Skip to main content

Abstract

Genetic analysis of microorganisms has been valuable in two ways. Information about genetic mechanisms which are fundamental to all organisms, such as the chemical structure of the genetic material and the mechanism of mutation, has been obtained. In addition to their unique and fascinating biological and chemical properties, the microorganisms are important in health and disease, in nutrient cycles in nature, and in industrial processes. The enteric group of Gram-negative bacteria, which includes genera such as Salmonella, Escherichia, and Shigella has been a favorite subject of study, for the following reasons: Their growth rate is rapid, with a generation time as low as 30 minutes or less. Cell division produces single cells, most of which are uninucleate, at least in stationary phase. The species are facultative aerobes and usually grow on a defined medium and on a wide range of carbon and energy sources. Colonies which can be readily observed and enumerated are formed on agar medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abd-el-al, A. and J. L. Ingraham, 1969 Cold sensitivity and other phenotypes resulting from mutation in pyrA gene. J. Biol. Chem. 244:4039–4045.

    PubMed  CAS  Google Scholar 

  • Adelberg, E. A. and J. W. Meyers, 1953 Modification of the penicillin technique for the selection of auxotrophic bacteria. J. Bacteriol. 65:348–353.

    PubMed  CAS  Google Scholar 

  • Alexander, R. R. and J. M. Calvo, 1969 A Salmonella typhimurium locus involved in the regulation of isoleucine, valine and leucine biosynthesis. Genetics 61:539–556.

    PubMed  CAS  Google Scholar 

  • Ames, B. N, 1971 The detection of chemical mutagens with enteric bacteria. In Chemical Mutagens: Principles and Methods for Their Detection, Vol. 1, edited by A. Hollaender, pp. 267–282. Plenum Press, New York.

    Google Scholar 

  • Ames, B. N. and H. J. Whitfield, Jr., 1966 Frameshift mutagenesis in Salmonella. Cold Spring Harbor Symp. Quant. Biol. 31:221–225.

    PubMed  CAS  Google Scholar 

  • Ames, G. F. and J. Lever, 1970 Components of histidine transport: histidine-binding proteins and hisP protein. Proc. Natl. Acad. Sci. USA 66:1096–1103.

    PubMed  CAS  Google Scholar 

  • Ames, G. F. and J. R. Roth, 1968 Histidine and aromatic permeases of Salmonella typhimunum. J. Bacteriol. 96:1742–1749.

    PubMed  CAS  Google Scholar 

  • Anton, D. N., 1968 Histidine regulatory mutants in Salmonella typhimurium. V. Two new classes of histidine regulatory mutants. J. Mol. Biol. 33:533–546.

    PubMed  CAS  Google Scholar 

  • Atkins, C. G. and F. B. Armstron, 1969 Electrophoretic study of Salmonella typhimurium-Salmonella montevideo hybrids. Genetics 63:775–779.

    PubMed  CAS  Google Scholar 

  • Ayling, P. D. and E. S. Bridgeland, 1970 Methionine transport systems in Salmonella typhimurium. Heredity 25:687–688.

    Google Scholar 

  • Baumberg, S. and R. Freeman. 1971 Salmonella typhimurium LT-2 is still pathogenic for man. J. Gen. Microbiol. 65:99–100.

    PubMed  CAS  Google Scholar 

  • Berkowitz, D., J. Hushon, H. J. Whitfield Jr., J. R. Roth and B. N. Ames, 1968 Procedure for identifying nonsense mutations. J. Bacteriol. 96:215–220.

    PubMed  CAS  Google Scholar 

  • Bezdek, M. and P. Amati, 1967 Properties of P22 and a related Salmonella typhimurium phage. Virology 31:272–278.

    PubMed  CAS  Google Scholar 

  • Blank, J. and P. Hoffee, 1972 Regulatory mutants of the deo regulon in Salmonella typhimurium. Mol. Gen. Genet. 116:291–298.

    PubMed  CAS  Google Scholar 

  • Boro, H. and J. E. Brenchley, 1971 A new generalized transducing phage for Salmonella typhimurium LT2 Virology 45:835–836.

    PubMed  CAS  Google Scholar 

  • Boyd, J. S. K. 1950 The symbiotic bacteriophages of Salmonella typhimurium. J. Pathol. Bacteriol. 62:501–523.

    PubMed  CAS  Google Scholar 

  • Boyd, J. S. K. and D. E. Bidwell, 1957 The type A phages of Salmonella typhimurium: identification by standardized cross-immunity tests. J. Gen. Microbwl. 16:217–233.

    CAS  Google Scholar 

  • Braun, W., 1966 Bacterial Genetics, second edition, W. B. Saunders, Philadelphia, Pa.

    Google Scholar 

  • Brenner, M. and B. N. Ames, 1971 The histidine operon and its regulation. In Metabolic Regulation, Vol. V, edited by H. J. Vogel, pp. 350–388, Academic Press, New York.

    Google Scholar 

  • Burdette, W. L., 1963 Methodology in Basic Genetics, Holden-Day, San Francisco, Calif.

    Google Scholar 

  • Caspari, E. W., editor, 1971 Demerec Memorial Volume. Adv. Genet. 16: V381.

    Google Scholar 

  • Clowes, R. and W. Hayes, 1968 Experiments in Microbial Genetics, John Wiley and Sons, New York.

    Google Scholar 

  • Crick, F. H. C., L. Barnett, S. Brenners and R. J. Watts-Tobin, 1961 General nature of the genetic code for proteins. Nature (Lond.) 192:1227–1232.

    CAS  Google Scholar 

  • Davis, B.D., 1948 Isolation of biochemically deficient mutants of bacteria by penicillin. J. Am. Chem. Soc. 70:4267.

    PubMed  CAS  Google Scholar 

  • Davis, B. D. and E. S. Mingioli, 1950 Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bacteriol. 60:17–28.

    PubMed  CAS  Google Scholar 

  • Demerec, M. and H. Ozeki, 1959 Tests for allelism among auxotrophs of Salmonella typhimurium. Genetics 44:269–278.

    PubMed  CAS  Google Scholar 

  • Demerec, M., E. A. Adelberg, A. J. Clark and P. E. Hartman, 1966 A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61–76.

    PubMed  CAS  Google Scholar 

  • Ebel-Tsipis, J. and D. Botstein, 1971 Super-infection exclusion by P22 prophage in lysogens of Salmonella typhimurium. I. Exclusion of generalized transducing particles. Virology 45:629–637.

    PubMed  CAS  Google Scholar 

  • Ely, B., R. M. Weppelmen, H. C. Massey, Jr. and P. E. Hartman, 1974 Methods in P22 transduction. Genetics (in press).

    Google Scholar 

  • Enomoto, M., 1966 Genetic studies of paralyzed mutants in Salmonella. I. Genetic fine structure of the mot locus in Salmonella typhimurium. Genetics 54:715–726.

    PubMed  CAS  Google Scholar 

  • Enomoto, M. and H. Ishiwa, 1972 A new transducing phage related to P22 of Salmonella typhimurium. J. Gen. Virol. 14:157–164.

    PubMed  CAS  Google Scholar 

  • Fink, G. R. and J. Roth, 1968 Histidine regulatory mutants in Salmonella typhimurium. VI. Dominance studies. J. Mol. Biol. 33:547–557.

    PubMed  CAS  Google Scholar 

  • Gollub, E. and D. B. Sprinson, 1972 Regulation of tyrosine biosynthesis in Salmonella. Fed. Proc. 31:491.

    Google Scholar 

  • Gorini, L. and H. Kaufman, 1960 Selecting bacterial mutants by the penicillin method. Science (Wash., B.C.) 131:604–605.

    CAS  Google Scholar 

  • Gots, J., 1971 Regulation of purine and pyrimidine metabolism. In Metabolic Regulation, edited by H. J. Vogel, pp. 225–256. Academic Press, New York.

    Google Scholar 

  • Grabnar, M. and P. E. Hartman, 1968 MG40 phage, a transducing phage related to P22. Virology 34:521–530.

    Google Scholar 

  • Gutnick, D., J. M. Calvo, T. Klopotowski and B. N. Ames, 1969 Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2 J. Bacteriol. 100:215–219.

    PubMed  CAS  Google Scholar 

  • Hartman, P. E., J. C. Loper and D. Serman, 1960 Fine structure mapping by complete transduction of histidine requiring mutants. J. Gen. Microbiol. 22:323–353.

    PubMed  CAS  Google Scholar 

  • Hartman, P. E., S. R. Suskind and T. R. F. Wright, 1965 Principles of Genetics, Laboratory Manual, p. 43, W. C. Brown, Dubuque, Iowa.

    Google Scholar 

  • Hartman, P. E., Z. Hartman, R. C. Stahl and B. N. Ames, 1971a Classification and mapping of inspontaneous and induced mutations in the his operon of Salmonella. Adv. Genet. 17:1–34.

    Google Scholar 

  • Hartman, P. E., K. Levine, Z. Hartman and H. Berger, 1971b Hycanthone: a frameshift mutagen. Science (Wash., D. C.) 172:1058–1060.

    CAS  Google Scholar 

  • Hayes, W., 1968 The Genetics of Bacteria and their Viruses, second edition, John Wiley & Sons, New York.

    Google Scholar 

  • Hoeksma, W. D. and D. E. Schoenhard, 1971 Characterization of a thermolabile sulfite reductase from Salmonella pullorum. J. Bacteriol. 108:154–158.

    Google Scholar 

  • Hong, J.-S. and B. N. Ames, 1971 Localized mutagenesis of any specific small region of the bacterial chromosome. Proc. Natl. Acad. Sci. USA 68:3158–3162.

    PubMed  CAS  Google Scholar 

  • Hong, J.-S., G. R. Smith and B. N. Ames, 1971 Adempsome 3′-5′-cyclic monophosphosphate concentration in the bacterial host regulates the viral decision between lysogeny and lysis. Proc. Natl. Acad. Sci. USA 68:2258–2262.

    PubMed  CAS  Google Scholar 

  • Iino, T., 1969 Genetics and chemistry of bacterial flagella. Bacteriol. Rev. 33:454–475.

    PubMed  CAS  Google Scholar 

  • Jessop, A. P., 1972 A specialized transducing phage of P22 for which the ability to form plaques is associated with transduction of the proAB region. Mol. Gen. Genet. 114:214–222.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M. and L. S. Baron, 1969 Genetic transfer of the Vi antigen from Salmonella typhosa to Escherichia coli. Bacteriology 99:358–359.

    CAS  Google Scholar 

  • Kitamura, J. and K. Mise, 1970 A new generalized transducing phage in Salmonella. Jap.J. Med. Sci. Biol. 23:99–102.

    PubMed  CAS  Google Scholar 

  • Kuo, T.-T. and B. A. D. Stocker, 1970 ES18, a general transducing phage for smooth and non-smooth Salmonella typhimurium. Virology 42:621–632.

    PubMed  CAS  Google Scholar 

  • Kuo, T.-T. and B. A. D. Stocker, 1972 Mapping of rfa genes in Salmonella typhimurium by P22 and ES18 transduction and by conjugation. J. Bacteriol. 112:48–63.

    PubMed  CAS  Google Scholar 

  • Lederberg, J. and E. M. Lederberg, 1952 Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63:399–406.

    PubMed  CAS  Google Scholar 

  • Levinthal, M., 1971 Biochemical studies of melibiose metabolism in wild type and mel mutant strains of Salmonella typhimurium. J. Bacteriol. 105:1047–1052.

    PubMed  CAS  Google Scholar 

  • Levinthal, M. and R. Simoni, 1969 Genetic analysis of carbohydrate transport-deficient mutants of Salmonella typhimurium. J. Bacteriol. 97:250–255.

    PubMed  CAS  Google Scholar 

  • Loper, J., M. Grabnar, R. C. Stahl, Z. Hartman and P. E. Hartman, 1964 Genes and proteins involved in histidine biosynthesis in Salmonella. Brookhaven Symp. Biol. 17:15–52.

    PubMed  CAS  Google Scholar 

  • Low, K. B., 1972 Escherichia coli K-12 F-prime factors, old and new. Bacteriol. Rev. 36:587–607.

    PubMed  CAS  Google Scholar 

  • Maaløe, O. and N.O. Kjehlgaard, 1966 Control of Macromolecular Synthesis, W. A. Benjamin, New York.

    Google Scholar 

  • Makela, P. H., 1963 Hfr males in Salmonella abony. Genetics 48:423–429.

    PubMed  CAS  Google Scholar 

  • Mäkelä, P. H., 1964 Genetic homologies between flagellar antigens of Escherichia coli and Salmonella abony. J. Gen. Microbiol. 35:503–510.

    Google Scholar 

  • Mäkelä, P. H., 1966 Genetic determination of the O antigens of Salmonella groups B(4, 5,12) and C1(6,7).J. Bacteriol. 91:1115–1125.

    PubMed  Google Scholar 

  • Mäkelä, P. H. and B. A. D. Stocker, 1969 Genetics of polysaccharide biosynthesis. Ann. Rev. Genet. 3:291–322.

    Google Scholar 

  • Mäkelä, P. H., M. Jahkola and O. Luderitz, 1970 A new gene cluster rfe concerned with the biosynthesis of Salmonella lipopolysaccharide. J. Gen. Microbiol. 60:91–106.

    PubMed  Google Scholar 

  • Margolin, P., 1971 Regulation of tryptophan synthesis. In Metabolic Pathways, edited by H. J. Vogel, pp. 389–446, Academic Press, New York.

    Google Scholar 

  • Martin, R. G., 1968 Polarity in relaxed strains of Salmonella typhimurium. J. Mol. Biol. 31:127–134.

    PubMed  CAS  Google Scholar 

  • Meynell, G. G. and E. Meynell, 1970 Theory and Practice in Experimental Bacteriology, second edition, University Press, Cambridge, England.

    Google Scholar 

  • Newell, S. L. and W. J. Brill, 1972 Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation. J. Bacteriol. 111:375–382.

    PubMed  CAS  Google Scholar 

  • Nikaido, H., M. Levinthal, K. Nikaido and K. Nakone, 1967 Extended deletions in the histidine-rough B region of the Salmonella chromosome. Proc. Natl. Acad. Sci. USA 57:1825–1832.

    PubMed  CAS  Google Scholar 

  • O’Donovan, G. A. and J. C. Gerhart, 1972 Isolation and partial characterization of regulatory mutants of the pyrimidine pathway in Salmonella typhimurium. J. Bacteriol. 109:1085–1096.

    PubMed  Google Scholar 

  • Oeschger, N. S. and P. E. Hartman, 1970 ICR induced frameshift mutations in the histidine operon of Salmonella. J. Bacteriol. 101:490–504.

    PubMed  CAS  Google Scholar 

  • Ohta, N., P. R. Glasworthy and A. B. Pardee, 1971 Genetics of sulfate transport by Salmonella typhimurium. J. Bacteriol. 105:1053–1062.

    CAS  Google Scholar 

  • Okada, M. and T. Watanabe, 1968 Transduction with phage P1 in Salmonella typhimurium. Nature (Lond.) 218:185–187.

    CAS  Google Scholar 

  • Patai-Wing, J., 1968 Transduction in P22 in a recombination deficient mutant of Salmonella typhimurium. Virology 36:271–276.

    Google Scholar 

  • Pollack, J. R., B. N. Ames, and J. B. Neilands, 1970 Iron transport in Salmonella typhimurium: mutants blocked in the biosynthesis of enterobactin. J. Bacteriol. 104:635–639.

    PubMed  CAS  Google Scholar 

  • Rhoades, M., L. A. MacHattie and C. A. Thomas, Jr., 1968 The P22 bacteriophage DNA molecule. I. The mature form. J. Mol. Biol. 37:21–40.

    PubMed  CAS  Google Scholar 

  • Robertson, B. C., P. Jargiello, J. Blank and P. A. Hoffee, 1970 Genetic regulation of ribonucleosides and deoxyribonucleoside catabolism in Salmonella typhimurium. J. Bacteriol. 102:628–635.

    PubMed  CAS  Google Scholar 

  • Roth, J. R., 1972 Genetic techniques in studies of bacterial metabolism. Methods Enzymol. 174:3–35.

    Google Scholar 

  • Saier, M. H., Jr., F. G. Bromberg and S. Roseman, 1973 Characterization of constitutive galactose permease mutants in Salmonella typhimurium. J. Bacteriol. 113:512–523.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E., 1972 Linkage map of Salmonella typhimurium, edition IV. Bacteriol. Rev. 36:558–586.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E. and M. Demerec, 1965 The linkage map of Salmonella typhimurium, Genetics 51:897–913.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E. and H. Saeed, 1972a Insertion of the F-factor into the cluster of rfa (rough A) genes of Salmonella typhimurium. J. Bacteriol. 112:64–73.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E. and H. Saeed, 1972b P22-mediated transduction analysis of the rough A (rfa) region of the chromosome of Salmonella typhimurium. J. Bacteriol. 112:58–63.

    PubMed  CAS  Google Scholar 

  • Sanderson, K. E., H. Ross, L. Ziegler and P. H. Mäkelä, 1972 F+, F′ and Hfr strains of Salmonella typhimurium and S. abony. Bacteriol Rev. 36:608–637.

    CAS  Google Scholar 

  • Schmeiger, H., 1972 The molecular structure of the transducing particles of Salmonella phage P22. Density gradient analysis of DNA. Molec. Gen. Genet. 109:323–337.

    Google Scholar 

  • Schwartz, D. O. and J. R. Beckwith, 1969 Mutagens which cause deletions in Escherichia coli. Genetics 61:371–376.

    PubMed  CAS  Google Scholar 

  • Simoni, R., M. Levinthal, F. Kundig, W. Kundig, B. Anderson, P. E. Hartman, and S. Roseman, 1967 Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Proc. Natl. Acad. Sci. USA 58:1963–1970.

    PubMed  CAS  Google Scholar 

  • Smith, D. A., 1971 S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Adv. Genet. 16:142–165.

    Google Scholar 

  • Smith, G. R., 1971 Specialized transduction of the Salmonella hut operons by coliphage λ: deletion analysis of the hut operons employing λ, phut. Virology 45:208–223.

    CAS  Google Scholar 

  • Smith, G. R. and B. Magasanik, 1971 The two operons of the histidine utilization system in Salmonella typhimurium. J. Biol. Chem. 246:3330–3341.

    PubMed  CAS  Google Scholar 

  • Smith, H. O. and M. Levine, 1967 A phage P22 gene controlling integration of prophage. Virology 31:207–216.

    PubMed  CAS  Google Scholar 

  • Smith-Keary, P. F., 1966 Restricted transduction by bacteriophage P22 in Salmonella typhimurium. Genet. Res. 8:73–82.

    PubMed  CAS  Google Scholar 

  • Stocker, B. A. D., 1956a Abortive transduction of motility in Salmonella, a non-replicated gene transmitted through many generations to a single descendant. J. Gen. Microbiol. 15:575–593.

    PubMed  CAS  Google Scholar 

  • Stocker, B. A. D., 1956b Bacterial flagella: morphology, constitution and inheritance. Symp. Soc. Gen. Microbiol. 6:19–40.

    Google Scholar 

  • Stocker, B. A. D. and P. H. Mäkelä, 1971 Genetic aspects of biosynthesis and structure of Salmonella lipopolysaccharide. In Microbial Toxins, Vol. 4, Bacterial Endotoxins, edited by G. Weintaum, S. Kadis, and S. J. Ajl, pp. 369–438, Academic Press, New York.

    Google Scholar 

  • Taylor, A. L. and C. D. Trotter, 1972 Linkage map of Escherichia coli strain K12. Bacteriol. Rev. 36:504–524.

    PubMed  CAS  Google Scholar 

  • Umbarger, H., 1971 The regulation of enzyme levels in the pathways to branched chain amino acids. In Metabolic Regulation, Vol. 5, edited by H. J. Vogel, pp. 447–463, Academic Press, New York.

    Google Scholar 

  • Vogel, H. J. and D. M. Bonner, 1956 Acetyl ornithinase of Escheric hia coli: partial purification and some properties. J. Biol. Chem. 218:97–106.

    PubMed  CAS  Google Scholar 

  • Voll, M. J., 1972 Derivation of an F-merogenote and φ80 high frequency transducing phage carrying the histidine operon of Salmonella. J. Bacteriol. 109:741–750.

    PubMed  CAS  Google Scholar 

  • Whitfield, H. J. Jr., R. G. Martin and B. N. Ames, 1966 Classification of aminotransferase (C gene) mutants in the histidine operon. J. Mol. Biol. 21:335–355.

    PubMed  CAS  Google Scholar 

  • Wilkinson, R. G., P. Gemski, Jr. and B. A. D. Stocker, 1972 Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J. Gen. Microbiol. 70:527–554.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, S., T. Lino, T. Horiguchi, and K. Ohta, 1972 Genetic analysis of fla and mot cistrons closely linked to H1 in Salmonella abortusequi and its derivatives. J. Gen. Microbiol. 70:59–75.

    PubMed  CAS  Google Scholar 

  • Young, B. G. and P. E. Hartman, 1966 Sites of P22 and P221 prophage integration in Salmonella typhimurium. Virology 28:265–270.

    PubMed  CAS  Google Scholar 

  • Zalkin, H., 1967 Control of aromatic amino acid biosynthesis in Salmonella typhimurium. Biochim. Biophys. Acta 148:609–621.

    CAS  Google Scholar 

  • Zeiger, E. and M. S. Legator, 1971 Mutagenicity of N-nitrosomorpholine in the host-mediated assay. Mutat. Res. 12:467–471.

    Google Scholar 

  • Zinder, N., 1960 Sexuality and mating in Salmonella. Science (Wash., D.C.) 131:813–816.

    CAS  Google Scholar 

  • Zinder, N. and J. Lederberg, 1952 Genetic exchange in Salmonella. J. Bacteriol. 64:679–699.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levinthal, M., Sanderson, K.E. (1974). Salmonella. In: King, R.C. (eds) Bacteria, Bacteriophages, and Fungi. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1710-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1710-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1712-6

  • Online ISBN: 978-1-4899-1710-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics