Skip to main content

Abstract

Ribosomes are intracellular ribonucleoprotein particles of about 200 Å in diameter which are essential components of the translation system in all organisms (Tissières and Watson, 1958; Tissières et al., 1959; Watson, 1964; Schlessinger and Apirion, 1969; Nomura, 1970). They are usually isolated from cell-free extracts by sedimentation at 105,000 × g for several hours and then purified from nonribosomal contaminants by high-salt washing (Kurland, 1971). They are characterized by their typical sedimentation properties and their ability to function in protein synthesis in vitro. Extensive physical studies of ribosomes have been carried out (Hill et al., 1969). All ribosomes which have been examined are made up of two subunits (small and large). The separation of the ribosome into subunits, which probably has physiological significance (the “ribosome cycle”), is accomplished by dialyzing bacterial ribosomes against low magnesium ion concentrations Staehelin and Maglott, 1971), or eukaryotic ribosomes against solutions containing concentrated potassium chloride (Martin et al., 1971; Staehelin and Falvey, 1971) or urea (Petermann, 1971). The subunits are then separated by sucrose density-gradient centrifugation (McConkey, 1967). The dissociation of ribosomes into subunits is reversible. The gross structure of a prokaryotic (bacterial) ribosome is shown in Figure 1. The structure of a typical eukaryote ribosome is very similar; however, ribosomes from prokaryotes and eukaryotes differ in size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Anderson, P., 1969 Sensitivity and resistance to spectinomycin in Eschenchia coli. J. Bacteriol. 100:939–947.

    PubMed  CAS  Google Scholar 

  • Apirion, D., 1967 Three genes that affect Eschenchia coli ribosomes. J. Mol. Biol. 30:255–275.

    PubMed  CAS  Google Scholar 

  • Apirion, D. and D. Schlessinger, 1968 Coresistance to neomycin and kanamycin by mutations in an Eschenchia coli locus that affects ribosomes. J. Bacteriol. 96:768–776.

    PubMed  CAS  Google Scholar 

  • Apirion, D., S. L. Phillips and D. Schlessinger, 1969 Approaches to the genetics of Escherichia coli ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34:117–128.

    PubMed  CAS  Google Scholar 

  • Attardi, G. and F. Amaldi, 1970 Structure and synthesis of ribosomal RNA. Annu. Rev. Biochem. 39:183–219.

    PubMed  CAS  Google Scholar 

  • Baglioni, C., I. Bleiberg and M. Zauderer, 1971 Assembly of membrane-bound polyribosomes. Nature (Lond.) 232:8–11.

    CAS  Google Scholar 

  • Birge, E. A. and C. G. Kurland, 1969 Altered ribosomal protein in streptomycin-dependent Escherichia coli. Science (Wash., D.C.) 166:1282–1286.

    CAS  Google Scholar 

  • Birge, E. A. and C. G. Kurland, 1970 Reversion of a streptomycin dependent strain of Escherichia coli. Mol. Gen. Genet. 109:356–369.

    PubMed  CAS  Google Scholar 

  • Birge, E. A., G. R. Craven, S. J. S. Hardy, C. G. Kurland and P. Voynow, 1969 Structure determinant of a ribosomal protein: K locus. Science (Wash., D.C.) 164:1285–1286.

    CAS  Google Scholar 

  • Birnbaum, L. S. and S. Kaplan, 1971 Localization of a protein of the ribosomal RNA genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 68:925–929.

    PubMed  CAS  Google Scholar 

  • Bjare, U. and L. Gorini, 1971 Drug dependence reversed by a ribosomal ambiguity mutation, ram, in Escherichia coli. J. Mol. Biol. 57:423–435.

    PubMed  CAS  Google Scholar 

  • Bollen, A., J. Davies, M. Ozaki and S. Mizushima, 1969a Ribosomal protein conferring sensitivity to the antibiotic spectinomycin in Escherichia coli. Science (Wash., D.C.) 165:85–86.

    CAS  Google Scholar 

  • Bollen, A., T. Heiser, T. Yamada and J. E. Davies, 1969b Altered ribosomes in antibiotic-resistant mutants of E. coli. Cold Spring Harbor Symp. Quant. Biol. 34:95–100.

    PubMed  CAS  Google Scholar 

  • Breckenridge, L. and L. Gorini, 1970 Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65:9–25.

    PubMed  CAS  Google Scholar 

  • Britten, R. J. and B. J. McCarthy, 1962 The synthesis of ribosomes in E. coli. II. Analysis of the kinetics of tracer incorporation in growing cells. Biophys. J. 2:49–55.

    PubMed  CAS  Google Scholar 

  • Brownlee, G. G., F. Sanger and B. G. Barrell, 1967 Nucleotide sequence of 5S-ribosomal RNA from Escherichia coli. Nature (Lond.) 215:735–736.

    CAS  Google Scholar 

  • Brownstein, B. L. and L. J. Lewandowski, 1967 A mutation suppressing streptomycin dependence. I. An effect on ribosome function. J. Mol. Biol. 25:99–109.

    PubMed  CAS  Google Scholar 

  • Chang, F. N. and B. Weisblum, 1966 The specificity of lincomycin binding to ribosomes. Biochemistry 8:836–843.

    Google Scholar 

  • Chuang, D.-M. and M. V. Simpson, 1971 A translocation-associated ribosomal conformation change detected by hydrogen exchange and sedimentation velocity. Proc. Natl. Acad. Sci. USA 68:1474–1478.

    PubMed  CAS  Google Scholar 

  • Cohen, S. S. and J. Lichtenstein, 1960 Polyamines and ribosome structure. J. Biol. Chem. 235:2112–2116.

    PubMed  CAS  Google Scholar 

  • Cooper, D., D. V. Banthorpe and D. Wilkie, 1967 Modified ribosomes conferring resistance to cycloheximide in mutants of Saccharomyces cerevisiae. J. Mol. Biol. 26:347–349.

    PubMed  CAS  Google Scholar 

  • Cotter, R. I., P. McPhie and W. B. Gratzer, 1967 Internal organization of the ribosome. Nature (Lond.) 216:864–868.

    CAS  Google Scholar 

  • Craven, G. R., P. Voynow, S. J. S. Hardy and C. G. Kurland, 1969 The ribosomal proteins of Escherichia coli. II. Chemical and physical characterization of the 30S ribosomal proteins. Biochemistry 8:2906–2915.

    PubMed  CAS  Google Scholar 

  • Darnell, J. E., Jr., 1968 Ribonucleic acids from animal cells. Bacteriol. Rev. 32:262–290.

    PubMed  CAS  Google Scholar 

  • Davies, J. E. and M. Nomura, 1972 The genetics of bacterial ribosomes. Annu. Rev. Genet. 6:203–234.

    PubMed  CAS  Google Scholar 

  • Davies, J., P. Anderson and B. D. Davies, 1965 Inhibition of protein synthesis by spectinomycin. Science (Wash., D.C.) 149:1096–1098.

    CAS  Google Scholar 

  • Davis, B. D., 1971 Role of subunits in the ribosome cycle. Nature (Lond.) 231:153–157.

    CAS  Google Scholar 

  • Dekio, S. and R. Takata, 1969 Genetic studies of the ribosomal proteins is Escherichia coli. II. Altered 30S ribosomal protein component specific to spectinomycin resistant mutants. Mol. Gen. Genet. 105:219–224.

    PubMed  CAS  Google Scholar 

  • Dekio, S., R. Takata and S. Osawa, 1970 Genetic studies of ribosomal proteins in Escherichia coli. VI. Determination of chromosomal loci for several ribosomal protein components using a hybrid strain between Escherichia coli and Salmonella typhimurium. Mol. Gen. Genet. 109:131–141.

    PubMed  CAS  Google Scholar 

  • Deusser, E., 1972 Heterogeneity of ribosomal populations in Escherichia coli cells grown in different media. Mol. Gen. Genet. 119:249–258.

    PubMed  CAS  Google Scholar 

  • Deusser, E., G. Stöffler, H. G. Wittman and D. Apirion, 1970 Ribosomal proteins. XVI. Altered S4 proteins in Escherichia coli revertants from streptomycin dependence to independence. Mol. Gen. Genet. 109:298–302.

    PubMed  CAS  Google Scholar 

  • Dingman, C. W. and A. C. Peacock, 1968 Analytical studies on nuclear ribonucleic acid using polyacrylamide gel electrophoresis. Biochemistry 7:659–668.

    PubMed  CAS  Google Scholar 

  • Fellner, P., 1969 Nucleotide sequences from specific areas of the 16S and 23S ribosomal RNA’s of E. coli. Eur. J. Biochem. 11:12–27.

    PubMed  CAS  Google Scholar 

  • Fellner, P. and F. Sanger, 1968 Sequence analysis of specific areas of the 16S and 23S ribosomal RNA’s Nature (Lond.) 219:236–238.

    CAS  Google Scholar 

  • Fellner, P., C. Ehresmann and J. P. Ebel, 1970 Nucleotide sequences present within the 16S ribosomal RNA of E. coli. Nature (Lond.) 225:26–29.

    CAS  Google Scholar 

  • Flaks, J. G., P. S. Leboy, E. A. Birge and C. G. Kurland, 1966 Mutations and genetics concerned with the ribosome. Cold Spring Harbor Symp. Quant. Biol. 31:623–631.

    PubMed  CAS  Google Scholar 

  • Forget, B. G. and S. M. Weissmann, 1967 Nucleotide suequence of KB cell 5S RNA. Science (Wash., D.C.) 158:1695–1699.

    CAS  Google Scholar 

  • Goldstein, A., D. B. Goldstein and L. I. Lowney, 1964 Protein synthesis at 0°C in Escherichia coli. J. Mol. Biol. 9:213–235.

    PubMed  CAS  Google Scholar 

  • Goldthwaite, C., D. Dubnau and I. Smith, 1970 Genetic mapping of antibiotic resistance markers in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 65:96–103.

    PubMed  CAS  Google Scholar 

  • Gorini, L. C., 1969 The contrasting role of strA and ram gene products in ribosome functioning. Cold Spring Harbor Symp. Quant. Biol. 32:101–111.

    Google Scholar 

  • Gorini, L. C., G. A. Jacoby and L. Breckenridge, 1966 Ribosomal ambiguity. Cold Spring Harbor Symp. Quant. Biol. 31:657–664.

    PubMed  CAS  Google Scholar 

  • Guthrie, C. and M. Nomura, 1968 Initiation of protein synthesis: A critical test of the 30S subunit model. Nature (Lond.) 219:232–235.

    CAS  Google Scholar 

  • Guthrie, C., H. Nashimoto and M. Nomura, 1969a Studies on the assembly of ribosomes in vivo. Cold Spring Harbor Symp. Quant. Biol. 34:69–75.

    PubMed  CAS  Google Scholar 

  • Guthrie, C., H. Nashimoto and M. Nomura, 1969b Structure and function of E. coli ribosomes. VIII. Cold-sensitive mutants defective in ribosome assembly. Pro. Natl. Acad. Sci. USA 63:384–391.

    CAS  Google Scholar 

  • Hardy, S. J. S., C. G. Kurland, P. Voynow and G. Mora, 1969 The ribosomal proteins of Escherichia coli. I. Purification of the 305 ribosomal proteins. Biochemistry 8:2897–2905.

    PubMed  CAS  Google Scholar 

  • Harford, N. and N. Sueoka, 1970 Chromosomal location of antibiotic resistance markers in Bacillus subtilis. J. Mol. Biol. 51:267–286.

    PubMed  CAS  Google Scholar 

  • Hartwell, L. H., C. S. McLaughlin and J. R. Warner, 1970 Identification often genes that control ribosome formation in yeast. Mol. Gen. Genet. 109:42–56.

    PubMed  CAS  Google Scholar 

  • Hashimoto, K., 1969 Streptomycin resistance in Escherichia coli analyzed by transduction. Genetics 45:49–62.

    Google Scholar 

  • Hill, W. E., G. P. Rossetti and K. E. Van Holde, 1969 Physical studies of ribosomes from Escherichia coli. J. Mol. Biol. 44:263–277.

    PubMed  CAS  Google Scholar 

  • Hosokawa, K., R. K. Fujimura and M. Nomura, 1966 Reconstitution of functionally active ribosomes from inactive subparticles and proteins. Proc. Natl. Acad. Sci. USA 55:198–204.

    PubMed  CAS  Google Scholar 

  • Jimenez, A., B. Littlewood and J. Davies, 1972 Inhibition of protein synthesis in yeast. In Proceedings of Symposium on Inhibitors of Protein Synthesis and Membranes, Granada, Elsevier, Amsterdam 292–306.

    Google Scholar 

  • Kabat, D., 1970 Phosphorylation of ribosomal proteins in rabbit reticulocytes. Characterization and regulatory aspects. Biochemistry 9:4160–4174.

    PubMed  CAS  Google Scholar 

  • Kaempfer, R. and M. Meselson, 1969 Studies of ribosomal subunit exchange. Cold Spring Harbor Symp. Quant. Biol. 34:209–222.

    PubMed  CAS  Google Scholar 

  • Kaltschmidt, E. and H. G. Wittmann, 1970a Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal. Biochem. 36:401–412.

    PubMed  CAS  Google Scholar 

  • Kaltschmidt, E. and H. G. Wittmann, 1970b Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc. Natl. Acad. Sci. USA 67:1276–1282.

    PubMed  CAS  Google Scholar 

  • Kaltschmidt, E., M. Dzionara, D. Donner and H. G. Wittmann, 1967 Ribosomal proteins. I. Isolation, amino acid composition, molecular weights, and peptide mapping of proteins from E. coli ribosomes. Mol. Gen. Genet. 100:364–373.

    PubMed  CAS  Google Scholar 

  • Kang, S.-S., 1970 A mutant of Escherichia coli with temperature-sensitive streptomycin protein. Proc. Natl. Acad. Sci. USA 65:544–550.

    PubMed  CAS  Google Scholar 

  • Kirby, K. S., 1968 Isolation of nucleic acids with phenolic solvents Methods Enzymol. 12:87–99.

    CAS  Google Scholar 

  • Kreider, G. and B. L. Brownstein, 1971 A mutation suppressing streptomycin dependence: An altered protein on the 30S ribosomal subunit. J. Mol. Biol. 61:135–142.

    PubMed  CAS  Google Scholar 

  • Krembel, J. and D. Apirion, 1968 Changes in ribosomal proteins associated with mutants in a locus that affects Escherichia coli ribosomes. J. Mol. Biol. 33:363–368.

    PubMed  CAS  Google Scholar 

  • Kruth, J., 1967 Preparation of RNA from rabbit reticulocytes and liver. Methods Enzymol. 12:609–613.

    Google Scholar 

  • Kurland, C. G., 1970 Ribosome structure and function emergent. Science (Wash., D.C.) 169:1171–1177.

    CAS  Google Scholar 

  • Kurland, C. G., 1971 Purification of ribosomes from Escherichia coli. Methods Enzymol. 20:379–381.

    Google Scholar 

  • Kurland, C. G., 1972 Structure and function of the bacterial ribosome. Annu. Rev. Biochem. 41:377–408.

    PubMed  CAS  Google Scholar 

  • Kurland, C. G., P. Voynow, S. J. S. Hardy, L. Randall and L. Lutter, 1969 Physical and functional heterogeneity of E. coli ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34:17–24.

    PubMed  CAS  Google Scholar 

  • Kurland, C. G., S. J. S. Hardy and G. Mora, 1971 Purification of ribosomal proteins from Escherichia coli. Methods Enzymol. 20:381–391.

    Google Scholar 

  • Lai, C. J. and B. Weisblum, 1971 Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 68:856–860.

    PubMed  CAS  Google Scholar 

  • Leboy, P. S., E. C. Cox and J. G. Flaks, 1964 The chromosomal site specifying a ribosomal protein in Eschenchia coli. Proc. Natl. Acad. Sci. USA 52:1367–1374.

    PubMed  CAS  Google Scholar 

  • Lengyel, P. and D. Söll, 1969 Mechanism of protein biosynthesis. Bacteriol. Rev. 33:264–301.

    PubMed  CAS  Google Scholar 

  • Lipmann, F., 1969 Polypeptide chain elongation in protein biosynthesis. Science (Wash., D.C.) 164:1024–1031.

    CAS  Google Scholar 

  • Loening, U. E., 1970 The mechanism of synthesis of ribosomal RNA. Symp. Soc. Gen. Microbiol 20:77–106.

    CAS  Google Scholar 

  • Maaløe, O. and N. O. Kjeldgaard, 1966 Control of Macromolecular Synthesis, W. A. Benjamin, New York.

    Google Scholar 

  • McConkey, E. H., 1967 The fractionation of RNA’s by sucrose gradient centrifugation. Methods Enzymol. 12:620–634.

    Google Scholar 

  • Maden, B. E. H., 1968 Ribosome formation in animal cells. Nature (Lond.) 219:685–689.

    CAS  Google Scholar 

  • Maglott, D. R. and T. Staehelin, 1971 Fractionation of Escherichia coli SOS ribosomes into various protein-deficient cores and split protein fractions by CsCl density gradient centrifugation and reconstitution of active particles. Methods Enzymol. 20:408–417.

    Google Scholar 

  • Mangiarotti, G. and D. Schlessinger, 1966 Polyribosome metabolism in Escheric hia coli. J. Mol. Biol. 20:123–143.

    PubMed  CAS  Google Scholar 

  • Mangiarotti, G. and D. Schlessinger, 1967 Polyribosome metabolism in Escherichia coli. II. Formation and lifetime of messenger RNA molecules, ribosomal subunit couples and polyribosomes. J. Mol. Biol. 29:395–418.

    CAS  Google Scholar 

  • Martin, T. E., I. G. Wool and J. J. Castles, 1971 Dissociation and reassociation of ribosomes from eukaryotic cells. Methods Enzymol. 20:417–429.

    Google Scholar 

  • Maruta, H., T. Tauchiya and D. Mizuno, 1971 In vitro reassembly of functionally active SOS ribosomal particles from ribosomal proteins and RNA’s of Escherichia coli. J. Mol. Biol. 61:123–234.

    PubMed  CAS  Google Scholar 

  • Masukawa, H., N. Tanaka and H. Umezawa, 1968 Localization of kanamycin sensitivity in the 23S core of 30S ribosomes of Escherichia coli. J. Antibiot. (Tokyo) Ser.A. 21:517–519.

    CAS  Google Scholar 

  • Mayuga, C., D. Meier and T. Wang, 1968 Escherichia coli: The K12 ribosomal protein and the streptomycin region of the chromosome. Biochem. Biophys. Res. Commun. 33:203–206.

    PubMed  CAS  Google Scholar 

  • Mizushima, S. and M. Nomura, 1970 Assembly mapping of 30S ribosomal proteins from Escherichia coli. Nature (Lond.) 226:1214–1218.

    CAS  Google Scholar 

  • Momose, H. and L. Gorini, 1971 Genetic analysis of streptomycin dependence in Escherichia coli. Genetics 67:19–38.

    PubMed  CAS  Google Scholar 

  • Monier, R., J. Feunteun, B. Forget, B. Jordon, M. Reynier and F. Varricchio, 1969 5S RNA and the assembly of bacterial ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34:139–148.

    PubMed  CAS  Google Scholar 

  • Mora, G., D. Donner, P. Thammana, L. Lutter, C. G. Kurland and G. R. Craven, 1971 Purification and characterization of 50S ribosomal proteins of Escherichia coli. Mol. Gen. Genet. 112:229–242.

    PubMed  CAS  Google Scholar 

  • Mortimer, R. K. and D. C. Hawthorne, 1966 Genetic mapping in Saccharomyces. Genetics 53:165–173.

    PubMed  CAS  Google Scholar 

  • Nashimoto, H. and M. Nomura, 1970 Structure and function of bacterial ribosomes. XI. Dependence of 50S ribosomal assembly on simultaneous assembly of 30S subunits. Proc. Natl. Acad. Sci. USA 67:1440–1447.

    PubMed  CAS  Google Scholar 

  • Nashimoto, H., W. Held, E. Kaltschmidt and M. Nomura, 1971 Structure and function of bacterial ribosomes. XII. Accumulation of 21S particles by some cold-sensitive mutants of Escherichia coli. J. Mol. Biol. 62:121–138.

    PubMed  CAS  Google Scholar 

  • Nomura, M., 1970 Bacterial ribosome. Bacteriol. Rev. 34:228–277.

    PubMed  CAS  Google Scholar 

  • Nomura, M., 1973 Assembly of bacterial ribosomes. Science (Wash., D.C.) 179:864–873.

    CAS  Google Scholar 

  • Nomura, M. and V. A. Erdmann, 1970 Reconstitution of 50S ribosomal subunits from dissociated molecular components. Nature (Lond.) 228:744–748.

    CAS  Google Scholar 

  • Nomura, M., C. V. Lowry and C. Guthrie, 1967 The initiation of protein synthesis: joining of the 50S ribosomal subunit to the initiation complex. Proc. Natl. Acad. Sci. USA 88:1487–1493.

    Google Scholar 

  • Nomura, M., S. Mizushima, M. Ozaki, P. Traub and C. V. Lowry, 1969 Structure and function of ribosomes and their molecular components. Cold Spring Harbor Symp. Quant. Biol. 34:49–61.

    PubMed  CAS  Google Scholar 

  • O’Neil, D. M. and P. S. Sypherd, 1971 Cotransduction of strA and ribosomal protein cistrons in Escherichia coli-Salmonella typhimurium hybrids. J. Bacteriol. 105:947–956.

    PubMed  Google Scholar 

  • O’Neil, D. M., L. S. Baron and P. S. Sypherd, 1969 Chromosomal location of ribosomal protein cistrons determined by intergeneric bacterial mating. J. Bacteriol. 99:242–247.

    PubMed  Google Scholar 

  • Osawa, S., 1965 Biosynthesis of ribosomes in bacterial cells. Prog. Nucleic Acid Res. Mol. Biol. 4:161–188.

    PubMed  CAS  Google Scholar 

  • Osawa, S., 1968 Ribosome formation and structure. Annu. Rev. Biochem. 37:109–130.

    PubMed  CAS  Google Scholar 

  • Osawa, S., T. Itoh and E. Otaka, 1971 Differentiation of the ribosomal protein compositions in the genes Escherichia and its related bacteria. J. Bacteriol. 107:168–178.

    PubMed  CAS  Google Scholar 

  • Otaka, E., T. Itoh and S. Osawa, 1968 Ribosomal proteins of bacterial cells; strain-and species-specificity. J. Mol. Biol. 33:93–107.

    PubMed  CAS  Google Scholar 

  • Ozaki, M., S. Mizushima and M. Nomura, 1969 Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli Nature (Lond.) 222:333–339.

    CAS  Google Scholar 

  • Pestka, S., 1971 Inhibitors of ribosome functions. Annu. Rev. Microbiol. 25:487–552.

    PubMed  CAS  Google Scholar 

  • Petermann, M. L., 1971 The dissociation of rat liver ribosomes to active subunits by urea. Methods Enzymol. 20:429–433.

    CAS  Google Scholar 

  • Phillips, S. L., D. Schlessinger and D. Apirion, 1969 Mutants in Escherichia coli ribosomes: a new selection. Proc. Natl. Acad. Sci. USA 62:772–777.

    PubMed  CAS  Google Scholar 

  • Rao, S. and A. Grollman, 1967 Cycloheximide resistance in yeast: A property of the 60S ribosomal subunit. Biochem. Biophys. Res. Commun. 29:696–704.

    PubMed  CAS  Google Scholar 

  • Ritossa, F. S., K. C. Atwood, D. L. Lindsley and S. Spiegelman, 1966 On the chromosome distribution of DNA complementary to ribosomal and soluble RNA. Natl. Cancer Inst. Monogr. 23:449–471.

    PubMed  CAS  Google Scholar 

  • Rosset, R. and L. Gorini, 1969 A ribosomal ambiguity mutation. J. Mol. Biol. 39:95–112.

    PubMed  CAS  Google Scholar 

  • Sabatini, D. D., Y. Tashiro and G. E. Palade, 1966 On the attachment of ribosomes to microsomal membranes. J. Mol. Biol. 19:503–524.

    PubMed  CAS  Google Scholar 

  • Sanger, F., G. G. Brownlee and B. G. Barrell, 1965 A two-dimensional fractionation procedure for radioactive nucleotides. J. Mol. Biol. 13:373–398.

    PubMed  CAS  Google Scholar 

  • Sarkar, P. K., J. T. Yang and P. Doty, 1967 Optical rotatory dispersion of E. coli ribosomes and their constituents. Biopolymers 5:1–4.

    PubMed  CAS  Google Scholar 

  • Schaechter, M., 1963 Bacterial polyribosomes and their participation in protein synthesis in vivo. J. Mol. Biol. 7:561–568.

    PubMed  CAS  Google Scholar 

  • Schaup, H. W., M. Green and C. G. Kurland, 1970 Molecular interactions of ribosomal components. I. Identification of RNA binding sites for individual 30S ribosomal proteins. Mol. Gen. Genet. 109:193–205.

    PubMed  CAS  Google Scholar 

  • Schaup, H. W., M. Green and C. G. Kurland, 1971 Molecular interactions of ribosomal components. II. Site specific complex formation between 30S proteins and ribosomal RNA. Mol. Gen. Genet. 112:1–8.

    PubMed  CAS  Google Scholar 

  • Schlessinger, D., 1963 Protein synthesis by polyribosomes on protoplast membranes of B. megatenum. J. Mol. Biol. 7,569–582.

    PubMed  CAS  Google Scholar 

  • Schlessinger, D., and D. Apirion, 1969 Escherichia coli ribosomes: recent developments. Annu. Rev. Microbiol. 23:387–426.

    PubMed  CAS  Google Scholar 

  • Schreiber, G. 1971 Translation of genetic information on the ribosome. Angew. Chem. Int. Ed. Engl. 10:638–651.

    PubMed  CAS  Google Scholar 

  • Schreier, M. H., and H. Noll, 1971 Conformational changes in ribosomes during protein synthesis. Proc. Natl. Acad. Sci. USA 68:805–809.

    PubMed  CAS  Google Scholar 

  • Schweizer, E., G. MacKechnie and H. O. Halvorson, 1969 The redundancy of ribosomal and transfer RNA genes in Saccharomyces cerevisiae. J. Mol. Biol. 40:261–277.

    PubMed  CAS  Google Scholar 

  • Smith, I., D. Dubnau, P. Morell and J. Marmur, 1968 Chromosomal location of DNA base sequences complementary to transfer RNA and to 5S, 16S and 23S ribosomal RNA in Bacillus subtilis. J. Mol. Biol. 33:123–140.

    PubMed  CAS  Google Scholar 

  • Smith, I., C. Goldthwaite and D. Dubnar, 1969 The genetics of ribosomes in Bacillus subtilis. Cold Spring Harbor Symp. Quant. Biol. 34:85–89.

    PubMed  CAS  Google Scholar 

  • Sparling, P. F., J. Modolell, T. Takeda and B. D. Davis, 1968 Ribosomes from Escherichia coli merodiploids heterozygous for resistance to streptomycin and to spectinomycin. J. Mol. Biol. 37:407–421.

    PubMed  CAS  Google Scholar 

  • Staehelin, T., and A. K. Falvey, 1971 Isolation of mammalian ribosomal subunits active in polypeptide synthesis. Methods Enzymol. 20:433–446.

    Google Scholar 

  • Staehelin, T., and D. R. Maglott, 1971 Preparation of Escherichia coli ribosomal subunits active in polypeptide synthesis. Methods Enzymol. 20:449–456.

    Google Scholar 

  • Staehelin, T., and M. Meselson, 1966 In vitro recovery of ribosomes and of synthetic activity from synthetically inactive ribosomal subunits. J. Mol. Biol. 15:245–249.

    Google Scholar 

  • Stöffler, G., E. Deusser, H. G. Wittman and D. Apirion, 1971 Ribosomal proteins: Altered S5 ribosomal protein in an Escherichia coli revertant from streptomycin dependence to independence. Mol. Gen. Genet. 111:334–341.

    PubMed  Google Scholar 

  • Strnad, B. C., and P. S. Sypherd, 1969 Unique protein moieties for 30S and 506S ribosomes of Escherichia coli. J. Bacteriol. 98:1080–1086.

    PubMed  CAS  Google Scholar 

  • Sypherd, P. S., 1969 Amino acid differences in a 30S ribosomal protein from two strains of Escherichia coli. J. Bacteriol. 99:379–382.

    PubMed  CAS  Google Scholar 

  • Sypherd, P. S., D. M. O’Neil and M. M. Taylor, 1969 The chemical and genetic structure of bacterial ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34:77–84.

    PubMed  CAS  Google Scholar 

  • Tai, P., D. P. Kessler and J. Ingraham, 1969 Cold-sensitive mutations in Salmonella typhimurium which affect ribosome synthesis. J. Bacteriol. 97:1298–1304.

    PubMed  CAS  Google Scholar 

  • Takata, R., S. Osawa, K. Tanaka, H. Teraoka and M. Tamaki, 1970 Genetic studies of the ribosomal proteins in Escherichia coli: Mapping of erythromycin resistance mutations which lead to alteration of a 50S ribosomal protein component. Mol. Gen. Genet. 109:123–130.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., H. Teraoka, M. Tamaki, E. Otaka and S. Osawa, 1968 Erythromycinresistant mutant of Escherichia coli with altered ribosomal protein component. Science (Wash., D.C.) 162:576–578.

    CAS  Google Scholar 

  • Tissières, A., and J. D. Watson, 1958 Ribonucleoprotein particles from Escherichia coli. Nature (Lond.) 182:778–780.

    Google Scholar 

  • Tissières, A., J. D. Watson, D. Schlessinger and B. R. Hollingworth, 1959 Riboncleoprotein particles from Escherichia coli. J. Mol. Biol. 1:221–233.

    Google Scholar 

  • Traub, P., and M. Nomura, 1968a Structure and function of E. coli ribosomes. I. Partial fractionation of the functionally active ribosomal proteins and reconstitution of artificial subribosomal particles. J. Mol. Biol. 34:575–593.

    PubMed  CAS  Google Scholar 

  • Traub, P., and M. Nomura, 1968b Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. Natl. Acad. Sci. USA 59:777–784.

    PubMed  CAS  Google Scholar 

  • Traub, P., and M. Nomura, 1968c Streptomycin resistance mutation in Escherichia coli: Altered ribosomal protein. Science (Wash. D.C.) 160:198–199.

    CAS  Google Scholar 

  • Traub, P., S. Mizushima, C. V. Lowry and M. Nomura, 1971 Reconstitution of ribosomes from subribosomal components. Methods Enzymol. 20:391–407.

    Google Scholar 

  • Traut, R. R., H. Delius, C. Ahmad-Zadeh, T. A. Bickle, P. Pearson and A. Tissières, 1969 Ribosomal proteins of E. coli: Stoichiometry and implications for ribosome structure. Cold Spring Harbor Symp. Quant. Biol. 34:25–38.

    PubMed  CAS  Google Scholar 

  • Voynow, P. and C. G. Kurland, 1971 Stoichiometry of the 30S ribosomal proteins of Escherichia coli. Biochemistry 10:517–524.

    PubMed  CAS  Google Scholar 

  • Waller, J. P., 1964 Fractionation of the ribosomal protein from Escherichia coli. J. Mol. Biol. 10:319–336.

    PubMed  CAS  Google Scholar 

  • Walton, G. M., G. W. Gill, I. B. Abrass and L. D. Garren, 1971 Phosphorylation of ribosome-associated protein by an adenosine 3′-5′-cyclic monophosphate-dependent protein kinase: Location of the microsomal receptor and protein kinase. Proc. Natl. Acad. Sci. USA 68:880–884.

    PubMed  CAS  Google Scholar 

  • Warner, J. R., 1971 The assembly of ribosomes in yeast. J. Biol. Chem. 246:447–454.

    PubMed  CAS  Google Scholar 

  • Watson, J. D., 1964 The synthesis of proteins from ribosomes. Bull. Soc. Chim. Biol. 46:1399–1425.

    PubMed  CAS  Google Scholar 

  • Weisblum, B., and J. Davies, 1968 Antibiotic inhibitors of the bacterial ribosome. Bacteriol. Rev. 32:493–528.

    PubMed  CAS  Google Scholar 

  • Welfle, H., J. Stahl and H. Bielka, 1971 Studies on proteins of animal ribosomes: two-dimensional polyacrylamide gel electrophoresis of ribosomal proteins of rat liver. Biochim. Biophys. Acta 243:416–419.

    PubMed  CAS  Google Scholar 

  • Wilkie, D., 1970 Reproduction of mitochondria and chloroplasts. Symp. Soc. Gen. Microbiol. 20:381–399.

    Google Scholar 

  • Wittmann, H. G., 1970 A comparison of ribosomes from prokaryotes and eukaryotes. Symp. Soc. Gen. Microbiol. 20:55–76.

    CAS  Google Scholar 

  • Wittman, H. G., G. Stöffler, I. Hindennach, C. G. Kurland, L. Randall-Hazelbauer, E. A. Birge, M. Nomura, E. Kaltschmidt, S. Mizushima, R. R. R. Traut and T. A. Bickle, 1971 Correlation of 305” ribosomal proteins of Escherichia coli isolated in different laboratories. Mol. Gen. Genet. 111:327–333.

    Google Scholar 

  • Woese, C., 1970 Molecular mechanisms of translation, a reciprocating rachet mechanism. Nature (Lond.) 226:817–820.

    CAS  Google Scholar 

  • Yankofsky, S. A., and S. Spiegelman, 1963 Distinct cistrons for the two ribosomal RNA components. Proc. Natl. Acad. Sci. USA 49:538–544.

    PubMed  CAS  Google Scholar 

  • Yu, M. T., C. W. Vermeiden, and K. C. Atwood, 1970 Location of the genes for 16S and 23S ribosomal RNA on the genetic map of Escherichia coli. Proc. Natl. Acad. Sci. USA 67:26–31.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R. A., R. T. Garvin and L. Gorini, 1971 Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proc. Natl. Acad. Sci. USA 68:2263–2267.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, J. (1974). Bacterial Ribosomes. In: King, R.C. (eds) Bacteria, Bacteriophages, and Fungi. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1710-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1710-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1712-6

  • Online ISBN: 978-1-4899-1710-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics