrey, P. G., Miner, Z., Kerppola, T. K., Lambert, J. N., Verdine, G. L., Curran, T., and Rao, A., 1993, The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with fos and jun, Nature 365:352–355.

    PubMed  CAS  Google Scholar 

  • Jakobovits, A., Smith, D. H., Jakobovits, E. B., and Capon, D. J., 1988, A discrete element 3′ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans-activator, Mol. Cell. Biol. 8:2555–2561.

    PubMed  CAS  Google Scholar 

  • Javahery, R., Khachi, A., Lo, K., Zenzie-Gregory, B., and Smale, S. T., 1994, DNA sequence requirements for transcriptional initiator activity in mammalian cells, Mol. Cell. Biol. 14:116–127.

    PubMed  CAS  Google Scholar 

  • Jeang, K.-T, Widen, S. G., Semmes, IV, O. J., and Wilson, S. H., 1990, HTLV-I trans-activator protein, tax, is a transrepressor of the human β-polymerase gene, Science 247:1082–1084.

    PubMed  CAS  Google Scholar 

  • Jeang, K.-T., Chun, R., Lin, N. H., Gatinol, A., Glabe, C. G., and Fan, H., 1993, In vitro and in vivo binding of human immunodeficiency virus type 1 tat protein and Spl transcriptional factor, J. Virol. 67:6224–6233.

    PubMed  CAS  Google Scholar 

  • Jonat, C., Rahmsdorf, H. J., Park, K.-K., Cato, A. C. B., Gebel, S., Ponta, H., and Herrlich, P., 1990, Antitimor promotion and antiinflammation: Down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone, Cell 62:1189–1204.

    PubMed  CAS  Google Scholar 

  • Jones, K. A., Kadonaga, J. T., Luciw, P. A., and Tjian, R., 1986, Activation of the AIDS retrovirus promoter by the cellular transcription factor Spl, Science 232:755–759.

    PubMed  CAS  Google Scholar 

  • Jones, K. A., Luciw, P. A., and Duchange, N., 1988, Structural arrngements of transcription control domains within the 5′-untranslated leader regions of the HIV-1 and HIV-2 promoters, Genes Dev. 2:1101–1114.

    PubMed  CAS  Google Scholar 

  • Jupp, R., Hoffmann, S., Stenberg, R. M., Nelson, J. A., and Ghazal, P., 1993, Human cytomegalovirus IE86 protein interacts with promoter-bound TATA-binding protein via a specific region distinct from the auto repression domain, J. Virol. 67:7539–7546.

    PubMed  CAS  Google Scholar 

  • Kaczmarski, W, and Khan, S. A., 1993, Lupus auto antigen Ku protein binds HIV-1 TAR RNA in vitro, Biochem. Biophys. Res. Commun. 196:935–942.

    PubMed  CAS  Google Scholar 

  • Kadesh, T., 1993, Consequences of heteromeric interactions among helix-loop-helix proteins, Cell Growth Differ. 4:49–55.

    Google Scholar 

  • Kadonaga, J. T., and Tjian, R., 1986, Affinity purification of sequence-specific DNA-binding proteins, Proc. Natl. Acad. Sci. USA 83:5889–5893.

    PubMed  CAS  Google Scholar 

  • Kadonaga, J. T., Jones, K. A., and Tjian, R., 1986, Promoter-specific activation of RNA polymerase II transcription by Sp1, Trends Biochem. Sci. 11:20–23.

    CAS  Google Scholar 

  • Kadonaga, J. T., Carner, K. R., Masiarz, F. R., and Tjian, R., 1987, Isolation of cDNA encoding transcription factor Sp1 and functional analysis of DNA-binding domains, Cell 51:1079–1090.

    PubMed  CAS  Google Scholar 

  • Kamine, J., and Chinnadurai, G., 1992, Synergistic activation of the human immunodeficiency virus type 1 promoter by the viral Tat protein and cellular transcription factor Sp1, J. Virol. 66:3932–3936.

    PubMed  CAS  Google Scholar 

  • Kamine, J., Subramanian, T., and Chinnadurai, G., 1991, Sp1-dependent activation of a synthetic promoter by human immunodeficiency virus type 1 Tat protein, Proc. Natl. Acad. Sci. USA 88:8510–8514.

    PubMed  CAS  Google Scholar 

  • Kang, S.-M., Tran, A.-C., Grilli, M., and Lenardo, M. J., 1992, NF-KB subunit regulation in non-transformed CD4+ T lymphocytes, Science 256:1452–1456.

    PubMed  CAS  Google Scholar 

  • Kao, C. C., Lieberman, P. M., Schmidt, M. C., Zhou, Q., Pei, R., and Berk, A. J., 1990, Cloning of a transcriptionally active human TATA binding factor, Science 248:1646–1650.

    PubMed  CAS  Google Scholar 

  • Kao, S. Y., Caiman, A. E., Luciw, P. A., and Peterlin, B. M., 1987, Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product, Nature 330:489–493.

    PubMed  CAS  Google Scholar 

  • Karim, F. D., Urness, L. D., Thummel, C. S., Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C., Maki, R. A., Gunther, C. V., Nye, J. A., and Graves, B. J., 1990, The ETS-domain: A new DNA-binding motif that recognizes a purine-rich core DNA sequence, Genes Dev. 4:1451–1453.

    PubMed  CAS  Google Scholar 

  • Karpinski, B. A., Morle, G. D., Huggenvik, J., Uhler, M., and Leiden, J. M., 1992, Molecular cloning of human CREB-2: An ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element, Proc. Natl. Acad. Sci. USA 89:4820–4824.

    PubMed  CAS  Google Scholar 

  • Kashanchi, F., Piras, G., Radonovich, M. F., Duvall, J. F., Fattaey, A., Chiang, C.-M., Roeder, R. G., and Brady, J. N., 1994a, Direct interaction of human TFIID with the HIV-1 transactivator tat, Nature 367:295–299.

    PubMed  CAS  Google Scholar 

  • Kashanchi, F., Shibata, R., Ross, E. K., Brady, J. N., and Martin, M. A., 1994b, Second-site long terminal repeat (LTR) revertants of replication-defective human immunodeficiency virus: Effects of revertant TATA box motifs on virus infectivity, LTR-directed expression, in vitro RNA synthesis, and the binding of basal transcription factors TFIID and TFIIA., J. Virol. 68:3298–3307.

    PubMed  CAS  Google Scholar 

  • Kato, H., Horikoshi, M., and Roeder, R. G., 1991, Repression of HIV-1 transcription by a cellular protein, Science 251:1476–1479.

    PubMed  CAS  Google Scholar 

  • Kato, H., Sumimoto, H., Pognonec, P., Chen, C.-C., Rosen, C., and Roeder, R. G., 1992, HIV-1 tat acts as a processivity factor in vitro in conjunction with cellular factors, Genes Dev. 6:655–666.

    PubMed  CAS  Google Scholar 

  • Katsanakis, C. D., Sekeris, C. E., and Spandidos, D. A., 1991, The human immunodeficiency virus long terminal repeat contains sequences showing partial homology to glucocorticoid responsive elements, Anticancer Res. 11:381–383.

    PubMed  CAS  Google Scholar 

  • Kaufman, J. D., Valanora, G., Rodriguez, G., Bushar, G., Giri, C., and Norcross, M. D., 1987, Phorbol ester enhances human immunodeficiency virus-promoted gene expression and acts on a 10-base-pair functional enhancer element, Mol. Cell. Biol. 7:3759–3766.

    PubMed  CAS  Google Scholar 

  • Kaufmann, J., and Smale, S. T., 1994, Direct recognition of initiator elements by a component of the transcription factor IID complex, Genes Dev. 8:821–829.

    PubMed  CAS  Google Scholar 

  • Kawakami, K., Scheidereit, C., and Roeder, R. G., 1988, Identification and purification of a human immunoglobulin enhancer binding protein (NF-KB) that activates transcription from a human immunodeficiency virus type 1 promoter in vitro, Proc. Natl. Acad. Sci. USA 85:4700–4704.

    PubMed  CAS  Google Scholar 

  • Keller, A., Partin, K. M., Lochelt, M., Bannert, H., Flugel, R. M., and Cullen, B. R., 1991, Characterization of the transcriptional trans activator of human foamy retroviruses, J. Virol. 65:2589–2594.

    PubMed  CAS  Google Scholar 

  • Keller, A., Garrett, E. D., and Cullen, B. R., 1992, The bel-1 protein of human foamy virus activates human immunodeficiency virus type 1 gene expression via a novel DNA target site, J. Virol. 66:3946–3949.

    PubMed  CAS  Google Scholar 

  • Kerr, L. D., Ransone, L. J., Wamsley, P., Schmitt, M. J., Boyer, T. G., Zhou, Q., Berk, A. J., and Verma, I. M., 1993, Association between proto-oncoprotein Rel and TATA-binding protein mediates transcriptional activation by NF-KB, Nature 365:412–419.

    PubMed  CAS  Google Scholar 

  • Kestler III, H. W., Ringler, D. J., Mori, K., Panicall, D. L., Sehgai, P. K., Daniel, M. D., and Desrosiers, R. C., 1991, Importance of the nef gene for maintenance of high virus loads and for development of AIDS, Cell 65:651–662.

    PubMed  CAS  Google Scholar 

  • Kieran, M., Blank, V, Logeat, F., Vandekerckhove, J., Lottspeich, E., Le Bail, O., Urban, M. B., Kourilsky, P., Baeuerle, P. A., and Israel, A., 1990, The DNA binding subunit of NF-KB is identical to factor KBF1 and homologous to the rel oncogene product, Cell 62:1007–1018.

    PubMed  CAS  Google Scholar 

  • Kim, J. Y. H., Gonzalez-Scarano, F., Zeichner, S. L., and Alwine, J. C., 1993, Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the-201 to-180 region of the long terminal repeat, J. Virol. 67:1658–1662.

    PubMed  CAS  Google Scholar 

  • Kim, S. Y., Byrn, R., Groopman, J., and Baltimore, D., 1989a, Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression, J. Virol. 63:3708–3713.

    PubMed  CAS  Google Scholar 

  • Kim, S., Ikeuchi, K., Byrn, R., Groopman, J., and Baltimore, D., 1989b, Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 86:9544–9548.

    PubMed  CAS  Google Scholar 

  • Kinzler, K. W., and Vogelstein, B., 1990, The GLI gene encodes a nuclear protein which binds specific sequences in the human genome, Mol. Cell. Biol. 10:634–642.

    PubMed  CAS  Google Scholar 

  • Kjems, J., and Sharp, P. A., 1993, The basic domain of Rev from human immunodeficiency virus type 1 specifically blocks the entry of U4/U6.U5 small nuclear ribonucleoprotein in spliceosome assembly, J. Virol. 67:4769–4776.

    PubMed  CAS  Google Scholar 

  • Kjems, J., Frankel, A. D., and Sharp, P. A., 1991, Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 Rev., Cell 67:169–178.

    PubMed  CAS  Google Scholar 

  • Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C., and Maki, R. A., 1990, The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene, Cell 61:113–124.

    PubMed  CAS  Google Scholar 

  • Kliewer, S., Garcia, J., Pearson, L., Soultanakis, E., Dasgupta, A., and Gaynor, R., 1989, Multiple transcriptional regulatory domains in the human immunodeficiency virus type 1 long terminal repeat are involved in basal and E1A/E1B-induced promoter activity, J. Virol. 63:4616–4625.

    PubMed  CAS  Google Scholar 

  • Koken, S. E., Van Wamel, J. L. B., Goudsmit, J., Berkhout, B., and Geelan, J. L., 1992, Natural variants of the HIV-1 long terminal repeat: Analysis of promoters with duplicated DNA regulatory motifs, Virology 191:968–972.

    PubMed  CAS  Google Scholar 

  • Kolesnitchenko, V, and Snart, R. S., 1992, Regulatory elements in the human immunodeficiency virus type 1 long terminal repeat LTR (HIV-1) responsive to steroid hormone stimulation, AIDS Res. Hum. Retroviruses 8:1977–1980.

    PubMed  CAS  Google Scholar 

  • Kouzarides, T., and Ziff, E., 1988, The role of the leucine zipper in the fos-jun interaction, Nature 336:646–651.

    PubMed  CAS  Google Scholar 

  • Koyanagi, Y., O’Brian, W. A., Zhao, J. Q., Golde, D. W., Gasson, J. C., and Chen, I. S., 1988, Cytokines alter production of HIV-1 in a chronically infected monocyte cell line, Science 241:1673–1675.

    PubMed  CAS  Google Scholar 

  • Krainer, A. R., Mayeda, A., Kozak, D., and Binns, G., 1991, Functional expression of cloned human splicing factor SF2: Homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators, Cell 66:383–394.

    PubMed  CAS  Google Scholar 

  • Kretzschmar, M., Meisterernst, M., Scheidereit, C., Li, G., and Roeder, R. G., 1992, Transcriptional regulation of the HIV-1 promoter by NF-KB in vitro, Genes Dev. 6:761–774.

    PubMed  CAS  Google Scholar 

  • Kuppuswamy, M., Subramanian, T., Srinivasan, A., and Chinnaduri, G., 1989, Multiple functional domains of tat, the trans-activator of HIV-1, defined by mutational analysis, Nucleic Acids Res. 17:3551–3661.

    PubMed  CAS  Google Scholar 

  • Landschulz, W. H., Johnston, P. F., and McKnight, S. L., 1988, The leucine zipper: A hypothetical structure common to a new class of DNA-binding proteins, Science 240:1259–1266.

    Google Scholar 

  • Laspia, M. F., Rice, A. P., and Matthews, M. B., 1989, HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation, Cell 59:282–292.

    Google Scholar 

  • Laspia, M. F., Rice, A. P., and Mathews, M. B., 1990, Synergy between HIV-1 tat and adenovirus E1A is principally due to stabilization of transcriptional elongation, Genes Dev. 4:2397–2408.

    PubMed  CAS  Google Scholar 

  • Laspia, M. F., Wendel, P., and Mathews, M. B., 1993, HIV-1 tat overcome inefficient transcriptional elongation in vitro, J. Mol. Biol. 232:732–746.

    PubMed  CAS  Google Scholar 

  • Laurence, J., Sellers, M. B., and Sikder, S. K., 1989, Effect of glucocorticoids on chronic human immunodeficiency virus (HIV) infection and HIV promoter-mediated transcription, Blood 74:291–297.

    PubMed  CAS  Google Scholar 

  • LeClair, K. P., Blanar, M. A., and Sharp, P. A., 1992, The p50 subunit of NF-KB associates with the NF-IL6 transcription factor, Proc. Natl. Acad. Sci. USA 89:8145–8149.

    PubMed  CAS  Google Scholar 

  • Lee, A. H., Lee, K. J., Kim, S., and Sung, Y. C., 1992, Transactivation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by the human foamy virus Bell protein requires a specific DNA sequence, J. Virol. 66:3236–3240.

    PubMed  CAS  Google Scholar 

  • Lee, C. W., Chang, J., Lee, K. J., and Sung, Y. C., 1994, The Bell protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids, J. Virol. 68:2708–2719.

    PubMed  CAS  Google Scholar 

  • Lee, J.-S., Galvin, K. M., and Shi, Y., 1993, Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1, Proc. Natl. Acad. Sci. USA 90:6145–6149.

    PubMed  CAS  Google Scholar 

  • Lee, K. J., Lee, A. H., and Sung, Y. C., 1993, Multiple positive and negative cis-acting elements that mediate transactivation by bell in the long terminal repeat of human foamy virus, J. Virol. 67:2317–2326.

    PubMed  CAS  Google Scholar 

  • Lee, W., Haslinger, A., Karin, M., and Tjian, R., 1987a, Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40, Nature 325:368–372.

    PubMed  CAS  Google Scholar 

  • Lee, W., Mitchell, P., and Tjian, R., 1987b, Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements, Cell 49:741–752.

    PubMed  CAS  Google Scholar 

  • Lee, W. S., Kao, C. C., Bryant, G. O., Liu, X., and Berk, A. J., 1991, Adenovirus E1A activation domain binds the basic repeat in the TATA-box transcription factor TFIID, Cell 67:365–376.

    PubMed  CAS  Google Scholar 

  • Leiden, J. M., Wang, C.-Y., Petryniak, B., Markovitz, D. M., Nabel, G. J., and Thompson, C. B., 1992, A novel Ets-related transcription factor, Elf-1, binds to human immunodeficiency virus type 2 regulatory elements that are required for inducible trans activation in T cells, J. Virol. 66:5890–5897.

    PubMed  CAS  Google Scholar 

  • Lenardo, M. J., and Baltimore, D., 1989, NF-KB: A pleiotropic mediator of inducible and tissue-specific gene control, Cell 58:227–229.

    PubMed  CAS  Google Scholar 

  • Lenardo, M., Pierce, J. W., and Baltimore, D., 1987, Protein binding sites in Ig gene enhancers determine transcriptional activity and inducibility, Science 236:1573–1577.

    PubMed  CAS  Google Scholar 

  • Lenardo, M. J., Fan, C.-M., Maniatis, T, and Baltimore, D., 1989, The involvement of NF-KB in β-interferon gene regulation reveals its role as widely inducible mediator of signal transduction, Cell 57:287–294.

    PubMed  CAS  Google Scholar 

  • Leonard, J., Parrott, C., Buckler-White, J., Turner, W, Ross, E. K., Martin, M. A., and Rabson, A. B., 1989, The NF-KB binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity, J. Virol. 63:4919–4924.

    PubMed  CAS  Google Scholar 

  • Leung, K., and Nabel, G. J., 1988, HTLV-I transactivator induces interleukin-2 receptor expression through an NF-KB-like factor, Nature 333:776–778.

    PubMed  CAS  Google Scholar 

  • Li, C., Lai, F., Sigman, D. S., and Gaynor, R. B., 1991, Cloning of a cellular factor, interleukin binding factor that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat, Proc. Natl. Acad. Sci. USA 88:7739–7743.

    PubMed  CAS  Google Scholar 

  • Li, C., Lusis, A. J., Sparkes, R., Tran, S.-M., and Gaynor, R., 1992, Characterization and chromosomal mapping of the gene encoding the cellular DNA binding protein HTLF, Genomics 13:658–664.

    PubMed  CAS  Google Scholar 

  • Li, R., and Botchan, M. R., 1993, The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication factor A and stimulate in vitro BPV-1 DNA replication, Cell 73:1207–1221.

    PubMed  CAS  Google Scholar 

  • Li, Y., Ross, J., Scheppler, J. A., and Franza, Jr., B. R., 1991, An in vitro transcription analysis of early responses of the human immunodeficiency virus type 1 long terminal repeat to different transcriptional activators, Mol. Cell. Biol. 11:1883–1893.

    PubMed  CAS  Google Scholar 

  • Lieberman, P. M., and Berk, A. J., 1991, The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction, Genes Dev. 5:2441–2454.

    PubMed  CAS  Google Scholar 

  • Lin, Y. S., and Green, M. R., 1991, Mechanism of action of an acidic transcriptional activator in vitro Cell 64:971–981.

    CAS  Google Scholar 

  • Lin, Y. S., Maldonaldo, E., Reinberg, D., and Green, M. R., 1991, Binding of general factor TFIIB to an acidic activating region, Nature 353:569–571.

    PubMed  CAS  Google Scholar 

  • Lindholm, P. F., Reid, R. L., and Brady, J. N., 1992, Extracellular tax1 protein stimulates tumor necrosis factor-β and immunoglobulin kappa light chain expression in lymphoid cells, J. Virol. 66:1294–1302.

    PubMed  CAS  Google Scholar 

  • Liu, F., and Green, M. R., 1994, Promoter targeting by adenovirus E1A through interactions with different cellular DNA-binding domains, Nature 368:520–525.

    PubMed  CAS  Google Scholar 

  • Lochelt, M., Zentgraf, H., and Flugel, R. M., 1991, Construction of an infectious DNA clone of the full-length human spumaretrovirus genome and mutagenesis of the bel 1 gene, Virology 184:43–54.

    PubMed  CAS  Google Scholar 

  • Lochelt, M., Muranyi, W., and Flugel, R. M., 1993a, Human foamy virus genome possesses an internal, bel-1-dependent and functional promoter, Proc. Natl. Acad. Sci. USA 90:7317–7321.

    PubMed  CAS  Google Scholar 

  • Lochelt, M., Aboud, M., and Flugel, R. M., 1993b. Increase in the basal transcriptional activity of the human foamy virus internal promoter by the homologous long terminal repeat promoter in cis, Nucleic Acids Res. 21:4226–4230.

    PubMed  CAS  Google Scholar 

  • Lochelt, M., Flugel, R. M., and Aboud, M., 1994, The human foamy virus internal promoter directs the expression of the functional bel 1 transactivator and Bet protein early after infection, J. Virol. 68:638–645.

    PubMed  CAS  Google Scholar 

  • Lu, X., Welsh, T. M., and Peterlin, B. M., 1993, The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by tat, J. Virol. 67:1752–1760.

    PubMed  CAS  Google Scholar 

  • Lu, Y., Stenzel, M., Sodroski, J. G., and Haseltine, W. A., 1989, Effects of long terminal repeat mutations on human immunodeficiency virus type 1 replication, J. Virol. 63:4115–4119.

    PubMed  CAS  Google Scholar 

  • Lu, Y., Touzjian, N., Stenzel, M., Dorfman, T., Sodroski, J. G., and Haseltine, W. A., 1990, Identification of cis-acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1, J. Virol. 64:5226–5229.

    PubMed  CAS  Google Scholar 

  • Lu, Y., Touzjian, N., Stenzel, M., Dorfman, T., Sodroski, J. G., and Haseltine, W. A., 1991, The NF-KB independent cis-acting sequences in HIV-1 LTR responsive to T-cell activation, J. Acquir. Immune Defic. Syndr. 4:173–177.

    PubMed  CAS  Google Scholar 

  • Lucibello, F. C., Neuberg, M., Hunter, J. B., Jenuwein, T., Schuermann, M., Wallich, R., Stein, B., Schonthal, A., Herrlich, P., and Muller, R., 1988, Transactivation of gene expression by fos protein: Involvement of a binding site for the transcription factor AP-1, Oncogene 3:43–51.

    CAS  Google Scholar 

  • Luciw, P. A., Cheng-Mayer, C., and Levy, J. A., 1987, Mutational analysis of the human immunodeficiency virus: The orf-B region down-regulates virus replication, Proc. Natl. Acad. Sci. USA 84:1434–1438.

    PubMed  CAS  Google Scholar 

  • Luo, Y., Yu, H., and Peterlin, B. M., 1994, Cellular protein modulates effects of human immunodeficiency virus type 1 Rev., J. Virol. 68:3850–3856.

    PubMed  CAS  Google Scholar 

  • Macleod, K., Leprince, D., and Stehelin, D., The ets gene family, Trends Biochem. Sci. 17:251–256.

    Google Scholar 

  • Maekawa, T., Sakura, H., Kanei-Ishii, C., Sudo, T., Yoshimura, T., Fujisawa, J., Yoshida, M., and Ishii, S., 1989, Leucine-zipper structure of the protein CRE-BP1 binding to the cycle AMP response element in brain, EMBO J. 8:2023–2328.

    PubMed  CAS  Google Scholar 

  • Maekawa, T., Sudo, T., Kurimoto, M., and Ishii, S., 1991, USF-related transcription factor, HIV-TF1, stimulates transcription of human immunodeficiency virus-1, Nucleic Acids Res. 19:4689–4694.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., Bohnlein, S., Hauber, J., and Cullen, B. R., 1989a, Functional dissection of the HIV-1 Rev trans-activator-derivation of a trans-dominant repressor of Rev function, Cell 58:205–214.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V., and Cullen, B. R., 1989b, The HIV-1 Rev trans-activator acts through a structured target sequence to activate nuclear transport of unspliced viral mRNA., Nature 338:254–257.

    PubMed  CAS  Google Scholar 

  • Malim, M. H., Tiley, L. S., McCarn, D. F., Rusche, F. R., Hauber, J., and Cullen, B. R., 1990, HIV-1 structural gene expression requires binding of the Rev trans-activator to its target sequence, Cell 60:675–683.

    PubMed  CAS  Google Scholar 

  • Marciniak, R. A., and Sharp, P. A., 1991, HIV-1 tat protein promotes formation of more-processive elongation complexes, EMBO J. 10:4189–4196.

    PubMed  CAS  Google Scholar 

  • Marciniak, R. A., Garcia-Blanco, M. A., and Sharp, P. A., 1990a, Identification and characterization of a HeLa nuclear protein that specifically binds to the trans-activation-response (TAR) element of human immunodeficiency virus, Proc. Natl. Acad. Sci. USA 87:3624–3628.

    PubMed  CAS  Google Scholar 

  • Marciniak, R. A., Calnan, B. J., Frankel, A. D., and Sharp, P. A., 1990b, HIV-1 tat protein trans-activates transcription in vitro, Cell 63:791–802.

    PubMed  CAS  Google Scholar 

  • Margolis, D. A., Somasundaran, M., and Green, M. R., 1994, Human transcription factor YY1 represses human immunodeficiency virus type 1 transcription and virion production, J. Virol. 68:905–910.

    PubMed  CAS  Google Scholar 

  • Mariani, R., and Skowronski, J., 1993, CD4 down-regulation by nef alleles isolated from human immunodeficiency type-infected individuals, Proc. Natl. Acad. Sci. USA 90:5549–5553.

    PubMed  CAS  Google Scholar 

  • Markovitz, D. A., Hannibal, M., Perez, V. L., Gauntt, C., Folks, T. M., and Nabel, G. J., 1990, Differential regulation of human immunodeficiency viruses (HIVs): A specific regulatory element in HIV-2 responds to stimulation of the T-cell antigen receptor, Proc. Natl. Acad. Sci. USA 87:9098–9102.

    PubMed  CAS  Google Scholar 

  • Markovitz, D. A., Hannibal, M. C., Smith, M. J., Cossman, R., and Nabel, G. J., 1992a, Activation of the human immunodeficiency virus type 1 enhancer is not dependent on NFAT-1, J. Virol. 66:3961–3965.

    PubMed  CAS  Google Scholar 

  • Markovitz, D. A., Smith, M. J., Hilfinger, J., Hannibal, M. C., Petryniak, B., and Nabel, G. J., 1992b, Activation of the human immunodeficiency virus type 2 enhancer is dependent on purine box and KB regulatory elements, J. Virol. 66:5479–5484.

    PubMed  CAS  Google Scholar 

  • Marriott, S. J., Lindholm, P. F., Brown, K. M., Gitlin, S. D., Duvall, J. R, Radonovich, M. R, and Brady, J. N., 1990, A 36-kilodalton cellular transcription factor mediates an indirect interaction of human T-cell leukemia/lymphoma virus type I Tax1 with a responsive element in the viral long terminal repeat, Mol. Cell. Biol. 10:4192–4201.

    PubMed  CAS  Google Scholar 

  • Matsusaka, T., Fujikawa, K., Nishio, Y., Mukaida, N., Matsushima, K., Kishimoto, T., and Akira, S., 1993, Transcription factors NF-IL6 and NF-KB synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8, Proc. Natl. Acad. Sci. USA 90:10193–10197.

    PubMed  CAS  Google Scholar 

  • Mattila, P. S., Ullman, K. S., Fiering, S., Emmel, E. A., McCutcheon, M., Crabtree, G. R., and Herzenberg, L. A., 1990, The actions of cyclosporin A and FK506 suggest a novel step in the activation of T lymphocytes, EMBO J. 9:4425–4433.

    PubMed  CAS  Google Scholar 

  • Maurer, B., Bannert, H., Darai, G., and Flugel, R. M., 1988, Analysis of the primary structure of the long terminal repeat and the gag and pol genes of the human spumaretrovirus, J. Virol. 62:1590–1597.

    PubMed  CAS  Google Scholar 

  • Maurer, B., Serfling, E., ter Meulen, V., and Rethwilm, A., 1991, Transcription factor AP-1 modulates the activity of the human foamy virus long terminal repeat, J. Virol. 65:6353–6357.

    PubMed  CAS  Google Scholar 

  • McCaffrey, P. G., Jain, J., Jamieson, C., Sen, R., and Rao, A., 1993a, A T cell nuclear factor resembling NF-AT binds to an NF-KB site and to the conserved lymphokine promoter sequence “cytokine-1,” J. Biol. Chem. 267:1864–1871.

    Google Scholar 

  • McCaffrey, P. G., Perrino, B. A., Soderling, T. R., and Rao, A., 1993b, NF-ATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs, J. Biol. Chem. 268:3747–3752.

    PubMed  CAS  Google Scholar 

  • McCaffrey, P. G., Luo, C., Kerppola, T. K., Jain, J., Badalian, T. M., Ho, A. M., Burgeon, E., Lane, W., Lambert, J. N., Curran, T., Verdine, G. L., Rao, A., and Hogan, P. G., 1993c, Isolation of the cyclosporin-sensitive T cell transcription factor NFATp, Science 262:750–754.

    PubMed  CAS  Google Scholar 

  • Means, A. L., and Farnham, P. J., 1990, Transcription initiation from the dihudrofolate reductase promoter is positioned by HIP1 binding at the initiation site, Mol. Cell. Biol. 10:653–661.

    PubMed  CAS  Google Scholar 

  • Meisterernst, M., and Roeder, R. G., 1991, Family of proteins that interact with TFIID and regulate promoter activity, Cell 67:557–567.

    PubMed  CAS  Google Scholar 

  • Meisterernst, M., Roy, A. L., Lieu, H. M., and Roeder, R. G., 1991, Activation of class II gene transcription by regulatory factors is potentiated by a novel activity, Cell 66:981–993.

    PubMed  CAS  Google Scholar 

  • Mercurio, R, and Karin, M., 1989, Transcription factors AP-3 and AP-2 interact with the SV 40 enhancer in a mutually exclusive manner, EMBO J. 8:1455–1460.

    PubMed  CAS  Google Scholar 

  • Meyer, R., Hatada, E. N., Hohmann, H.-R, Haiker, M., Bartsch, C., Roethlisberger, U., Lahm, H.-W., Schlaeger, E. J., van Loon, A. P. G. M., and Scheidereit, C., 1991, Cloning of the DNA-binding subunit of human nuclear factor KB: The level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha, Proc. Natl. Acad. Sci. USA 88:966–970.

    PubMed  CAS  Google Scholar 

  • Michael, N. L., D’arcy, L., Ehrenberg, P. K., and Redfield, R. R., 1994, Naturally occurring genotypes of the human immunodeficiency virus type 1 long terminal repeat display a wide range of basal and tat-induced transcriptional activities, J. Virol. 68:3163–3174.

    PubMed  CAS  Google Scholar 

  • Miller, M. D., Warmerdam, M. T., Gaston, I., Greene, W. C., and Feinberg, M. B., 1994, The human immunodeficiency virus-1 nef gene product: A positive factor for viral infection and replication in primary lymphocytes and macrophages, J. Exp. Med. 179:101–113.

    PubMed  CAS  Google Scholar 

  • Mitchell, P. J., Wang, C., and Tjian, R., 1987, Positive and negative regulation of transcription in vitro: Enhancer-binding protein AP-2 is inhibited by SV40 T antigen, Cell 50:847–861.

    PubMed  CAS  Google Scholar 

  • Mitra, D., Sikder, S., and Laurence, J., 1993, Inhibition of tat-activated, HIV-1 long terminal repeat-mediated gene expression by glucocorticoids, AIDS Res. Hum. Retroviruses 9:1055–1056.

    PubMed  CAS  Google Scholar 

  • Miyatake, S., Seiki, M., Malefijt, R. D., Heike, T., Fujisawa, J., Takebe, Y., Nishida, J., Shlomai, J., Yokota, T., Yoshida, M., Arai, K., and Arai, N., 1988, Activation of T cell-derived lymphokine genes in T cells and fibroblasts: Effects of human T cell leukemia virus type I p40x protein and bovine papilloma virus encoded E2 protein, Nucleic Acids Res. 16:6547–6566.

    PubMed  CAS  Google Scholar 

  • Molitor, J. A., Walker, W H., Doerre, S., Ballard, D. W, and Greene, W C., 1990, NF-KB: A family of inducible and differentially expressed enhancer-binding proteins in human T cells, Proc. Natl. Acad. Sci. USA 87:10028–10032.

    PubMed  CAS  Google Scholar 

  • Montagne, J., Beraud, C., Crenon, I., Platet, L., Gazzolo, A., Sergeant, A., and Jalinot, P., 1990, Tax1 induction of the HTLV-I 21bp enhancer requires cooperation between two cellular DNA-binding proteins, EMBO J. 9:957–964.

    PubMed  CAS  Google Scholar 

  • Muchardt, C., Seeler, J. S., Nirula, A., Gong, S., and Gaynor, R., 1992a, Transcription factor AP-2 activates gene expression of HTLV-I, EMBO J. 11:2573–2581.

    PubMed  CAS  Google Scholar 

  • Muchardt, C., Seeler, J. S., and Gaynor, R., 1992b, Regulation of HTLV-I gene expression by tax and AP-2, New Biol. 4:541–550.

    PubMed  CAS  Google Scholar 

  • Muchardt, C., Seeler, J. S., Nirula, A. J., Dixie-Lee, S., and Gaynor, R. B., 1992c, Regulation of human immunodeficiency virus enhancer function by PRDII-BF1 and c-rel gene products, J. Virol. 66:244–250.

    PubMed  CAS  Google Scholar 

  • Muesing, M. A., Smith, D. H., and Capon, D. J., 1987, Regulation of mRNA accumulation by a human immunodeficiency virus trans-activation protein, Cell 48:691–701.

    PubMed  CAS  Google Scholar 

  • Murphy, K. M., Sweet, M. J., Ross, I. L., and Hume, D. A., 1993, Effects of the tat and nef gene products of human immunodeficiency virus type 1 (HIV-1) on transcription controlled by the HIV-1 long terminal repeat and on cell growth in macrophages, J. Virol. 67:6956–6964.

    PubMed  CAS  Google Scholar 

  • Nabel, G., and Baltimore, D., 1987, An inducible transcription factor activates expression of human immunodeficiency virus in T cells, Nature 326:711–713.

    PubMed  CAS  Google Scholar 

  • Nabel, G. J., and Verma, I. M., 1993, Proposed NF-KB/IKB family nomenclature, Genes Dev. 7:2063.

    PubMed  CAS  Google Scholar 

  • Nagata, K., Ohtani, K., Nakamura, M., and Sugamura, K., 1989, Activation of endogenous c-fos proto-oncogene expression by human T-cell leukemia virus type I-encoded p40tax protein in the human T-cell line, Jurkat, J. Virol. 63:3220–3226.

    PubMed  CAS  Google Scholar 

  • Nelbock, P., Dillon, P. J., Perkins, A., and Rosen, C. A., 1990, A cDNA for a protein that interacts with the human immunodeficiency virus tat transactivator, Science 248:1650–1653.

    PubMed  CAS  Google Scholar 

  • Newstein, M., Stanbridge, E. J., Casey, G., and Shank, P. R., 1990, Human chromosome 12 encodes a species-specific factor which increases human immunodeficiency virus type 1 tat-mediated trans-activation in rodent cells, J. Virol. 64:4565–4567.

    PubMed  CAS  Google Scholar 

  • Niederman, T. M. J., Thielan, B. J., and Ratner, L., 1989, Human immunodeficiency virus type 1 negative factor is a transcriptional silencer, Proc. Natl. Acad. Sci. USA 86:1128–1132.

    PubMed  CAS  Google Scholar 

  • Niederman, T. M. J., Garcia, V, Hastings, W R., Luria, S., and Ratner, L., 1992, Human immunodeficiency virus type 1 Nef protein inhibits NF-KB induction in human T cells, J. Virol. 66:6213–6219.

    PubMed  CAS  Google Scholar 

  • Niederman, T. M. J., Hastings, W. R., Luria, S., Bandres, J. C., and Ratner, L., 1993, HIV-1 Nef protein inhibits the recruitment of AP-1 DNA-binding activity in human T-cells, Virology 194:338–344.

    PubMed  CAS  Google Scholar 

  • Nishio, Y., Ishiki, H., Kishimoto, T., and Akira, S., 1993, A nuclear factor for interleukin-6 expression (NF-IL6) and the glucocorticoid receptor synergistically activate transcription of the rat α1-acid glycoprotein gene via direct protein-protein interaction, Mol. Cell. Biol. 13:1854–1862.

    PubMed  CAS  Google Scholar 

  • Nolan, G. P., and Baltimore, D., 1992, The inhibitory ankyrin and activator Rel proteins, Curr. Opin. Genet. Dev. 2:211–220.

    PubMed  CAS  Google Scholar 

  • Nolan, G. P., Ghosh, S., Liou, H.-C., Tempst, P., and Baltimore, D., 1991, DNA binding and IKB inhibition of the cloned p65 subunit of NF-KB, a rel-related polypeptide, Cell 64:961–969.

    PubMed  CAS  Google Scholar 

  • Nolan, G. P., Fujita, T., Bhatia, K., Huppi, C., Liou, H.-C., Scott, M. L., and Baltimore, D., 1993, The bcl-3 proto-oncogene encodes a nuclear IKB-like molecule that preferentially interacts with NF-KB p50 and p52 in a phosphorylation-dependent manner, Mol. Cell. Biol. 13:3557–3566.

    PubMed  CAS  Google Scholar 

  • Northrop, J. P., Ullman, K. S., and Crabtree, G. R., 1993, Characterization of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NF-AT) complex, J. Biol. Chem. 268:2917–2923.

    PubMed  CAS  Google Scholar 

  • Northrop, J. P., Ho, S. N., Chen, L., Thomas, D. J., Timmerman, L. A., Nolan, G. P., Admon, A., and Crabtree, G. R., 1994, NF-AT components define a family of transcription factors targeted in T-cell activation, Nature 369:497–502.

    PubMed  CAS  Google Scholar 

  • Numata, N., Ohtani, K., Niki, M., Nakamura, M., and Sugamura, K., 1991, Synergism between two distinct elements of the HTLV-I enhancer during activation by the trans-activator of HTLV-I, New Biol. 3:896–906.

    PubMed  CAS  Google Scholar 

  • Nyborg, J. K., and Dynan, W. S., 1990, Interaction of cellular proteins with the human T-cell leukemia virus type I transcriptional control region, J. Biol. Chem. 265:8230–8236.

    PubMed  CAS  Google Scholar 

  • Nyborg, J. K., Dynan, W. S., Chen, I. S. Y., and Waschsman, W., 1988, Binding of host-cell factors to DNA sequences in the long terminal repeat of human T-cell leukemia virus type I: Implications for viral gene expression, Proc. Natl. Acad. Sci. USA 85:1457–1461.

    PubMed  CAS  Google Scholar 

  • Nyborg, J. K., Matthews, M.-A. H., Yucel, J., Walls, L., Golde, W. T., Dynan, W. S., and Wachsman, W., 1990, Interaction of host cell proteins with the human T-cell leukemia virus type I transcriptional control region, J. Biol. Chem. 265:8237–8242.

    PubMed  CAS  Google Scholar 

  • Ohana, B., Moore, P. A., Ruben, S. M., Southgate, C. D., Green, M. R., and Rosen, C. A., 1993, The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionary conserved genes, Proc. Natl. Acad. Sci. USA 90:138–142.

    PubMed  CAS  Google Scholar 

  • Ohno, H., Takimoto, G., and McKeithan, T. W., 1990, The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control, Cell 60:991–997.

    PubMed  CAS  Google Scholar 

  • Olsen, H. S., and Rosen, C. A., 1992, Contribution of the TATA motif to tat-mediated transcription activation of human immunodeficiency virus gene expression, J. Virol. 66:5594–5597.

    PubMed  CAS  Google Scholar 

  • Orchard, K., Perkins, N., Chapman, C., Harris, J., Emery, V., Goodwin, G., Latchman, D., and Collins, M., 1990, A novel T-cell protein recognizes a palindromic sequence in the negative regulatory element of the human immunodeficiency virus long terminal repeat, J. Virol. 64:3234–3239.

    PubMed  CAS  Google Scholar 

  • Orchard, K., Lang, G., Collins, M., and Latchman, D., 1992, Characterization of a novel T lymphocyte protein which binds to a site related to steroid/thyroid hormone receptor response elements in the negative regulatory sequence of the human immunodeficiency virus long terminal repeat, Nucleic Acids Res. 20:5429–5434.

    PubMed  CAS  Google Scholar 

  • Orchard, K., Lang, G., Harris, J., Collins, M., and Latchman, D., 1993, A palindromic element in the human immunodeficiency virus long terminal repeat binds retinoic acid receptors and can confer retinoic acid responsiveness on a heterologous promoter, J. Acquir. Immune Defic. Syndr. 6:440–446.

    PubMed  CAS  Google Scholar 

  • Osborn, L., Kunkel, S., and Nabel, G., 1989, Tumor necrosis factor-α and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor KB, Proc. Natl. Acad. Sci. USA 86:2336–2340.

    PubMed  CAS  Google Scholar 

  • Ou, S. H., Garcia-Martinez, L. F., Paulssen, E. T., and Gaynor, R. B., 1994, Role of flanking E box motifs in human immunodeficiency virus type 1 TATA function, J. Virol. 68:7188–7199.

    PubMed  CAS  Google Scholar 

  • Ou, S. H., Wu-Baer, F., Harrich, D., and Gaynor, R. B., 1995, Cloning and characterization of a novel cellular protein TDP-43 that binds to HIV I TAD DNA sequence motifs, J. Virol. 69:3584–3596.

    PubMed  CAS  Google Scholar 

  • Paca-Uccaralertkun, S., Zhao, L.-J., Adya, N., Cross, J. V., Cullen, B. R., Boros, I. M., and Giam, C-Z., 1994, In vitro election of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, tax, Mol. Cell. Biol. 14:456–462.

    PubMed  CAS  Google Scholar 

  • Panayiotakis, A., Hodge, D. R., Robinson, L., Watson, D. K., and Seth, A., 1993, Sequence-specific binding of the ETS 1 protein to the HIV-2 LTR enhancer, J. Viral Dis. 1:53–60.

    Google Scholar 

  • Park, H., Davies, M. V., Langland, J. O., Chang, H.-W, Nam, Y. S., Tartaglia, J., Paoletti, E., Jacobs, B. L., Kaufman, R. J., and Venkatesan, S., 1994, TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR, Proc. Natl. Acad. Sci. USA 91:4713–4717.

    PubMed  CAS  Google Scholar 

  • Parrott, C., Seigner, T., Duh, E., Leonard, J., Theodore, T. S., Buckler-White, A., Martin, M. A., and Rabson, A. B., 1991, Variable role of the long terminal repeat Spl-binding sites in human immunodeficiency virus replication in T lymphocytes, J. Virol. 65:1414–1419.

    PubMed  CAS  Google Scholar 

  • Pascal, E., and Tjian, R., 1991, Different activation domains of Spl govern formation of multimers and mediates transcriptional synergism, Genes Dev. 5:1646–1656.

    PubMed  CAS  Google Scholar 

  • Paskalis, H., Felber, B. K., and Pavlakis, G. N., 1986, Cis-acting sequences responsible for the transcriptional activation of human T-cell leukemia virus type I constitute a conditional enhancer, Proc. Natl. Acad. Sci. USA 83:6558–6562.

    PubMed  CAS  Google Scholar 

  • Perkins, N. D., Edwards N. L., Duckett, C. S., Agranoff, A. B., Schmid, R. M., and Nabel, G. J., 1993, A cooperative interaction between NF-KB and Spl is required for HIV-1 enhancer activation, EMBO J. 12:3551–3558.

    PubMed  CAS  Google Scholar 

  • Perkins, N. D., Agranoff, A. B., Duckett, C. S., and Nabel, G. J., 1994, Transcription factor AP-2 regulates human immunodeficiency virus type 1 gene expression, J. Virol. 68:6820–6823.

    PubMed  CAS  Google Scholar 

  • Peterson, M. G., Tanese, N., Pugh, B. F., and Tjian, R., 1990, Functional domains and upstream activation properties of a cloned human TATA binding protein, Science 248:1625–1630.

    PubMed  CAS  Google Scholar 

  • Poli, G., Kinter, A., Justement, J. S., Kehrl, J. H., Bressler, P., Stanley, S., and Fauci, A. S., 1990, Tumor necrosis factor a functions in an autocrine manner in the induction of human immunodeficiency virus expression, Proc. Natl. Acad. Sci. USA 87:782–785.

    PubMed  CAS  Google Scholar 

  • Poulin, L., and Levy, J. A., 1992, The HIV-1 nef gene product is associated with phosphorylation of a 46 kD cellular protein, AIDS 6:787–791.

    PubMed  CAS  Google Scholar 

  • Pugh, B. F., and Tjian, R., 1990, Mechanism of transcriptional activation by Spl: Evidence for coactivators, Cell 61:1187–1197.

    PubMed  CAS  Google Scholar 

  • Pugh, B. F., and Tjian, R., 1991, Transcription from a TATA-less promoter requires a multisubunit TFIID complex, Genes Dev. 5:1935–1945.

    PubMed  CAS  Google Scholar 

  • Purnell, B. A., and Gilmour, D. S., 1993, Contribution of sequences downstream of the TATA element to a protein-DNA complex containing the TATA-binding protein, Mol. Cell. Biol. 13:2593–2603.

    PubMed  CAS  Google Scholar 

  • Purnell, B. A., Emanuel, P. A., and Gilmour, D. S., 1994, TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class II genes, Genes Dev. 8:830–842.

    PubMed  CAS  Google Scholar 

  • Quinn, P. G., 1993, Distinct activation domains within cAMP response element-binding protein CREB mediate basal and cAMP-stimulated transcription, J. Biol. Chem. 268:16999–17009.

    PubMed  CAS  Google Scholar 

  • Ransone, L. J., Visvader, J., Sassone-Corsi, P., and Verma, I. M., 1989, Fos-June interaction: Mutational analysis of the leucine zipper domain of both proteins, Genes Dev. 3:770–781.

    PubMed  CAS  Google Scholar 

  • Ransone, L. J., Kerr, L. D., Schmitt, M. J., Wamsley, P., and Verma, I. M., 1993, The bZIP domains of Fos and Jun mediate a physical association with the TATA box-binding protein, Gene Exp. 3:37–48.

    CAS  Google Scholar 

  • Rao, A., 1994, NF-ATp: A transcription factor required for the co-ordinate induction of several cytokine genes, Immunol. Today 15:274–280.

    PubMed  CAS  Google Scholar 

  • Ratnasabapathy, R., Sheldon, M., and Hernandez, N., 1990, The HIV-1 long terminal repeat contains an usual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters, Gene Dev. 4:2061–2074.

    PubMed  CAS  Google Scholar 

  • Ratner, L., Haseltine, W. A., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Rafalski, A., Whitehorn, E. A., Baumeister, K., Ivanoff, L., Petteway, Jr., S. R., Pearson, M. L., Lautenberger, J. A., Papas, T. S., Ghrayeb, J., Chang, N. T., Gallo, R. C., and Wong-Staal, F., 1985, Complete nucleotide sequence of the AIDS virus, HTLV-III, Nature 313:277–284.

    PubMed  CAS  Google Scholar 

  • Rauscher III, F. J., Sambucetti, L. C., Curran, T., Distel, R. J., and Spiegelman, B. M., 1988a, A common DNA binding site for Fos protein complexes and transcription factor AP-1, Cell 52:471–480.

    PubMed  CAS  Google Scholar 

  • Rauscher III, F. J., Cohen, D. R., Curran, T., Bos, T. J., Vogt, P. K., Bohmann, D., Tjian, R., and Franza Jr., B. R., 1988b, Fos-associated protein (p39) is the product of jun proto-oncogene, Science 240:1010–1016.

    PubMed  CAS  Google Scholar 

  • Reinberg, D., Horikoshi, M., and Roeder, R. G., 1987, Factors involved in specific transcription in mammalian RNA polymerase II, J. Biol. Chem. 262:3322–3330.

    PubMed  CAS  Google Scholar 

  • Rethwilm, A., Darai, G., Rosen, A., Maurer, B., and Flugel, R. M., 1987, Molecular cloning of the genome of human spumaretroviruses, Gene 59:19–28.

    PubMed  CAS  Google Scholar 

  • Rethwilm, A., Mori, K., Maurer, B., and ter Meulen, V, 1990, Transacting transcriptional activation of human spumaretrovirus LTR in infected cells, Virology 175:568–571.

    PubMed  CAS  Google Scholar 

  • Rethwilm, A., Erlwein, O., Baunach, G., Maurer, B., and ter Meulen, V., 1991, The transcriptional transactivator of human foamy virus maps to the bel 1 genomic region, Proc. Natl. Acad. Sci. USA 88:941–945.

    PubMed  CAS  Google Scholar 

  • Rhim, H., and Rice, A. P., 1993, TAR RNA binding properties and relative transcription activites of human immunodeficiency virus type 1 and 2 Tat proteins, J. Virol. 67:1110–1121.

    PubMed  CAS  Google Scholar 

  • Ritchie, H. H., Wang, L.-H., Tsai, S. Y., O’Malley, B. W., and Tsai, M.-J., 1990, COUP-TF gene: A structure unique for the steroid/thyroid receptor superfamily, Nucleic Acids Res. 18:6857–6862.

    PubMed  CAS  Google Scholar 

  • Riviere, Y., Blank, V., Kourilsky, P., and Israel, A., 1991, Processing of the precursor of NF-KB by the HIV-1 protease during acute infection, Nature 350:625–626.

    PubMed  CAS  Google Scholar 

  • Roederer, M., Staal, F. J. T., Raju, P. A., Ela, S. W., Herzenberg, L. A., and Herzenberg, L. A., 1990, Cytokine-stimulated human immunodeficiency virus replication is inhibited by N-acetyl-L-cysteine, Proc. Natl. Acad. Sci. USA 87:4884–4888.

    PubMed  CAS  Google Scholar 

  • Rosen, C. A., Sodroski, J. G., and Haseltine, W. A., 1985a, Location of cis-acting regulatory sequences in the human T-cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat, Cell 41:813–823.

    PubMed  CAS  Google Scholar 

  • Rosen, C. A., Sodroski, J. G., and Haseltine, W. A., 1985b, Location of cis-acting regulatory sequences in the human T-cell leukemia virus type I long terminal repeat, Proc. Natl. Acad. Sci. USA 82:6502–650.

    PubMed  CAS  Google Scholar 

  • Rosen, C. A., Park, R., Sodroski, J. G., and Haseltine, W. A., 1987, Multiple sequence elements are required for regulation of human T-cell leukemia virus gene expression, Proc. Natl. Acad. Sci. USA 84:4919–4923.

    PubMed  CAS  Google Scholar 

  • Ross, E. K., Buckler-White, A. J., Rabson, A. B., Englund, G., and Martin, M. A., 1991, Contribution of NF-KB and Spl binding motifs to the replicative capacity of human immunodeficiency virus type 1: Distinct patterns of viral growth are determined by T-cell types, J. Virol. 65:4350–4358.

    PubMed  CAS  Google Scholar 

  • Rounseville, M. P., and Kumar, A., 1992, Binding of a host cell nuclear protein to the stem region of human immunodeficiency virus type 1 trans-activation-responsive RNA., J. Virol. 66:1688–1694.

    PubMed  CAS  Google Scholar 

  • Roy, A. L., Meisterernst, M., Pognonec, P., and Roeder, R. G., 1991, Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF, Nature 354:245–248.

    PubMed  CAS  Google Scholar 

  • Roy, A. L., Malik, S., Meisterernst, M., and Roeder, R. G., 1993, An alternate pathway for transcription initiation involving TFII-I, Nature 365:355–359.

    PubMed  CAS  Google Scholar 

  • Roy, S., Delling, U., Chen, C.-H., Rosen, C. A., and Sonenberg, N., 1990a, A bulge structure in HIV-1 TAR RNA is required for tat binding and tat-mediated trans-activation, Genes Dev. 4:1365–1373.

    PubMed  CAS  Google Scholar 

  • Roy, S., Parkin, N. T, Rosen, C., Itovitch, J., and Sonenberg, N., 1990b, Structural requirements for trans activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: Importance of base pairing, loop sequence, and bulge in the tat-responsive sequence, J. Virol. 64:1402–1406.

    PubMed  CAS  Google Scholar 

  • Ruben, S., Poteat, H., Tan, T.-H., Kawakami, K., Roeder, R., Haseltine, W, and Rosen, C. A., 1988, Cellular transcription factors and regulation of IL-2 receptor gene expression by HTLV-I tax gene product, Science 241:89–91.

    PubMed  CAS  Google Scholar 

  • Ruben, S., Perkins, A., Puecell, R., Joung, K., Sia, R., Burghoff, R., Haseltine, W. A., and Rosen, C. A., 1989, Structural and functional characterization of human immunodeficiency virus Tat protein, J. Virol. 63:1–8.

    PubMed  CAS  Google Scholar 

  • Ruben, S. M., Dillon, P. J., Schreck, R., Henkel, T., Chen, C.-H., Maher, M., Baeurle, P. A., and Rosen, C. A., 1991, Isolation of a rel-related human cDNA that potentially encodes the 65-kD subunit of NF-KB, Science 251:1490–1493.

    PubMed  CAS  Google Scholar 

  • Ruhl, M., Himmelspach, M., Bahr, G. M., Hammerschmid, F., Jaksche, H., Wolff, B., Aschauer, H., Farrington, G. K., Probst, H., Bevec, D., and Hauber, J., 1993, Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation, J. Cell. Biol. 123:1309–1320.

    PubMed  CAS  Google Scholar 

  • Ruppert, J. M., Vogelstein, B., Arheden, K., and Kinzler, K. W, 1990, GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity, Mol. Cell. Biol. 10:5408–5415.

    PubMed  CAS  Google Scholar 

  • Ruppert, J. M., Vogelstein, B., and Kinzler, K. W, 1991, The zinc finger GLI transforms primary cells in cooperation with adenovirus E1A., Mol. Cell. Biol. 11:1724–1728.

    PubMed  CAS  Google Scholar 

  • Ruppert, S., Wang, E. H., and Tjian, R., 1993, Cloning and expression of human TAFII 250: A TBP-associated factor implicated in cell-cycle regulation, Nature 362:175–179.

    PubMed  CAS  Google Scholar 

  • Sagami, I., Tsai, S. Y., Wang, H., Tsai, T.-J., and O’Malley, B. W., 1986, Identification of two factors required for transcription of the ovalbumin gene, Mol. Cell. Biol. 6:4259–4267.

    PubMed  CAS  Google Scholar 

  • Saib, A., Peries, J., and de The, H., 1993, A defective human foamy provirus generated by pregenome splicing, EMBO J. 12:4439–4444.

    PubMed  CAS  Google Scholar 

  • Saksela, K., Stevens, C., Rubinstein, P., and Baltimore, D., 1994, Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the number of CD4+ lymphocytes, Proc. Natl. Acad. Sci. USA 91:1104–1108.

    PubMed  CAS  Google Scholar 

  • Sanchez-Pescador, R., Power, M. D., Barr, P. J., Steimer, K. S., Stempien, M. M., Brown-Shimer, S. L., Gee, W. W, Renard, A., Randolph, A., Levy, J. A., Dina, D., and Luciw, P. A., 1985, Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2), Science 227:484–492.

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi, P., Lamph, W. W, Kamps, M., and Verma, I. M., 1988a, fos-Associated cellular p39 is related to nuclear transcription factor AP-1, Cell 54:553–560.

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi, P., Ransone, L. J., Lamph, W. W, and Verma, I. M., 1988b, Direct interaction between Fos and Jun nuclear oncoproteins: Role of the “leucine zipper” domain, Nature 336:692–695.

    PubMed  CAS  Google Scholar 

  • Sawadogo, M., and Roeder, R. G., 1985, Interaction of a gene specific transcription factor with the major late promoter of the TATA box region, Cell 43:165–175.

    PubMed  CAS  Google Scholar 

  • Sawai, E. T., Baur, A., Struble, H., Peterlin, B. M., Levy, J. A., and Cheng-Mayer, C., 1994, Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes, Proc. Natl. Acad. Sci. USA 91:1539–1543.

    PubMed  CAS  Google Scholar 

  • Schmid, R. M., Perkins, N. D., Duckett, C. S., Andrews, P. C., and Nabel, G. J., 1991, Cloning of an NF-KB subunit which stimulates HIV transcription in synergy with p65, Nature 352:733–736.

    PubMed  CAS  Google Scholar 

  • Schmitz, M. L., and Baeuerle, P. A., 1991, The p65 subunit is responsible for the strong transcription activating potential of NF-KB, EMBO J. 10:3805–3817.

    PubMed  CAS  Google Scholar 

  • Schreck, R., Rieber, P., and Baeuerle, P. A., 1991, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-KB transcription factor and HIV-1, EMBO J. 10:2247–2258.

    PubMed  CAS  Google Scholar 

  • Schreiber, S. L., 1992, Immunophilin-sensitive protein phosphatase action in cell signalling pathways, Cell 70:365–368.

    PubMed  CAS  Google Scholar 

  • Schuermann, M., Neuberg, M., Hunter, J. B., Jenuwein, T., Ryseck, R.-P., Bravo, R., and Muller, R., 1989, The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation, Cell 56:507–516.

    PubMed  CAS  Google Scholar 

  • Schule, R., Rangarajan, P., Kliewer, S., Ransone, L. J., Bolado, J., Yang, N., Verma, I. M., and Evans, R. M., 1990, Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor, Cell 62:1217–1226.

    PubMed  CAS  Google Scholar 

  • Schwartz, O., Riviere, Y., Heard, J.-M., and Danos, O., 1993, Reduced cell surface expression of processed human immunodeficiency virus type 1 envelope glycoprotein in the presence of Nef, J. Virol. 67:3274–3280.

    PubMed  CAS  Google Scholar 

  • Schwartz, S., Felber, B. K., Benko, D. M., Fenyo, E. M., and Pavalakis, G. N., 1990, Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1, J. Virol. 64:2519–2529.

    PubMed  CAS  Google Scholar 

  • Scott, M. L., Fujita, T, Liou, H.-C., Nolan, G. P., and Baltimore, D., 1993, The p65 subunit of NF-KB regulate IKB by two distinct mechanisms, Genes Dev. 7:1266–1276.

    PubMed  CAS  Google Scholar 

  • Seeler, J.-S., Muchardt, C., Podar, M., and Gaynor, R. B., 1993, Regulatory elements involved in Tax-mediated transactivation of the HTLV-I LTR, Virology 196:442–450.

    PubMed  CAS  Google Scholar 

  • Seeler, J.-S., Muchardt, C., Suessle, A., and Gaynor, R., 1994, Transcription factor PRDII-BF1 activates human immunodeficiency virus type 1 gene expression, J. Virol. 68:1002–1009.

    PubMed  CAS  Google Scholar 

  • Seiki, M., Hattori, S., Hirayama, Y., and Yoshida, M., 1983, Human adult T-cell leukemia virus: Complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA., Proc. Natl. Acad. Sci. USA 80:3618–3622.

    PubMed  CAS  Google Scholar 

  • Selby, M. J., Bain, E. S., Luciw, P. A., and Peterlin, B. M., 1989, Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat, Genes Dev. 3:547–558.

    PubMed  CAS  Google Scholar 

  • Sen, R., and Baltimore, D., 1986a, Inducibility of K immunoglobulin enhancer-binding protein NF-KB by a posttranslational mechanism, Cell 47:921–928.

    PubMed  CAS  Google Scholar 

  • Sen, R., and Baltimore, D., 1986b, Multiple nuclear factors interact with the immunoglobin enhancer sequences, Cell 46:705–716.

    PubMed  CAS  Google Scholar 

  • Seth, A., Hodge, D. R., Thompson, D. M., Robinson, L., Panayiotakis, A., Watson, D. K., and Papas, T. S., 1993, ETS family proteins activate transcripton from HIV-1 long terminal repeat, AIDS Res, Hum. Retroviruses 9:1017–1023.

    CAS  Google Scholar 

  • Seto, E., Shi, Y., and Shenk, T., 1991, YY1 is an initiator sequence-binding protein protein that directs and activates transcription in vitro, Nature 354:241–245.

    PubMed  CAS  Google Scholar 

  • Seto, E., Lewis, B., and Shenk, T., 1993, Interaction between transcription factors Sp1 and YY1, Nature 365:462–464.

    PubMed  CAS  Google Scholar 

  • Shah, N. P., Wachsman, W., Cann, A. J., Souza, L., Slamon, D. J., and Chen, I. S. Y., 1986, Comparison of the trans-activation capabilities of the T-cell leukemia virus type I and II x proteins, Mol. Cell. Biol. 6:3626–3631.

    PubMed  CAS  Google Scholar 

  • Shaw, J.-P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A., and Crabtree, G. R., 1988, Identification of a putative regulator of early T cell activation genes, Science 241:202–205.

    PubMed  CAS  Google Scholar 

  • Sheldon, M., Ratnasabapathy, R., and Hernandez, N., 1993, Characterization of the inducer of short transcripts, a human immunodeficiency virus type 1 transcriptional element that activates the synthesis of short RNAs, Mol. Cell. Biol. 13:1251–1263.

    PubMed  CAS  Google Scholar 

  • Sheline, C. T., Milocco, L. H., and Jones, K. A., 1991, Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR hairpin, Genes Dev. 5:2508–2520.

    PubMed  CAS  Google Scholar 

  • Shi, Y., Seto, E., Chang, L.-S., and Shenk, T., 1991, Transcriptional represssion by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein, Cell 67:377–388.

    PubMed  CAS  Google Scholar 

  • Shibuya, H., Irie, K., Ninomiya, T. J., Goebl, M., Taniguchi, T., and Matsumoto, K., 1992, New human gene encoding a positive modulator of HIV tat-mediated transactivation, Nature 357:700–702.

    PubMed  CAS  Google Scholar 

  • Shimotohno, K., Golde, D. W., Miwa, M., and Sugimura, T., and Chen, I. S. Y., 1984, Nucleotide sequence analysis of the long terminal repeat of human T-cell leukemia virus type II, Proc. Natl. Acad. Sci. USA 81:1079–1083.

    PubMed  CAS  Google Scholar 

  • Shimotohno, K., Takano, M., Teruuchi, T., and Miwa, M., 1986, Requirement of multiple copies of a 21-nucleotide sequence in the U3 regions of human T-cell leukemia virus type I and type II long terminal repeats for transacting activation of transcription, Proc. Natl. Acad. Sci. USA 83:8112–8116.

    PubMed  CAS  Google Scholar 

  • Siekevitz, M. S., Josephs, S. E., Dukovich, M., Peffer, N., Wong-Staal, E., and Greene, W. C., 1987a, Activation of the HIV-1 LTR by T cell mitogens and the transactivator protein of HTLV-I, Science 238:1575–1578.

    PubMed  CAS  Google Scholar 

  • Siekevitz, M., Feinberg, M. B., Holbrook, N., Wong-Staal, F., and Greene, W. C., 1987b, Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I, Proc. Natl. Acad. Sci. USA 84:5389–5393.

    PubMed  CAS  Google Scholar 

  • Singh, H., LeBowitz, J. H., Baldwin, A. S., and Sharp, P. A., 1988, Molecular cloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA., Cell 52:415–423.

    PubMed  CAS  Google Scholar 

  • Smale, S. T., and Baltimore, D., 1989, The “initiator” as a transcriptional element, Cell 57:103–113.

    PubMed  CAS  Google Scholar 

  • Smale, S. T., Schmidt, M. C., Berk, A. J., and Baltimore, D., 1990, Transcriptional activation by Spl as directed through TATA or initiator: Specific requirement for mammalian transcription factor IID, Proc. Natl. Acad. Sci. USA 87:4509–4513.

    PubMed  CAS  Google Scholar 

  • Smith, C. A., Bates, P., Rivera-Gonzalez, Ramon, Gu, B., and DeLuca, N. A., 1993, ICP4, the major transcriptional regulatory protein of herpes simplex virus type 1, forms a tripartite complex with TATA-binding protein and TFIIB, J. Virol. 67:4676–4687.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., and Greene W. C., 1989, The same 50-kDa cellular protein binds to the negative regulatory elements of the interleukin 2 receptor α-chain gene and the human immunodeficiency virus type 1 long terminal repeat, Proc. Natl. Acad. Sci. USA 86:8526–8530.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., and Greene, W. C., 1991, Molecular biology of the type 1 human T-cell leukemia virus (HTLV-I) and adult T-cell leukemia, J. Clin. Invest. 87:761–766.

    PubMed  CAS  Google Scholar 

  • Sodroski, J. G., Rosen, C. A., and Haseltine, W. A., 1984a, Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells, Science 225:381–385.

    PubMed  CAS  Google Scholar 

  • Sodroski, J., Trus, M., Perkins, D., Patarca, R., Wong-Staal, F., Gelmann, E., Gallo, R. C., and Haseltine, W., 1984b, Repetitive structure in the long-terminal-repeat of a type II human T-cell leukemia virus, Proc. Natl. Acad. Sci. USA 81:4617–4621.

    PubMed  CAS  Google Scholar 

  • Southgate, C. D., and Green, M., 1991, The HIV-1 tat protein activates transcription from an upstream DNA-binding site: Implications for tat function, Genes Dev. 5:2496–2507.

    PubMed  CAS  Google Scholar 

  • Starcich, B., Ratner, L., Josephs, S. R, Okamoto, T., Gallo, R. C., and Wong-Staal, R, 1985, Characterization of long terminal repeat sequences of HTLV-III, Science 227:538–540.

    PubMed  CAS  Google Scholar 

  • Stein, B., Rahmsdorf, H. J., Steffen, A., Litfin, M., and Herrlich, P., 1989, UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein, Mol. Cell. Biol. 9:5169–5181.

    PubMed  CAS  Google Scholar 

  • Stein, B., Cogswell, P. C., and Baldwin, Jr., A. S., 1993a, Functional and physical associations between NF-KB and C/EBP family members: A rel domain-bZIP interaction, Mol. Cell. Biol. 13:3964–3974.

    PubMed  CAS  Google Scholar 

  • Stein, B., Baldwin, Jr., A., Ballard, D. W., Greene, W. C., Angel, P., and Herrlich, P., 1993b, Cross-coupling of the NF-KB p65 and Fos/Jun transcription factors produces potential biological function, EMBO J. 12:3879–3891.

    PubMed  CAS  Google Scholar 

  • Su, W., Jackson, S., Tjian, R., and Echols, H., 1991, DNA looping between sites for transcriptional activation: Self-associated of DNA-bound Sp1, Genes Dev. 5:820–826.

    PubMed  CAS  Google Scholar 

  • Subler, M. A., Martin, D. W., and Deb, S., 1992, Inhibition of viral and cellular promoters by human wild-type p53, J. Virol. 66:4757–4762.

    PubMed  CAS  Google Scholar 

  • Subler, M. A., Martin, D. W., and Deb, S., 1994, Activation of the human immunodeficiency virus type 1 long terminal repeat by transforming mutants of human p53, J. Virol. 68:103–110.

    PubMed  CAS  Google Scholar 

  • Sun, S.-C., Ganchi, P. A., Ballard, D. W., and Greene, W. C., 1993, NF-KB controls expression of inhibitor IKBα: Evidence for an inducible autoregulatory pathway, Science 259:1912–1915.

    PubMed  CAS  Google Scholar 

  • Suzuki, T., Fujisawa, J., Toita, M., and Yoshida, M., 1993, The trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) interacts with cAMP-responsive element (CRE) binding and CRE modulator proteins that bind to the 21-base-pair enhancer of HTLV-I, Proc. Natl. Acad. Sci. USA 90:610–614.

    PubMed  CAS  Google Scholar 

  • Swaffield, J. C., Bromberg, J. F., and Johnston, S. A., 1992, Alterations in a yeast protein resembling HIV tat-binding protein relieve requirement for an acidic activation domain in GAL4, Nature 357:698–700.

    PubMed  CAS  Google Scholar 

  • Tanimura, A., Teshima, H., Fujisawa, J.-L, and Yoshida, M., 1993, A new regulatory element that augments the tax-dependent enhancer of human T-cell leukemia virus type 1 and cloning of cDNAs encoding its binding proteins, J. Virol. 67:5375–5382.

    PubMed  CAS  Google Scholar 

  • Terwilliger, E., Sodroski, J. G., Rosen, C. A., and Haseltine, W. A., 1986. Effects of mutations within the 3′ orf open reading frame region of human T-cell lymphotropic virus type III (VTLV-III/LAV) on replication and cytopathogenicity, J. Virol. 60:754–760.

    PubMed  CAS  Google Scholar 

  • Tesmer, V. M., Rajadhyaksha, A., Babin, J., and Bina, M., 1993, NF-IL6-mediated transcriptional activation of the long terminal repeat of the human immunodeficiency virus type 1, Proc. Natl. Acad. Sci. USA 90:7298–7302.

    PubMed  CAS  Google Scholar 

  • Thompson, C. B., Wang, C.-Y., Ho., I.-C., Bohjanen, P. R., Petryniak, B., June, C. H., Miesfeldt, S., Zhang, L., Nabel, G. J., Karpinski, B., and Leiden, J. M., 1992, Cis-acting sequences required for inducible interleukin-2 enhancer function bind a novel ets-related protein, Elf-1, Mol. Cell. Biol. 12:1043–1053.

    PubMed  CAS  Google Scholar 

  • Tjian, R., and Maniatis, T., 1994, Transcriptional activation: A complex puzzle with few easy pieces, Cell 77:5–8.

    PubMed  CAS  Google Scholar 

  • Tokumitsu, H., Masuda, E. S., Tsuboi, A., Arai, K., and Arai, N., 1993, Purification of the 120 kDa component of the human nuclear factor of activated T cells (NF-AT): Reconstitution of binding activity to the cis-acting element of the GM-CSF and IL-2 promoter with AP-1, Biochem. Biophys. Res. Commun. 196:737–744.

    PubMed  CAS  Google Scholar 

  • Tong-Starksen, S. E., Luciw, P. A., and Peterlin, B. M., 1987, Human immunodeficiency virus long terminal repeat responds to T-cell activation signals, Proc. Natl. Acad. Sci. USA 84:6845–6849.

    PubMed  CAS  Google Scholar 

  • Tong-Starksen, S. E., Luciw, P. A., and Peterlin, B. M., 1989, Signalling through T-lymphocyte surface proteins, TCR/CD3 and CD28, activates the HIV-1 long terminal repeat, J. Immunol. 142:702–707.

    CAS  Google Scholar 

  • Tong-Starksen, S. E., Welsh, T. M., and Peterlin, B. M., 1990, Differences in transcriptional enhancers of HIV-1 and HIV-2 response to T cell activation signals, J. Immunol. 145:4348–4354.

    PubMed  CAS  Google Scholar 

  • Toohey, M. G., and Jones, K. A., 1989, In vitro formation of short RNA polymerase II transcripts that terminate within the HIV-1 and HIV-2 promoter-proximal downstream regions, Genes Dev. 3:265–282.

    PubMed  CAS  Google Scholar 

  • Travis, A., Amsterdam, A., Belanger, C., and Groochedl, R., 1991, LEF-1, a gene encoding a lymphoid-specific protein, with an HMG domain, regulates T-cell receptor a enhancer function, Genes Dev. 5:880–894.

    PubMed  CAS  Google Scholar 

  • Trono, D., and Baltimore, D., 1990, A human cell factor is essential for HIV-1 Rev function, EMBO J. 9:4155–4160.

    PubMed  CAS  Google Scholar 

  • Tsai, S. Y., Sagami, I., Wang, H., Tsai, M.-J., and O’Malley, B. W, 1987, Interactions between a DNA-binding transcription factor (COUP) and a non-DNA binding factor (S300-II), Cell 50:701–709.

    PubMed  CAS  Google Scholar 

  • Tsujimoto, A., Nyunoya, H., Morita, T., Sato, T., and Shimotohno, K., 1991, Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I, J. Virol. 65:1420–1426.

    PubMed  CAS  Google Scholar 

  • Tsunetsugu-Yokota, Y., Matuda, S., Maekawa, M., Saito, T., Takemori, T., and Takebe, Y., 1992, Constitutive expression of the nef gene supresses human immunodeficiency virus type 1 (HIV-1) replication in monocytic cell lines, Virology 191:960–963.

    PubMed  CAS  Google Scholar 

  • Turpin, J. A., Vargo, M., and Meltzer, M. S., 1992, Enhanced HIV-1 replication in retinoid-treated monocytes, J. Immunol. 148:2539–2546.

    PubMed  CAS  Google Scholar 

  • Urban, M. B., Schreck, R., and Baeuerle, P. A., 1991, NF-KB contacts DNA by a heterodimer of the p50 and p65 subunit, EMBO J. 10:1817–1825.

    PubMed  CAS  Google Scholar 

  • Usheva, A., and Shenk, T., 1994, TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA., Cell 76:1115–1121.

    PubMed  CAS  Google Scholar 

  • Vaishnav, Y. N., Vaishnav, M., and Wong-Staal, F., 1991, Identification and characterization of a nuclear factor that specifically binds to the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), New Biol. 3:142–150.

    PubMed  CAS  Google Scholar 

  • Valerie, K., Delers, A., Bruck, C., Thiriart, B., Rosenberg, H., Debouck, C., and Rosenberg, M., 1988, Activation of human immunodeficiency virus type 1 by DNA damage in human cells, Nature 335:78–81.

    Google Scholar 

  • van de Wetering, M., and Clevers, H., 1992, Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix, EMBO J. 11:3039–3044.

    PubMed  Google Scholar 

  • van de Wetering, M., Oosterwegel, M., Dooijes, D., and Clevers, H., 1991, Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box, EMBO J. 10:123–132.

    PubMed  Google Scholar 

  • Venkatesh, L. K., and Chinnadurai, G., 1993, The carboxy-terminal transcription enhancement region of the human spumaretrovirus transactivator contains discrete determinants of the activator function, J. Virol. 67:3868–3876.

    PubMed  CAS  Google Scholar 

  • Venkatesh, L. K., Theodorakis, P. A., and Chinnadurai, G., 1991, Distinct cis-acting regions in U3 regulates trans-activation of the human spumaretrovirus long terminal repeat by the bell gene product, Nucleic Acids Res. 19:3661–3666.

    PubMed  CAS  Google Scholar 

  • Venkatesh, L. K., Yang, C., Theodorakis, P. A., and Chinnadurai, G., 1993, Functional dissection of the human spumaretrovirus transactivator identifies distinct classes of dominant-negative mutants, J. Virol. 67:161–169.

    PubMed  CAS  Google Scholar 

  • Verrijzer, C. P., Yokomori, K., Chen, J.-L., and Tjian, R., 1994, Drosophila TAFII 150: Similarity to yeast gene TSM-1 and specific binding to core promoter DNA., Science 264:933–941.

    PubMed  CAS  Google Scholar 

  • Vinson, C. R., LaMarco, K. L., Johnson, P. F., Landschulz, W. H., and McKnight, S. L., 1988, In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage, Genes Dev. 2:801–806.

    PubMed  CAS  Google Scholar 

  • Wagner, S., and Green, M. R., 1993, HTLV-I tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization, Science 262:395–399.

    PubMed  CAS  Google Scholar 

  • Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S., and Alizon, M., 1985, Nucleotide sequence of the AIDS virus LAV, Cell 40:9–17.

    PubMed  CAS  Google Scholar 

  • Wang, J. C., and Van Dyke, M. W., 1993, Initiator sequences direct downstream promoter binding by human transcription factor IID, Biochim. Biophys. Acta. 1216:73–80.

    PubMed  CAS  Google Scholar 

  • Wang, L.-H., Tsai, S. Y., Cook, R. G., Beattle, W G., Tsai, M.-J., and O’Malley, B. W, 1989, COUP transcription factor is a member of the steroid receptor superfamily, Nature 340:163–166.

    PubMed  CAS  Google Scholar 

  • Wasylyk, B., Wasylyk, C., Flores, P., Begue, A., Leprince, D., and Stehelin, D., 1990, The c-ets proto-oncogene encode transcription factors that cooperate with c-Fos and c-Jun for transcription activation, Nature 346:191–193.

    PubMed  CAS  Google Scholar 

  • Waterman, M. L., and Jones, K. A., 1990, Purification of TCF-1α, a T-cell-specific transcription factor that activates the T-cell receptor Cα gene enhancer in a context-dependent manner, New Biol. 2:621–636.

    PubMed  CAS  Google Scholar 

  • Waterman, M. L., Fischer, W. H., and Jones, K. A., 1991, A thymus-specific member of the HMG protein family regulates the human T cell receptor Ca enhancer, Genes Dev. 5:656–669.

    PubMed  CAS  Google Scholar 

  • Weeks, S. M., and Crothers, D. M., 1991, RNA recognition by tat-derived peptides: Interaction in the major groove? Cell 66:577–588.

    PubMed  CAS  Google Scholar 

  • Williams, T., and Tjian, R., 1991a, Characterization of a dimerization motif in AP-2 and its function in heterologous DNA-binding proteins, Science 251:1067–1071.

    PubMed  CAS  Google Scholar 

  • Williams, T., and Tjian, R., 1991b, Analysis of the DNA-binding and activation properties of the human transcription factor AP-2, Genes Dev. 5:670–682.

    PubMed  CAS  Google Scholar 

  • Williams, T., Admon, A., Luscher, B., and Tjian, R., 1988, Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements, Genes Dev. 2:1557–1569.

    PubMed  CAS  Google Scholar 

  • Wu, F., Garcia, J., Matsuyasu, R., and Gaynor, R., 1988a, Alterations in binding characteristics of the human immunodeficiency virus enhancer factor, J. Virol. 62:218–225.

    PubMed  CAS  Google Scholar 

  • Wu, F. K., Garcia, J. A., Harrich, D., and Gaynor, R. B., 1988b, Purification of the human immunodeficiency virus type 1 enhancer and TAR binding proteins EBP-1 and UBP-1, EMBO J. 7:2117–2129.

    PubMed  CAS  Google Scholar 

  • Wu, F., Garcia, J., Sigman, D., and Gaynor, R., 1991, tat regulates binding of the human immunodeficiency virus trans-activating region RNA loop-binding protein TRP-185, Genes Dev. 5:2128–2140.

    PubMed  CAS  Google Scholar 

  • Wulczyn, F. G., Naumann, M., and Scheidereit, C., 1992, Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-KB, Nature 358:597–599.

    PubMed  CAS  Google Scholar 

  • Yang-Yen, H.-F., Chambard, J.-C., Sun, Y.-L., Smeal, T, Schmidt, T. J., Drouin, J., and Karin, M., 1990, Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction, Cell 62:1205–1215.

    PubMed  CAS  Google Scholar 

  • Yaseen, N., Maizel, A. L., Wang, F., and Sharma, S., 1993, Comparative analysis of NFAT (nuclear factor of activated T cells) complex in human T and B lymphocytes, J. Biol. Chem. 268:14385–14293.

    Google Scholar 

  • Yoon, J.-B., Li, G., and Roeder, R. G., 1994, Characterization of a family of related cellular transcription factors which can modulate human immunodeficiency virus type 1 transcription in vitro, Mol. Cell. Biol. 14:1776–1785.

    PubMed  CAS  Google Scholar 

  • Yoshimura, T, Fujisawa, J., and Yoshida, M., 1990, Multiple cDNA clones encoding nuclear proteins that bind to the tax-dependent enhancer of HTLV-I: All contain a leucine zipper structure and basic amino acid domain, EMBO J. 9:2537–2542.

    PubMed  CAS  Google Scholar 

  • Yu, G., and Felsted, R. L., 1992, Effect of myristoylation on p27 nef subcellular distribution and suppression of HIV-LTR transcription, Virology 187:46–55.

    PubMed  CAS  Google Scholar 

  • Zabel, U., and Baeuerle, D., 1990, Purified human IKB can rapidly dissociate the complex of the NF-KB transcription factor with its cognate DNA., Cell 61:255–265.

    PubMed  CAS  Google Scholar 

  • Zawel, L., and Reinberg, D., 1992, Advances in RNA polymerase II transcription, Curr. Opin. Cell Biol. 4:488–495.

    PubMed  CAS  Google Scholar 

  • Zazopoulos, E., and Haseltine, W. A., 1993, Effect of nef alleles on replication of human immunodeficiency virus type 1, Virology 194:20–27.

    PubMed  CAS  Google Scholar 

  • Zeichner, S. L., Kim, J. Y. H., and Alwine, J. C., 1991, Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat, J. Virol. 65:2436–2444.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., DiDonato, J. A., Karin, M., and McKeithan, T. W., 1994, Bcl-3 encodes a nuclear protein which can alter the subcellular location of NF-KB proteins, Mol. Cell. Biol. 14:3915–3926.

    PubMed  CAS  Google Scholar 

  • Zhao, L.-J., and Giam, C.-Z., 1991, Interaction of the human T-cell lymphotrophic virus type I (HTLV-I) transcriptional activator Tax with cellular factors that bind specifically to the 21-base-pair repeats in the HTLV-I enhancer, Proc. Natl. Acad. Sci. USA 88:11445–11449.

    PubMed  CAS  Google Scholar 

  • Zhao, L.-J., and Giam, C.-Z., 1992, Human T-cell lymphotropic virus type I (HTLV-I) transcriptional activator, Tax, enhances CREB binding to the HTLV-I 21-base-pair repeats by protein-protein interaction, Proc. Natl. Acad. Sci. USA 89:7070–7074.

    PubMed  CAS  Google Scholar 

  • Zhou, Q., Lieberman, P. M., Boyer, T. G., and Berk, A. J., 1992, Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter, Genes Dev. 6:1964–1974.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ou, SH.I., Gaynor, R.B. (1995). Intracellular Factors Involved in Gene Expression of Human Retroviruses. In: Levy, J.A. (eds) The Retroviridae. The Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1721-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1721-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1723-2

  • Online ISBN: 978-1-4899-1721-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics