Skip to main content

Engineering Resistance against Viral Diseases in Plants

  • Chapter
Plant-Microbe Interactions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 29))

Abstract

Viral diseases can result in severe losses to many agriculturally important crops. Genetic engineering proposes an interesting alternative to more traditional techniques intended to preserve plants from becoming infected. This review addresses proven genetic engineering strategies devised to control virus infection and also points to other schemes which are currently being tested. Although it has no ambition of covering the entire field, an effort has been made to point out as many different elements as possible to understand the molecular mechanisms on which the strategies are based, their degree of effectiveness, and their applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. M., Palukaitis, P., and Zaitlin, M., 1992, A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants, Proc. Natl. Acad. Sci. USA 89:8759–8763.

    PubMed  CAS  Google Scholar 

  • Angenent, G. C., van den Ouweland, J. M. W., and Bol, J. F., 1990, Susceptibility to virus infection of transgenic tobacco plants expressing structural and nonstructural genes of tobacco rattle virus, Virology 175:191–198.

    PubMed  CAS  Google Scholar 

  • Arce-Johnson, P., Kahn, T. W., Reimann-Philipp, U., Rivera-Bustamante, R., and Beachy, R. N., 1995, The amount of movement protein produced in transgenic plants influences the establishment, local movement, and systemic spread of infection by movement protein-deficient tobacco mosaic virus, Mol. Plant-Microbe Interact. 8:415–423.

    CAS  Google Scholar 

  • Atkins, D., Hull, R., Wells, B., Roberts, K., Moore, P., and Beachy, R. N., 1991, The tobacco mosaic virus 30K movement protein in transgenic tobacco plants is localized to plasmodesmata, J. Gen. Virol. 72:209–211.

    PubMed  CAS  Google Scholar 

  • Atkins, D., Young, M., Uzzell, S., Kelly, L., Fillatti, J., and Gerlach, W. L., 1995, The expression of the antisense and ribozyme genes targeting citrus exocortis viroid in transgenic plants, J. Gen. Virol 76:1781–1790.

    PubMed  CAS  Google Scholar 

  • Atreya, C. D., Raccah, B., and Pirone, T. P., 1990, A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus, Virology 178:161–165.

    PubMed  CAS  Google Scholar 

  • Audy, P., Palukaitis, P., Slack, S. A., and Zaitlin, M., 1994, Replicase-mediatedresistance to potato virus Y in transgenic tobacco plants, Mol. Plant-Microbe Interact. 7:15–22.

    PubMed  CAS  Google Scholar 

  • Barbieri, L., Aron, G. M., Irvin, J. D., and Stirpe, F., 1982, Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed), Biochem. J. 203:55–59.

    PubMed  CAS  Google Scholar 

  • Bardonnet, N., Hans, F., Serghini, M. A., and Pinck, L., 1994, Protection against virus infection in tobacco plants expressing the coat protein of grapevine fanleaf nepovirus, Plant Cell Rep. 13:357–360.

    CAS  Google Scholar 

  • Baulcombe, D., 1994, Replicase-mediated resistance: A novel type of virus resistance in transgenic plants? Trends Microbiol. 2:60–63.

    PubMed  CAS  Google Scholar 

  • Baulcombe, D. C., Saunders, G. R., Bevan, M. W., Mayo, M. A., and Harrison, B. D., 1986, Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants, Nature 321:446–449.

    CAS  Google Scholar 

  • Beck, D. L., Van Dolleweerd, C. J., Lough, T. J., Balmori, E., Voot, D. M., Andersen, M. T., O’Brien, I. E. W., and Forster, R. L. S., 1994, Disruption of virus movement confers broad-spectrum resistance against systemic infection by plant viruses with a triple gene block, Proc. Natl. Acad. Sci. USA 91:10310–10314.

    PubMed  CAS  Google Scholar 

  • Becker, F., Buschfeld, E., Schell, J., and Bachmair, A., 1993, Altered response to viral infection by tobacco plants perturbed in ubiquitin system, Plant J. 3:875–881.

    Google Scholar 

  • Beffa, R. S., Hofer, R.-M., Thomas, M., and Meins, F., Jr, 1996, Decreased susceptibility to viral disease of β-1,3-glucanase-deficient plants generated by antisense transformation, Plant Cell 8:1001–1011.

    PubMed  CAS  Google Scholar 

  • Bejarano, E. R., and Lichtenstein, C. P., 1994, Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses, Plant Mol. Biol. 24:241–248.

    PubMed  CAS  Google Scholar 

  • Benvenuto, E., Ordàs, R. J., Tavazza, R., Ancora, G., Biocca, S., Cattaneo, A., and Galeffi, P., 1991, ‘Phytoantibodies’: A general vector for the expression of immunoglobulin domains in transgenic plants, Plant Mol. Biol. 17:865–874.

    PubMed  CAS  Google Scholar 

  • Bertioli, D. J., Cooper, J. I., Edwards, M. L., and Hawes, W. S., 1992, Arabis mosaic nepovirus coat protein in transgenic tobacco lessens disease severity and virus replication, Ann. Appl. Biol. 120:47–54.

    Google Scholar 

  • Bol, J. F., Van Vloten-Doting, L., and Jaspars, E. M. J., 1971, A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus, Virology 46:73–85.

    PubMed  CAS  Google Scholar 

  • Bol, J. F., Brederode, F. T., Neeleman, L., Taschner, P. E. M., and Turner, N. E., 1993, Complementation and disruption of viral processes in transgenic plants, Phil. Trans. R. Soc. Lond. B 342:259–263.

    CAS  Google Scholar 

  • Bourdin, D., and Lecoq, H., 1991, Evidence that heteroencapsidation between two potyviruses is involved in aphid transmission of a non-aphid-transmissible isolate from mixed infections, Phytopathology 81:1459–1464.

    Google Scholar 

  • Brault, V., Candresse, T., le Gall, O., Delbos, R. P., Lanneau, M., and Dunez, J., 1993, Genetically engineered resistance against grapevine chrome mosaic nepovirus, Plant Mol. Biol. 21:89–97.

    PubMed  CAS  Google Scholar 

  • Braun, C. J., and Hemenway, C. L., 1992, Expression of amino-terminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection, Plant Cell 4:735–744.

    PubMed  CAS  Google Scholar 

  • Burgyan, J., Rubino, L., and Russo, M., 1991, De novo generation of cymbidium ringspot virus defective interfering RNA, J. Gen. Virol. 72:505–509.

    PubMed  CAS  Google Scholar 

  • Candelier-Harvey, P., and Hull, R., 1993, Cucumber mosaic virus genome is encapsidated in alfalfa mosaic virus coat protein expressed in transgenic tobacco plants, Transgenic Res. 2:277–285.

    CAS  Google Scholar 

  • Carr, J. P., and Zaitlin, M., 1993, Replicase mediated resistance, Semin. Virol. 4:339–347.

    CAS  Google Scholar 

  • Carr, J. P., Marsh, L. E., Lomonossoff, G. P., Sekiya, M. E., and Zaitlin, M., 1992, Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein, Mol. Plant-Microbe Interact. 5:397–404.

    PubMed  CAS  Google Scholar 

  • Carr, J. P., Gal-On, A., Palukaitis, P., and Zaitlin, M., 1994, Replicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement, Virology 199:439–447.

    PubMed  CAS  Google Scholar 

  • Carrington, J. C., Cary, S. M., Parks, T. D., and Dougherty, W. G., 1989, A second proteinase encoded by a plant potyvirus genome, EMBO J. 8:365–370.

    PubMed  CAS  Google Scholar 

  • Cassidy, B. G., and Nelson, R. S., 1995, Differences in protection phenotypes in tobacco plants expressing coat protein genes from peanut stripe potyvirus with or without an engineered ATG, Mol. Plant-Microbe Interact. 8:357–365.

    CAS  Google Scholar 

  • Citovsky, V., and Zambryski, P., 1993, Transport of nucleic acids through membrane channels: Snaking through small holes, Annu. Rev. Microbiol 47:167–197.

    PubMed  CAS  Google Scholar 

  • Citovsky, V., Knorr, D., Schuster, G., and Zambryski, P., 1990, The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein, Cell 60:637–647.

    PubMed  CAS  Google Scholar 

  • Citovsky, V., Knorr, D., and Zambryski, P., 1991, Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA binding protein, Proc. Natl. Acad. Sci. USA 88:2476–2480.

    PubMed  CAS  Google Scholar 

  • Citovsky, V., Wong, M. L., Shaw, A. L., Prasad, B. V. V., and Zambryski, P., 1992, Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids, Plant Cell 4:397–411.

    PubMed  CAS  Google Scholar 

  • Clough, G. H., and Hamm, P. B., 1995, Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe, Plant Dis. 79:1107–1109.

    CAS  Google Scholar 

  • Conner, A. J., Williams, M. K., Abernethy, D. J., Fletcher, P. J., and Genet, R. A., 1994, Field performance of transgenic potatoes. N. Z. J. Crop Hortic. Sci. 22:361–371.

    Google Scholar 

  • Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., and Beachy, R. N., 1995, A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility, Virology 206:307–313.

    PubMed  CAS  Google Scholar 

  • Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad, M. C., and Carrington, J. C., 1995, Longdistance movement factor: A transport function of the potyvirus helper component proteinase, Plant Cell 7:549–559.

    PubMed  CAS  Google Scholar 

  • Cuozzo, M., O’Connell, K. M., Kaniewski, W., Fang, R.-X., Chua, N.-H., and Turner, N. E., 1988, Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA, Bio/technology 6:549–557.

    CAS  Google Scholar 

  • Cutt, J. R., Harpster, M. H., Dixon, D. C., Carr, J. P., Dunsmuir, P., and Klessig, D. F., 1989, Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene, Virology 173:89–97.

    PubMed  CAS  Google Scholar 

  • Dahal, G., Hibino, H., and Saxena, R. C., 1990, Association of leafhopper feeding behavior with transmission of rice tungro to susceptible and resistant rice cultivars, Phytopathology 80:371–377.

    Google Scholar 

  • Dax, E., Livneh, O., Edelbaum, O., Kedar, N., Gavish, N., Karchi, H., Milo, J., Sela, I., and Rabinowitch, H., 1994, A random amplified polymorphic DNA (RAPD) molecular marker for the Tm-2-a gene in tomato, Euphytica 74:159–163.

    Google Scholar 

  • Day, A. G., Bejarano, E. R., Buck, K. W., Burrell, M., and Lichtenstein, C. P., 1991, Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus, Proc. Natl. Acad. Sci. USA 88:6721–6725.

    PubMed  CAS  Google Scholar 

  • de Feyter, R., Young, M., Schroeder, K., Dennis, E. S., and Gerlach, W., 1996, A ribozyme gene and an antisense gene are equally effective in conferring resistance to tobacco mosaic virus on transgenic tobacco, Mol. Gen. Genet. 250:329–338.

    PubMed  Google Scholar 

  • de Haan, P., Gielen, J. J. L., Prins, M., Wijkamp, I. G., van Schepen, A., Peters, D., van Grinsven, M. Q. J. M., and Goldbach, R., 1992, Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants, Bio/technology 10:1133–1137.

    PubMed  Google Scholar 

  • De Neve, M., De Loose, M., Jacobs, A., Van Houdt, H., Kaluza, B., Weidle, U., Van Montagu, M., and Depicker, A., 1993, Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis, Transgenic Res. 2:227–237.

    PubMed  Google Scholar 

  • Deom, C. M., Schubert, K. R., Wolf, S., Holt, C. A., Lucas, W. J., and Beachy, R. N., 1990, Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants, Proc. Natl. Acad. Sci. USA 87:3284–3288.

    PubMed  CAS  Google Scholar 

  • Devash, Y., Biggs, S., and Sela, I., 1982, Multiplication of tobacco mosaic virus in tobacco leaf disks is inhibited by (2′–5′) oligoadenylate, Science 216:1415–1416.

    PubMed  CAS  Google Scholar 

  • Devash, Y., Reichman, M., Sela, I., Reichenbach, N. L., and Suhadolnik, R. J., 1985, Plant oligoadenylates: Enzymatic synthesis, isolation and biological activities, Biochemistry 24:593–599.

    PubMed  CAS  Google Scholar 

  • Devic, M., Jaegle, M., and Baulcombe, D., 1990, Cucumber mosaic virus satellite RNA (strain Y): Analysis of sequences which affect systemic necrosis on tomato, J. Gen. Virol. 71:1443–1449.

    PubMed  CAS  Google Scholar 

  • de Zoeten, G. A., 1991, Risk assessment: Do we let history repeat itself? Phytopathology 81:585–586.

    Google Scholar 

  • Dinant, S., Blaise, F., Kusiak, C., Astier-Manifacier, S., and Albouy, J., 1993, Heterologous resistance to potato virus Y in transgenic tobacco plants expressing the coat protein gene of lettuce mosaic potyvirus, Phytopathology 83:818–824.

    CAS  Google Scholar 

  • Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C., 1995, Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus, Virology 206:1007–1016.

    PubMed  CAS  Google Scholar 

  • Donson, J., Kearney, C. M., Turpen, T. H., Khan, I. A., Kurath, G., Turpen, A. M., Jones, G. E., Dawson, W. O., and Lewandowski, D. J., 1993, Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase transgene, Mol. Plant-Microbe Interact. 6:635–642.

    PubMed  CAS  Google Scholar 

  • Dougherty, W. G., Lindbo, J. A., Smith, H. A., Parks, T. D., Swaney, S., and Proebsting, W. M., 1994, RNA-mediated virus resistance in transgenic plants: Exploitation of a cellular pathway possibly involved in RNA degradation, Mol. Plant-Microbe Interact. 7:544–552.

    PubMed  CAS  Google Scholar 

  • Edelbaum, O., Ilan, N., Grafi, G., Sher, N., Stram, Y., Novick, D., Tal, N., Sela, I., and Rubinstein, M., 1990, Two antiviral proteins from tobacco: Purification and characterization by monoclonal antibodies to human β-interferon, Proc. Natl. Acad. Sci. USA 87:588–592.

    PubMed  CAS  Google Scholar 

  • Edelbaum, O., Sher, N., Rubinstein, M., Novick, D., Tal, N., Moyer, M., Ward, E., Ryals, J., and Sela, I., 1991, Two antiviral proteins, gp35 and gp22, correspond to β-1,3-glucanase and an isoform of PR-5, Plant Mol. Biol. 17:171–173.

    PubMed  CAS  Google Scholar 

  • Edelbaum, O., Stein, D., Holland, N., Gafni, Y., Livneh, O., Novick, D., Rubinstein, M., and Sela, I., 1992, Expression of active human interferon β in transgenic plants, J. Interferon Res. 12:449–453.

    PubMed  CAS  Google Scholar 

  • Edington, B. V., and Nelson, R. S., 1992, Utilisation of ribozymes in plants: Plant viral resistance, in Gene Regulation: Biology of Antisense RNA and DNA (R. P. Erickson and J. G. Izant, eds.), pp. 209–222, Raven Press, New York, NY.

    Google Scholar 

  • English, J. J., Mueller, E., and Baulcombe, D. C., 1996, Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes, Plant Cell 8:179–188.

    PubMed  CAS  Google Scholar 

  • Falk, B.W., and Bruening, G., 1994, Will transgenic crops generate new viruses and new diseases, Science 263:1395–1396.

    PubMed  CAS  Google Scholar 

  • Fang, G., and Grumet, R., 1993, Genetic engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene, Mol. Plant-Microbe Interact. 6:358–367.

    PubMed  CAS  Google Scholar 

  • Farinelli, L., and Malnoë, P., 1993, Coat protein gene-mediated resistance to potato virus Y in tobacco: Examination of the resistance mechanisms—is the transgenic coat protein required for protection? Mol. Plant-Microbe Interact. 6:284–292.

    PubMed  CAS  Google Scholar 

  • Farinelli, L., Malnoë, P., and Collet, G. F., 1992, Heterologous encapsidation of potato virus Y strain O (PVYo) with the transgenic coat protein of PVY strain N (PVYn) in Solanum tuberosum cv. Bintje, Bio/technology 10:1020–1025.

    CAS  Google Scholar 

  • Fauquet, C., and Fargette, D., 1990, African cassava mosaic virus: Etiology, epidemiology, and control, Plant Dis. 74:404–411.

    Google Scholar 

  • Fehér, A., Skryabin, K. G., Balázs, E., Preiszner, J., Shulga, O. A., Zakharyev, V. M., and Dudits, D., 1992, Expression of PVX coat protein gene under the control of extensin-gene promoter confers virus resistance on transgenic potato plants, Plant Cell Rep. 11:48–52.

    Google Scholar 

  • Fitchen, J. H., and Beachy, R. N., 1993, Genetically engineered protection against viruses in transgenic plants, Annu. Rev. Microbiol. 47:739–763.

    PubMed  CAS  Google Scholar 

  • Fraser, R. S. S., 1990, The genetics of resistance to plant viruses, Annu. Rev. Phytopathol. 28:179–200.

    Google Scholar 

  • Fraser, R. S. S., 1992, The genetics of plant-virus interactions: Implications for plant breeding, Euphytica 63:175–185.

    Google Scholar 

  • Frischmuth, T., and Stanley, J., 1994, Beet curly top virus symptom amelioration in Nicotiana benthamiana transformed with a naturally occurring viral subgenomic DNA, Virology 200:826–830.

    PubMed  CAS  Google Scholar 

  • Fritsch, C., and Mayo, M. A., 1989, Satellites of plant viruses, in Plant Viruses, Vol. I: Structure and Replication (C. L. Mandahar, ed.), pp. 289–321, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Fuchs, M., and Gonsalves, D., 1995, Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses, Bio/technology 13:1466–1473.

    CAS  Google Scholar 

  • Gal-On, A., Antignus, Y., Rosner, A., and Raccah, B., 1992, A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication, J. Gen. Virol. 73:2183–2187.

    PubMed  CAS  Google Scholar 

  • Gerlach, W. L., Llewellyn, D., and Haseloff, J., 1987, Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus, Nature 328:802–805.

    CAS  Google Scholar 

  • Gielen, J. J. L., de Haan, P., Kool, A. J., Peters, D., van Grinsven, M. Q. J. M., and Goldbach, R. W., 1991, Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus, Bio/technology 9:1363–1367.

    CAS  Google Scholar 

  • Gielen, J., Ultzen, T., Bontems, S., Loots, W., Van Schepen, A., Westerbroek, A., de Haan, P., and Van Grinsven, M., 1996, Coat protein-mediated protection to cucumber mosaic virus infections in cultivated tomato, Euphytica 88:139–149.

    CAS  Google Scholar 

  • Golemboski, D. B., Lomonossoff, G. P., and Zaitlin, M., 1990, Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus, Proc. Natl. Acad. Sci. USA 87:6311–6315.

    PubMed  CAS  Google Scholar 

  • Gonsalves, D., Chee, P., Provvidenti, R., Seem, R., and Slightom, J. L., 1992, Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors, Bio/technology 10:1562–1570.

    CAS  Google Scholar 

  • Gonsalves, C., Xue, B., Yepes, M., Fuchs, M., Ling, K., Namba, S., Chee, P., Slightom, J. L., and Gonsalves, D., 1994, Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L., and evaluating transgenic plants for protection against infections, J. Am. Soc. Hortic. Sci. 119:345–355.

    CAS  Google Scholar 

  • Goodwin, J., Chapman, K., Swaney, S., Parks, T. D., Wemsman, E. A., and Dougherty, W. G., 1996, Genetic and biochemical dissection of transgenic RNA-mediated virus resistance, Plant Cell 8:95–105.

    PubMed  CAS  Google Scholar 

  • Greene, A. E., and Allison, R. F., 1994, Recombination between viral RNA and transgenic plant transcripts, Science 263:1423–1425.

    PubMed  CAS  Google Scholar 

  • Hammond, J., and Kamo, K. K., 1995, Effective resistance to potyvirus infection conferred by expression of antisense RNA in transgenic plants, Mol. Plant-Microbe Interact. 8:674–682.

    PubMed  CAS  Google Scholar 

  • Harrison, B. D., Mayo, M. A., and Baulcombe, D. C., 1987, Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA, Nature 328:799–802.

    Google Scholar 

  • Haseloff, J., and Gerlach, W. L., 1988, Simple RNA enzymes with new and highly specific endoribonuclease activities, Nature 334:585–591.

    PubMed  CAS  Google Scholar 

  • Hélène, C., and Toulmé, J.-J., 1990, Specific regulation of gene expression by antisense, sense and antigene nucleic acids, Biochim. Biophys. Acta 1049:99–125.

    PubMed  Google Scholar 

  • Hellmann, G. M., Hiremath, S. T., Shaw, J. G., and Rhoads, R. E., 1986, Cistron mapping of tobacco vein mottling virus, Virology 151:159–171.

    PubMed  CAS  Google Scholar 

  • Hellmann, G. M., Shaw, J. G., and Rhoads, R. E., 1988, In vitro analysis of tobacco vein mottling virus NIa cistron: Evidence for a virus-encoded protease, Virology 163:554–562.

    PubMed  CAS  Google Scholar 

  • Hemenway, C., Fang, R.-X., Kaniewski, W. K., Chua, N.-H., and Turner, N. E., 1988, Analysis of the mechanisms of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA, EMBO J. 7:1273–1280.

    PubMed  CAS  Google Scholar 

  • Henry, C. M., Barker, I., Pratt, M., Pemberton, A. W., Farmer, M. J., Cotten, J., Ebbeis, D., Coates, D., and Stratford, R., 1995, Risks Associated with the Use of Genetically Modified Virus Tolerant Plants, Ministry of Agriculture, Fisheries and Food, London, UK.

    Google Scholar 

  • Herdt, R. W., 1991, Research priorities for rice biotechnology, in Rice Biotechnology (G. S. Khush and G. H. Toenniessen, eds.), pp. 19–54, CAB International, Wallingford, Oxon, U.K.

    Google Scholar 

  • Hiatt, A., Cafferkey, R., and Bowdish, K., 1989, Production of antibodies in transgenic plants, Nature 342:76–78.

    PubMed  CAS  Google Scholar 

  • Hillman, B. I., Carrington, J. C., and Morris, T. J., 1987, A defective interfering RNA that contains a mosaic of a plant virus genome, Cell 51:427–433.

    PubMed  CAS  Google Scholar 

  • Hoekema, A., Huisman, M. J., Molendijk, L., van den Elzen, P. J. M., and Cornelissen, B. J. C., 1989, The genetic engineering of two commercial potato cultivars for resistance to potato virus X, Bio/technology 7:273–278.

    Google Scholar 

  • Holt, C. A., and Beachy, R. N., 1991, In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants, Virology 181:109–117.

    PubMed  CAS  Google Scholar 

  • Hong, Y., and Stanley, J., 1996, Virus resistance in Nicotiana benthamiana conferred by African cassava mosaic virus replication-associated protein (AC1) transgene, Mol. Plant-Microbe Interact. 9:219–225.

    CAS  Google Scholar 

  • Huisman, M. J., Broxterman, H. J. G., Schellekens, H., and van Vloten-Doting, L., 1985, Human interferon does not protect cowpea plant cell protoplasts against infection with alfalfa mosaic virus, Virology 143:622–625.

    PubMed  CAS  Google Scholar 

  • Hull, R., 1984, Rapid diagnosis of plant virus infections by spot hybridization, Trends Biotechnol. 2:88–91.

    CAS  Google Scholar 

  • Huntley, C. C., and Hall, T. C., 1993a, Interference with brome mosaic virus replication by targeting the minus strand promoter, J. Gen. Virol. 74:2445–2452.

    PubMed  CAS  Google Scholar 

  • Huntley, C. C., and Hall, T. C., 1993b, Minus sense transcripts of brome mosaic virus RNA-3 intercistronic region interfere with viral replication, Virology 192:290–297.

    PubMed  CAS  Google Scholar 

  • Huntley, C. C., and Hall, T. C., 1996, Interference with brome mosaic virus replication in transgenic rice, Mol. Plant-Microbe Interact. 9:164–170.

    CAS  Google Scholar 

  • Jaegle, M., Devic, M., Longstaff, M., and Baulcombe, D., 1990, Cucumber mosaic virus satellite RNA (Y strain): Analysis of sequences which affect yellow mosaic symptoms on tobacco, J. Gen. Virol. 71:1905–1912.

    PubMed  CAS  Google Scholar 

  • Jongedijk, E., de Schutter, A. A. J. M., Stolte, T., van den Elzen, P. J. M., and Cornelissen, B. J. C., 1992, Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions, Bio/technology 10:422–429.

    PubMed  CAS  Google Scholar 

  • Kallerhoff, J., Perez, P., Bouzoubaa, S., Ben Tahar, S., and Perret, J., 1990, Beet necrotic yellow vein virus coat protein-mediated protection in sugarbeet (Beta vulgaris L.) protoplasts, Plant Cell Rep. 9:224–228.

    CAS  Google Scholar 

  • Kaniewski, W. K., and Thomas, P. E., 1993, Field testing of virus resistant transgenic plants, Semin. Virol. 4:389–396.

    Google Scholar 

  • Kaniewski, W., Lawson, C., Sammons, B., Haley, L., Hart, J., Delannay, X., and Turner, N. E., 1990, Field resistance of transgenic Russet Burbank potato to effects of infection by potato virus X and potato virus Y, Bio/technology 8:750–754.

    Google Scholar 

  • Kaplan, I. B., Taliansky, M. E., Malyshenko, S. I., Ogarkov, V. I., and Atabekov, J. G., 1988, Effect of human interferon on reproduction of plant and myxoviruses, Arch. Phytopath. Pflanzenschutz 24:3–8.

    Google Scholar 

  • Kasschau, K. D., and Carrington, J. C., 1995, Requirement for HC-Pro processing during genome amplification of tobacco etch potyvirus, Virology 209:268–273.

    PubMed  CAS  Google Scholar 

  • Kawchuk, L. M., Martin, R. R., and McPherson, J., 1991, Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbank potato plants, Mol. Plant-Microbe Interact. 4:247–253.

    CAS  Google Scholar 

  • Kim, S. J., Paek, K. H., and Kim, B. D., 1995, Delay of disease development in transgenic petunia plants expressing cucumber mosaic virus I-17N-satellite RNA, J. Am. Soc. Hortic. Sci. 120:353–359.

    CAS  Google Scholar 

  • Knorr, D. A., and Dawson, W. O., 1988, A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris, Proc. Natl. Acad. Sci. USA 85:170–174.

    PubMed  CAS  Google Scholar 

  • Köhm, B. A., Goulden, M. G., Gilbert, J. E., Kavanagh, T. A., and Baulcombe, D. C., 1993, A potato virus X resistance gene mediates an induced, nonspecific resistance in protoplasts, Plant Cell 5:913–920.

    PubMed  Google Scholar 

  • Kollàr, À., Dalmay, T., and Burgyàn, J., 1993, Defective interfering RNA-mediated resistance against cymbidium ringspot tombusvirus in transgenic plants, Virology 193:313–318.

    PubMed  Google Scholar 

  • Kulaeva, O. N., Fedina, A. B., Burkhanova, E. A., Karavaiko, N. N., Karpeisky, M. Y, Kaplan, I. B., Taliansky, M. E., and Atabekov, J. G., 1992, Biological activities of human interferon and 2′–5′ oligoadenylates in plants, Plant Mol. Biol. 20:383–393.

    PubMed  CAS  Google Scholar 

  • Kunik, T., Salomon, R., Zamir, D., Navor, N., Zeidan, M., Michelson, I., Gafni, Y., and Czosnek, H., 1994, Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus, Bio/technology 12:500–504.

    PubMed  CAS  Google Scholar 

  • Laimer da Câmara Machado, M., da Câmara Machado, A., Hanzer, V., Weiss, H., Regner, F., Steinkellner, H., Plail, R., Knapp, E., and Katinger, H., 1993, Coat protein-mediated protection against plum pox virus, Acta Hortic. 336:85–92.

    Google Scholar 

  • Lapidot, M., Gafny, R., Ding, B., Wolf, S., Lucas, W. J., and Beachy, R. N., 1993, A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants, Plant J. 4:959–970.

    CAS  Google Scholar 

  • Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P., and Turner, N. E., 1990, Engineering resistance to mixed virus infection in a commercial potato cultivar Resistance to potato virus X and potato virus Y transgenic Russet Burbank, Bio/technology 8:127–134.

    PubMed  CAS  Google Scholar 

  • Leclerc, D., and AbouHaidar, M. G., 1995, Transgenic tobacco plants expressing a truncated form of the PAMV capsid protein (CP) gene show CP-mediated resistance to potato aucuba mosaic virus, Mol. Plant-Microbe Interact. 8:58–65.

    PubMed  CAS  Google Scholar 

  • Lecoq, H., Ravelonandro, M., Wipf-Scheibel, C., Monsion, M., Raccah, B., and Dunez, J., 1993, Aphid transmission of a non-aphid-transmissible strain of zucchini yellow mosaic potyvirus from transgenic plants expressing the capsid protein of plum pox potyvirus, Mol. Plant-Microbe Interact. 6:403–406.

    CAS  Google Scholar 

  • Li, X. H., Heaton, L. A., Morris, T. J., and Simon, A. E., 1989, Turnip crinkle virus defective interfering RNAs intensify viral symptoms and are generated de novo, Proc. Natl. Acad. Sci. USA 86:9173–9177.

    PubMed  CAS  Google Scholar 

  • Lieber, A., and Kay, M. A., 1996, Adenovirus-mediated expression of ribozymes in mice, J. Virol. 70:3153–3158.

    PubMed  CAS  Google Scholar 

  • Lindbo, J. A., and Dougherty, W. G., 1992a, Pathogen-derived resistance to a potyvirus: Immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence, Mol. Plant-Microbe Interact. 5:144–153.

    PubMed  CAS  Google Scholar 

  • Lindbo, J. A., and Dougherty, W. G., 1992b, Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts, Virology 189:725–733.

    PubMed  CAS  Google Scholar 

  • Lindbo, J. A., Silva-Rosales, L., Proebsting, W. M., and Dougherty, W. G., 1993a, Induction of a highly specific antiviral state in transgenic plants: Implications for regulation of gene expression and virus resistance, Plant Cell 5:1749–1759.

    PubMed  CAS  Google Scholar 

  • Lindbo, J. A., Silva-Rosales, L., and Dougherty, W. G., 1993b, Pathogen derived resistance to potyviruses: Working, but why? Semin. Virol. 4:369–379.

    CAS  Google Scholar 

  • Ling, K., Namba, S., Gonsalves, C., Slightom, J. L., and Gonsalves, D., 1991, Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene, Bio/technology 9:752–758.

    PubMed  CAS  Google Scholar 

  • Linthorst, H. J. M., Meuwissen, R. L. J., Kaufmann, S., and Bol, J. F., 1989, Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection, Plant Cell 1:285–291.

    PubMed  CAS  Google Scholar 

  • Lodge, J. K., Kaniewski, W. K., and Turner, N. E., 1993, Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein, Proc. Natl. Acad. Sci. USA 90:7089–7093.

    PubMed  CAS  Google Scholar 

  • Loesch-Fries, L. S., Halk, E. L., Nelson, S. E., and Krahn, K. J., 1985, Human leukocyte interferon does not inhibit alfalfa mosaic virus in protoplasts or tobacco tissue, Virology 143:626–629.

    PubMed  CAS  Google Scholar 

  • Loesch-Fries, L. S., Merlo, D., Zinnen, T., Burhop, L., Hill, K., Krahn, K., Jarvis, N., Nelson, S., and Halk, E., 1987, Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance, EMBO J. 6:1845–1851.

    PubMed  CAS  Google Scholar 

  • Longstaff, M., Brigneti, G., Boccard, F., Chapman, S., and Baulcombe, D., 1993, Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase, EMBO J. 12:379–386.

    PubMed  CAS  Google Scholar 

  • Lupo, R., Rubino, L., and Russo, M., 1994, Immunodetection of the 33 K/92 K polymerase proteins in cymbidium ringspot virus-infected and in transgenic plant tissue extracts, Arch. Virol. 138:135–142.

    PubMed  CAS  Google Scholar 

  • MacFarlane, S. A., and Davis, J. W., 1992, Plants transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection, Proc. Natl. Acad. Sci. USA 89:5829–5833.

    PubMed  CAS  Google Scholar 

  • MacKenzie, D. J., and Ellis, P. J., 1992, Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene, Mol. Plant-Microbe Interact. 5:34–40.

    PubMed  CAS  Google Scholar 

  • MacKenzie, D. J., Tremaine, J. H., and McPherson, J., 1991, Genetically engineered resistance to potato virus S in potato cultivar Russet Burbank, Mol. Plant-Microbe Interact. 4:95–102.

    CAS  Google Scholar 

  • Maiti, I. B., Murphy, J. F., Shaw, J. G., and Hunt, A. G., 1993, Plants that express a potyvirus proteinase gene are resistant to virus infection, Proc. Natl. Acad. Sci. USA 90:6110–6114.

    PubMed  CAS  Google Scholar 

  • Malnoë, P., Farinelli, L., Collet, G. F., and Reust, W., 1994, Small-scale field tests with transgenic potato, cv Bintje, to test resistance to primary and secondary infections with potato virus y, Plant Mol. Biol 25:963–975.

    PubMed  Google Scholar 

  • Malyshenko, S. I., Kondakova, O. A., Nazarova, J. V., Kaplan, I. B., Taliansky, M. E., and Atabekov, J. G., 1993, Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins, J. Gen. Virol. 74:1149–1156.

    PubMed  CAS  Google Scholar 

  • Marsh, L. E., Pogue, G. P., Szybiak, U., Connell, J. P., and Hall, T. C., 1991a, Non-replicating deletion mutants of brome mosaic virus RNA-2 interfere with viral replication, J. Gen. Virol 72:2367–2374.

    PubMed  CAS  Google Scholar 

  • Marsh, L. E., Pogue, G. P., Connell, J. P., and Hall, T. C., 1991b, Artificial defective interfering RNAs derived from brome mosaic virus, J. Gen. Virol. 72:1787–1792.

    PubMed  CAS  Google Scholar 

  • Matthews, R. E. F., 1991, Plant Virology, 3rd ed., Academic Press, San Diego, California.

    Google Scholar 

  • McGarvey, P. B., Montasser, M. S., and Kaper, J. M., 1994, Transgenic tomato plants expressing satellite RNA are tolerant to some strains of cucumber mosaic virus, J. Am. Soc. Hortic. Sci. 119:642–647.

    CAS  Google Scholar 

  • Michelmore, R., 1995, Molecular approaches to manipulation of disease resistance genes, Annu. Rev. Phytopathol. 33:393–427.

    PubMed  CAS  Google Scholar 

  • Moore, P. J., Fenczik, C. A., Deom, C. M., and Beachy, R. N., 1992, Developmental changes in plasmodesmata in transgenic tobacco expressing the movement protein of tobacco mosaic virus, Protoplasma 170:115–127.

    Google Scholar 

  • Morch, M. D., Joshi, R. L., Denial, T. M., and Haenni, A. L., 1987, A new’ sense’ RNA approach to block viral RNA replication in vitro, Nucleic Acids Res. 15:4123–4130.

    PubMed  CAS  Google Scholar 

  • Mori, M., Mise, K., Okuno, T., and Furusawa, I., 1992, Expression of brome mosaic virus-encoded replicase genes in transgenic tobacco plants, J. Gen. Virol 73:169–172.

    PubMed  CAS  Google Scholar 

  • Mueller, E., Gilbert, J., Davenport, G., Brigneti, G., and Baulcombe, D. C., 1995, Homology-dependent resistance: Transgenic virus resistance in plants related to homology-dependent gene silencing, Plant J. 7:1001–1013.

    CAS  Google Scholar 

  • Nakamura, S., Yoshikawa, M., Taira, H., and Ehara, Y., 1994, Plants transformed with mammalian 2′–5′ oligoadenilate synthase gene show resistance to virus infections, Ann. Phytopathol. Soc. Japan 60:691–693.

    CAS  Google Scholar 

  • Namba, S., Ling, K., Gonsalves, C., Gonsalves, D., and Slightom, J. L., 1991, Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains, Gene 107:181–188.

    PubMed  CAS  Google Scholar 

  • Namba, S., Ling, K., Gonsalves, C., Slightom, J. L., and Gonsalves, D., 1992, Protection of transgenic plants expressing the coat protein gene of watermelon mosaic virus II or zucchini yellow mosaic virus against six potyviruses, Phytopathology 82:940–946.

    CAS  Google Scholar 

  • Nejidat, A., and Beachy, R. N., 1990, Transgenic tobacco plants expressing a coat protein gene of tobacco mosaic virus are resistant to some other tobamoviruses, Mol. Plant-Microbe Interact. 3:247–251.

    PubMed  CAS  Google Scholar 

  • Nelson, A., Roth, D. A., and Johnson, J. D., 1993, Tobacco mosaic virus infection of transgenic Nicotiana tabacum plants is inhibited by antisense constructs directed at the 5′ region of viral RNA, Gene 127:227–232.

    PubMed  CAS  Google Scholar 

  • Nelson, R. S., Powell Abel, P., and Beachy, R. N., 1987, Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus, Virology 158:126–132.

    PubMed  CAS  Google Scholar 

  • Nelson, R. S., McCormick, S. M., Delannay, X., Dubé, P., Layton, J., Anderson, E. J., Kaniewska, M., Proksch, R. K., Horsch, R. B., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1988, Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus, Bio/technology 6:403–409.

    Google Scholar 

  • Ohmori, T., Murata, M., and Motoyoshi, F., 1995, Identification of RAPD markers linked to the Tm-2 locus in tomato, Theor. Appl. Genet. 90:307–311.

    CAS  Google Scholar 

  • Okuno, T., Nakayama, M., Yoshida, S., Furusawa, I., and Komiya, T., 1993, Comparative susceptibility of transgenic tobacco plants and protoplasts expressing the coat protein gene of cucumber mosaic virus to infection with virions and RNA, Phytopathology 83:542–547.

    CAS  Google Scholar 

  • Orchansky, P., Rubinstein, M., and Sela, I., 1982, Human interferons protect plants from virus infection, Proc. Natl. Acad. Sci. USA 79:2278–2280.

    PubMed  CAS  Google Scholar 

  • Osbourn, J. K., Watts, J. W., Beachy, R. N., and Wilson, T. M., 1989a, Evidence that nucleocapsid disassembly and a later step in virus replication are inhibited in transgenic tobacco protoplasts expressing TMV coat protein, Virology 172:370–373.

    PubMed  CAS  Google Scholar 

  • Osbourn, J. K., Plaskitt, K. A., Watts, J. W., and Wilson, T. M. A., 1989b, Tobacco mosaic virus coat protein and reporter gene transcripts containing the TMV origin-of-assembly sequence do not interact in double-transgenic tobacco plants: Implications for coat protein-mediated protection, Mol. Plant-Microbe Interact. 2:340–345.

    Google Scholar 

  • Owen, M., Gandecha, A., Cockburn, B., and Whitelam, G., 1992, Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco, Bio/technology 10:790–794.

    PubMed  CAS  Google Scholar 

  • Padgett, H. S., and Beachy, R. N., 1993, Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance, Plant Cell 5:577–586.

    PubMed  CAS  Google Scholar 

  • Pang, S.-Z., Slightom, J. L., and Gonsalves, D., 1993, Different mechanisms protect transgenic tobacco against tomato spotted wilt and impatiens necrotic spot Tospoviruses, Bio/technology 11:819–824.

    PubMed  CAS  Google Scholar 

  • Pang, S.-Z., Bock, J. H., Gonsalves, C., Slightom, J. L., and Gonsalves, D., 1994, Resistance of transgenic Nicotiana benthamiana plants to tomato spotted wilt and impatiens necrotic spot tospoviruses: Evidence of involvement of the N protein and N gene RNA in resistance, Phytopathology 84:243–249.

    CAS  Google Scholar 

  • Peña, L., Trad, J., Díaz-Ruiz, J. R., McGarvey, P. B., and Kaper, J. M., 1994, Cucumber mosaic virus protection in transgenic tobacco plants expressing monomeric, dimeric or partial sequences of a benign satellite RNA, Plant Sci. 100:71–81.

    Google Scholar 

  • Perriman, R., Delves, A., and Gerlach, W. L., 1992, Extended target-site specificity for a hammerhead ribozyme, Gene 113:157–163.

    PubMed  CAS  Google Scholar 

  • Perriman, R., Bruening, G., Dennis, E. S., and Peacock, W. J., 1995, Effective ribozyme delivery in plant cells, Proc. Natl. Acad. Sci. USA 92:6175–6179.

    PubMed  CAS  Google Scholar 

  • Ploeg, A. T., Mathis, A., Bol, J. F., Brown, D. J. F., and Robinson, D. J., 1993, Susceptibility of transgenic tobacco plants expressing tobacco rattle virus coat protein to nematode-transmitted and mechanically inoculated tobacco rattle virus, J. Gen. Virol 74:2709–2715.

    PubMed  CAS  Google Scholar 

  • Plückthun, A., 1991, Antibody engineering, Curr. Opin. Biotechnol. 2:238–246.

    PubMed  Google Scholar 

  • Powell Abel, P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N., 1986, Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene, Science 232:738–743.

    Google Scholar 

  • Powell, P. A., Stark, D. M., Sanders, P. R., and Beachy, R. N., 1989, Protection against tobacco mosaic virus in transgenic plants that express tobacco mosaic virus antisense RNA, Proc. Natl. Acad. Sci. USA 86:6949–6952.

    PubMed  CAS  Google Scholar 

  • Quadt, R., Rosdorff, H. J. M., Hunt, T. W., and Jaspars, E. M. J., 1991, Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase, Virology 182:309–315.

    PubMed  CAS  Google Scholar 

  • Quemada, H. D., Gonsalves, D., and Slightom, J. L., 1991, Expression of coat protein gene from cucumber mosaic virus strain C in tobacco: Protection against infections by CMV strains transmitted mechanically or by aphids, Phytopathology 81:794–802.

    Google Scholar 

  • Raffo, A. J., and Dawson, W. O., 1991, Construction of tobacco mosaic virus subgenomic replicons that are replicated and spread systemically in tobacco plants, Virology 184:277–289.

    PubMed  CAS  Google Scholar 

  • Ready, M. P., Brown, D. T., and Robertus, J. D., 1986, Extracellular localization of pokeweed antiviral protein, Proc. Natl. Acad. Sci. USA 83:5053–5056.

    PubMed  CAS  Google Scholar 

  • Register III, J. C., and Beachy, R. N., 1988, Resistance to TMV in transgenic plants results from interference with an early event in infection, Virology 166:524–532.

    PubMed  CAS  Google Scholar 

  • Regner, F., da Câmara Machado, A., Laimer da Câmara Machado, M., Steinkellner, H., Mattanovich, D., Hanzer, V., Weiss, H., and Katinger, H., 1992, Coat protein mediated resistance to Plum Pox Virus in Nicotiana clevelandii and N. benthamiana, Plant Cell Rep. 11:30–33.

    CAS  Google Scholar 

  • Reimann-Philipp, U., and Beachy, R. N., 1993, Plant resistance to virus diseases through genetic engineering: Can a similar approach control plant-parasitic nematodes? J. Nematol. 25:541–547.

    PubMed  CAS  Google Scholar 

  • Robaglia, C., Durand-Tardif, M., Tronchet, M., Boudazin, G., Astier-Manifacier, S., and Casse-Delbart, F., 1989, Nucleotide sequence of potato virus Y (N strain) genomic RNA, J. Gen. Virol. 70:935–947.

    PubMed  CAS  Google Scholar 

  • Rochow, W. F., 1970, Barley yellow dwarf virus: Phenotypic mixing and vector specificity, Science 167:875–878.

    PubMed  CAS  Google Scholar 

  • Rohfritsch, O., Poirson, A., Turner, A., Gagey, M.-J., Roberts, K., Stussi-Garaud, C., and Godefroy-Colburn, T., 1996, A modified form of the alfalfa mosaic virus movement protein induces stressed phenotypes in transgenic tobacco, Can. J. Bot. 74:939–951.

    Google Scholar 

  • Roossinck, M. J., Sleat, D., and Palukaitis, P., 1992, Satellite RNAs of plant viruses: Structure and biological effects, Microbiol. Rev. 56:265–279.

    PubMed  CAS  Google Scholar 

  • Rubino, L., and Russo, M., 1995, Characterization of resistance to cymbidium ringspot virus in transgenic plants expressing a full-length viral replicase gene, Virology 212:240–243.

    PubMed  CAS  Google Scholar 

  • Saito, Y., Komari, T., Masuta, C., Hayashi, Y., Kumashiro, T., and Takanami, Y., 1992, Cucumber mosaic virus-tolerant transgenic tomato plants expressing a satellite RNA, Theor. Appl. Genet. 83:679–683.

    CAS  Google Scholar 

  • Samuel, C. E., 1991, Antiviral actions of interferon. Interferon regulated cellular proteins and their surprisingly selective antiviral activities, Virology 183:1–11.

    PubMed  CAS  Google Scholar 

  • Schoumacher, F., Erny, C., Berna, A., Godefroy-Colburn, T., and Stussi-Garaud, C., 1992, Nucleic acid-binding properties of alfalfa mosaic virus movement protein produced in yeast, Virology 188:896–899.

    PubMed  CAS  Google Scholar 

  • Scorza, R., Levy, L., Damsteegt, V., Yepes, L. M., Cordts, J., Hadidi, A., Slightom, J., and Gonsalves, D., 1995, Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus, J. Am. Soc. Hortic. Sci 120:943–952.

    Google Scholar 

  • Sela, I., 1986, Preparation and measurement of an antiviral protein found in tobacco cells after infection with tobacco mosaic virus, in Interferons, Part C (S. Pestka, ed.), pp. 734–744, Academic Press, San Diego, California.

    Google Scholar 

  • Sela, I., and Applebaum, S. W., 1962, Occurrence of antiviral factor in virus-infected plants, Virology 17:543–548.

    PubMed  CAS  Google Scholar 

  • Shaw, J. G., Piaskitt, K. A., and Wilson, T. M. A., 1986, Evidence that tobacco mosaic virus particles disassemble cotranslationally in vivo, Virology 148:326–336.

    PubMed  CAS  Google Scholar 

  • Sher, N., Edelbaum, O., Barak, Z., Grafi, G., Stram, Y., and Sela, I., 1990, Induction of an ATP-polymerizing enzyme in TMV-infected tobacco and its homology to human 2′–5′ A synthase, Virus Genes 4:27–39.

    PubMed  CAS  Google Scholar 

  • Shimayama, T., Nishikawa, S., and Taira, K., 1995, Generality of the NUX rule: Kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes, Biochemistry 34:3649–3654.

    PubMed  CAS  Google Scholar 

  • Sijen, T., Wellink, J., Hendriks, J., Verver, J., and van Kammen, A., 1995, Replication of cowpea mosaic virus RNA1 or RNA2 is specifically blocked in transgenic Nicotiana benthamiana plants expressing the full-length replicase or movement protein genes, Mol. Plant-Microbe Interact. 8:340–347.

    CAS  Google Scholar 

  • Silva-Rosales, L., Lindbo, J. A., and Dougherty, W. G., 1994, Analysis of transgenic tobacco plants expressing a truncated form of a potyvirus coat protein nucleotide sequence, Plant Mol. Biol. 24:929–939.

    PubMed  CAS  Google Scholar 

  • Sleat, D. E., and Palukaitis, P., 1992, A single nucleotide change within a plant virus satellite RNA alters the host specificity of disease induction, Plant J. 2:43–49.

    PubMed  CAS  Google Scholar 

  • Smith, H. A., Swaney, S. L., Parks, T. D., Wernsman, E. A., and Dougherty, W. G., 1994, Transgenic plant virus resistance mediated by untranslatable sense RNAs: Expression, regulation, and fate of nonessential RNAs, Plant Cell 6:1441–1453.

    PubMed  CAS  Google Scholar 

  • Stanley, J., Frischmuth, T., and Ellwood, S., 1990, Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants, Proc. Natl. Acad. Sci. USA 87:6291–6295.

    PubMed  CAS  Google Scholar 

  • Stark, D. M., and Beachy, R. N., 1989, Protection against poty virus infection in transgenic plants: Evidence for broad spectrum resistance, Bio/technology 7:1257–1262.

    Google Scholar 

  • Steinecke, P., Herget, T., and Schreier, P. H., 1992, Expression of a chimeric ribozyme gene results in endonucleolytic cleavage of target mRNA and a concomitant reduction of gene expression in vivo, EMBO J. 11:1525–1530.

    PubMed  CAS  Google Scholar 

  • Sulzinski, M. A., Gabard, K. A., Palukaitis, P., and Zaitlin, M., 1985, Replication of tobacco mosaic virus. VIII. Characterization of a third subgenomic TMV RNA, Virology 145:132–140.

    PubMed  CAS  Google Scholar 

  • Symons, R. H., 1989, Self-cleavage of RNA in the replication of small pathogens of plants and animals, Trends Biochem. Sci. 14:445–450.

    PubMed  CAS  Google Scholar 

  • Taliansky, M. E., Malyshenko, S. I., Pshennikova, E. S., Kaplan, I. B., Ulanova, E. F., and Atabekov, J. G., 1982, Plant virus-specific transport function. I. Virus genetic control required for systemic spread, Virology 122:318–326.

    PubMed  CAS  Google Scholar 

  • Taschner, P. E. M., van Marie, G., Brederode, F. T., Turner, N. E., and Bol, J. F., 1994, Plants transformed with a mutant alfalfa mosaic virus coat protein gene are resistant to the mutant but not to wild-type virus, Virology 203:269–276.

    PubMed  CAS  Google Scholar 

  • Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A., and Galeffi, P., 1993, Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack, Nature 366:469–472.

    PubMed  CAS  Google Scholar 

  • Tenllado, F., García-Luque, I., Serra, M. T., and Díaz-Ruíz, J. R., 1995, Nicotiana benthamiana plants transformed with the 54-kDa region of the pepper mild mottle tobamovirus replicase gene exhibit two types of resistance responses against viral infection, Virology 211:170–183.

    PubMed  CAS  Google Scholar 

  • Truve, E., Aaspôllu, A., Honkanen, J., Puska, R., Mehto, M., Hassi, A., Teeri, T. H., Kelve, M., Seppänen, P., and Saarma, M., 1993, Transgenic potato plants expressing mammalian 2′–5′ oligoadenylate synthetase are protected from potato virus X infection under field conditions, Bio/technology 11:1048–1052.

    PubMed  CAS  Google Scholar 

  • Truve, E., Kelve, M., Aaspôllu, A., Kuuskalu, A., Seppänen, P., and Saarma, M., 1994, Principles and background for the construction of transgenic plants displaying multiple virus resistance, Arch. Virol. Suppl. 9:41–50.

    PubMed  CAS  Google Scholar 

  • Turner, N. E., O’Connell, K. M., Nelson, R. S., Sanders, P. R., Beachy, R. N., Fraley, R. T., and Shah, D. M., 1987, Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants, EMBO J. 6:1181–1188.

    Google Scholar 

  • Turner, N. E., Kaniewski, W., Haley, L., Gehrke, L., Lodge, J. K., and Sanders, P., 1991, The second amino acid of alfalfa mosaic virus coat protein is critical for coat protein-mediated protection, Proc. Natl. Acad. Sci. USA 88:2331–2335.

    Google Scholar 

  • Vallejo, R. L., Collins, W. W., Schiavone, R. D., Lommel, S. A., and Young, J. B., 1994, Extreme resistance to infection by potato virus Y and potato virus X in an advanced hybrid Solanum phureja-S. stenotomum diploid potato population, Am. Potato J. 71:617–628.

    Google Scholar 

  • van der Vlugt, R. A. A., and Goldbach, R. W., 1993, Tobacco plants transformed with the potato virus YN coat protein gene are protected against different PVY isolates and against aphid-mediated infection, Transgenie Res. 2:109–114.

    Google Scholar 

  • van Dun, C. M. P., and Bol, J. F., 1988, Transgenic tobacco plants accumulating tobacco rattle virus coat protein resist infection with tobacco rattle virus and pea early browning virus, Virology 167:649–652.

    PubMed  Google Scholar 

  • van Dun, C. M. P., Bol, J. F., and van Vloten-Doting, L., 1987, Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants, Virology 159:299–305.

    PubMed  Google Scholar 

  • van Dun, C. M. P., van Vloten-Doting, L., and Bol, J. F., 1988, Expression of alfalfa mosaic virus cDNA1 and 2 into transgenic tobacco plants, Virology 163:572–578.

    PubMed  Google Scholar 

  • Vardi, E., Sela, I., Edelbaum, O., Livneh, O., Kuznetsova, L., and Stram, Y., 1993, Plants transformed with a cistron of a potato virus Y protease (NIa) are resistant to virus infection, Proc Natl. Acad. Sci. USA 90:7513–7517.

    PubMed  CAS  Google Scholar 

  • Verchot, J., Koonin, E. V., and Carrington, J. C., 1991, The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase, Virology 185:527–535.

    PubMed  CAS  Google Scholar 

  • Voss, A., Niersbach, M., Hain, R., Hirsch, H. J., Liao, Y. C., Kreuzaler, F., and Fischer, R., 1995, Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody, Mol. Breeding 1:39–50.

    CAS  Google Scholar 

  • Watanabe, Y., Ogawa, T., Takahashi, H., Ishida, I., Takeuchi, Y., Yamamoto, M., and Okada, Y., 1995, Resistance against multiple plant viruses in plants mediated by double stranded-RNA specific ribonuclease, FEBS Lett. 372:165–168.

    PubMed  CAS  Google Scholar 

  • Wegener, D., Steinecke, P., Herget, T., Petereit, I., Philip, C., and Schreier, P. H., 1994, Expression of a reporter gene is reduced by a ribozyme in transgenic plants, Mol. Gen. Genet. 245:465–470.

    PubMed  CAS  Google Scholar 

  • Wellink, J., and van Kammen, A., 1989, Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and the capsid proteins, J. Gen. Virol. 70:2279–2286.

    CAS  Google Scholar 

  • Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C., and Baker, B., 1994, The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor, Cell 78:1101–1115.

    PubMed  CAS  Google Scholar 

  • Wilson, T. M. A., 1984, Cotranslational disassembly of tobacco mosaic virus in vitro, Virology 137:255–265.

    PubMed  CAS  Google Scholar 

  • Wilson, T. M. A., 1993, Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms, Proc. Natl. Acad. Sci. USA 90:3134–3141.

    PubMed  CAS  Google Scholar 

  • Wisniewski, L. A., Powell, P. A., Nelson, R. S., and Beachy, R. N., 1990, Local and systemic spread of tobacco mosaic virus in transgenic tobacco, Plant Cell 2:559–567.

    PubMed  CAS  Google Scholar 

  • Wolf, S., and Lucas, W. J., 1994, Virus movement proteins and other molecular probes of plasmodesmal function, Plant Cell Environ. 17:573–585.

    CAS  Google Scholar 

  • Wolf, S., Deom, C. M., Beachy, R. N., and Lucas, W. J., 1989, Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit, Science 246:377–379.

    PubMed  CAS  Google Scholar 

  • Yie, Y., Zhao, F., Zhao, S. Z., Liu, Y. Z., Liu, Y. L., and Tien, P., 1992, High resistance to cucumber mosaic virus conferred by satellite RNA and coat protein in transgenic commercial tobacco cultivar G-140, Mol. Plant-Microbe Interact. 5:460–465.

    PubMed  CAS  Google Scholar 

  • Yoshioka, K., Hanada, K., Harada, T., Minobe, Y., and Oosawa, K., 1993, Virus resistance in transgenic melon plants that express the cucumber mosaic virus coat protein gene and in their progeny, Jpn. J. Breeding 43:629–634.

    Google Scholar 

  • Zaccomer, B., Cellier, F., Boyer, J.-C., Haenni, A.-L., and Tepfer, M., 1993, Transgenic plants that express genes including the 3′ untranslated region of the turnip yellow mosaic virus (TYMV) genome are partially protected against TYMV infection, Gene 136:87–94.

    PubMed  CAS  Google Scholar 

  • Zaitlin, M., Anderson, J. M., Perry, K. L., Zhang, P., and Palukaitis, P., 1994, Specificity of replicase-mediated resistance to cucumber mosaic virus, Virology 201:200–205.

    PubMed  CAS  Google Scholar 

  • Zhao, J. J., and Pick, L., 1993, Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila, Nature (London) 365:448–451.

    CAS  Google Scholar 

  • Ziegler-Graff, V., Guilford, P. J., and Baulcombe, D. C., 1991, Tobacco rattle virus RNA-1 29K gene product potentiates viral movement and also affect symptoms induction in tobacco, Virology 182:145–155.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malpica, C.A., Cervera, M.T., Simoens, C., Van Montagu, M. (1998). Engineering Resistance against Viral Diseases in Plants. In: Biswas, B.B., Das, H.K. (eds) Plant-Microbe Interactions. Subcellular Biochemistry, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1707-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1707-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1709-6

  • Online ISBN: 978-1-4899-1707-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics