Skip to main content

Plant-Fungal Interactions and Plant Disease

  • Chapter
Plant-Microbe Interactions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 29))

Abstract

Fungi are eukaryotic, carbon-heterotrophic microorganisms most of which are living saprophytically by degrading dead organic material. However, a small minority of them have acquired the capability to recruit nutrients from living plants, thereby usually causing disease in the host. However, plants are far from being the unprotected prey of any potential pathogen. Instead, they successfully ward off most offenders through the utilization of a large array of passive and active defense mechanisms. Hence, fungal pathogenicity and high virulence, the extreme form of which has become apparent in several devastating epidemics of crop plants, require the interplay of a number of factors and processes on both the fungal and the plant side. Over the years, many review articles have covered the manifold plant resistance reactions (Alexander et al., 1994; Bowles, 1990; Kombrink and Somssich, 1995; Lamb, 1994; Tzeng and DeVray, 1993), so that this topic will be dealt with only briefly in the present chapter. Instead, molecular aspects of fungal pathogenicity and virulence will be illustrated using a number of selected examples. In addition, recent results on the mechanisms of genetically defined resistance of plants will be described that may allow the development of a general concept of the plant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aducci, P., Marra, M., Fogliano, V., and Fullone, M. R., 1995, Fusicoccin receptors: Perception and transduction of the fusicoccin signal. J. Exp. Bot. 46:1463–1478.

    Article  CAS  Google Scholar 

  • Ahn, J. H., and Walton, J. D., 1996, Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosynthesis in Cochliobolus carbonum, Plant Cell 8:887–897.

    PubMed  CAS  Google Scholar 

  • Aitken, A., Collinge, D. B., Van Heusden, B. P. H., Isobe, T., Roseboom, P. H., Rosenfeld, G., and Soll, J., 1992, 14-3-3 proteins: A highly conserved, widespread family of eukaryotic proteins, Trends Biochem. Sci. 17:498–501.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, D., Lawton, K., Uknes, S., Ward, E., and Ryals, J., 1994, Defense-related gene induction in plants, in Genetic Engineering (J. K. Setlow, ed.), pp. 195–212, Plenum Press, New York.

    Google Scholar 

  • Allen, E. A., Hazen, B. E., Hoch, H. C., Kwon, Y., Leinhos, G. M. E., Staples, R. C., Stumpf, M. A., and Terhune, B. T., 1991a, Appressorium formation in response to topographical signals by 27 rust species, Phytopathology 81:323–331.

    Article  Google Scholar 

  • Allen, E. A., Hoch, H. C., Stavely, J. R., and Steadman, J. R., 1991b, Uniformity among races of Uromyces appendiculatus in response to topographic signaling for appressorium formation, Phytopathology 81:883–887.

    Article  Google Scholar 

  • Anderson, P. A., Lawrence, G. J., Morrish, B. C., Ayliffe, M. A., Finnegan, E. J., and Ellis, J. G., 1997, Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region, Plant Cell 9:641–651.

    PubMed  CAS  Google Scholar 

  • Avni, A., Anderson, J. D., Holland, N., Rochaix, J. D., Gromet-Elhanan, Z., and Edelman, M., 1992, Tentoxin sensitivity of chloroplasts determined by codon 83 of β-subunit of proton-ATPase, Science 257:1245–1247.

    Article  PubMed  CAS  Google Scholar 

  • Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kumar, S. P., 1997, Signaling in plant-microbe interactions, Science 276:726–733.

    Article  PubMed  CAS  Google Scholar 

  • Ballio, A., 1991, Non-host-selective fungal pathogens: Biochemical aspects and their mode of action, Experientia 47:783–790.

    Article  CAS  Google Scholar 

  • Bangham, A. D., and Horne, R. W., 1962, Action of saponin on biological membranes, Nature 196:952–953.

    Article  PubMed  CAS  Google Scholar 

  • Basse, C. W., Bock, K., and Boiler, T., 1992, Elicitors and suppressors of the defense response in tomato cells, J. Biol. Chem. 267:10258–10265.

    PubMed  CAS  Google Scholar 

  • Beckerman, J. L., and Ebbole, D. J., 1996, MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition, Mol. Plant-Microbe Interact. 9:450–456.

    Article  PubMed  CAS  Google Scholar 

  • Beissmann, B., and Kogel, K. H., 1992, Identification and characterization of suppressors, in Modern Methods of Plant Analysis: Plant Toxin Analysis (H. F. Linskens and J. F. Jackson, eds.), pp. 259–275, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Bent, A. F., Kunkel, B. N., Dahlbeck, D., Brown, K. L., Schmidt, R., Giraudet, J., Leung, J., and Staskawicz, B. J., 1994, RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes, Science 265:1856–1860.

    Article  PubMed  CAS  Google Scholar 

  • Bisgrove, S. R., Simonich, M. T., Smith, N. M., Sattler, A., and Innes, R. W., 1994, A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes, Plant Cell 6:927–933.

    PubMed  CAS  Google Scholar 

  • Bowden, C. G., Hintz, W. E., Jeng, R., Hubbes, M., and Horgen, P. A., 1994, Isolation and characterization of the cerato-ulmin toxin gene of the Dutch elm disease pathogen, Ophiostoma ulmi, Curr. Genet. 25:323–329.

    Article  PubMed  CAS  Google Scholar 

  • Bowden, C. G., Smalley, E., Guries, R. P., Hubbes, M., Temple, B., and Horgen, P. A., 1996, Lack of association between cerato-ulmin production and virulence in Ophiostoma novo-ulmi, Mol. Plant-Microbe Interact. 7:556–564.

    Article  Google Scholar 

  • Bowles, D. I, 1990, Defense-related proteins in higher plants, Annu. Rev. Biochem. 59:873–907.

    Article  PubMed  CAS  Google Scholar 

  • Bowyer, P., Clarke, B. R., Lunness, P., Daniels, M. J., and Osbourn, A. E., 1995, Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme, Science 267:371–374.

    Article  PubMed  CAS  Google Scholar 

  • Boyes, D. C., McDowell, J. M., and Dangl, J. L., 1996, Plant pathology: Many roads lead to resistance, Curr. Biol. 6:634–637.

    Article  PubMed  CAS  Google Scholar 

  • Braun, C. J., Siedow, J. N., and Levings, C. S., III, 1990, Fungal toxins bind to the URF-13 protein in maize mitochondria and Escherichia coli, Plant Cell 2:153–162.

    PubMed  CAS  Google Scholar 

  • Braun, D. M., and Walker, J. C., 1996, Plant transmembrane receptors: New pieces in the signaling puzzle, Trends Biochem. Sci. 21:70–73.

    PubMed  CAS  Google Scholar 

  • Briggs, S. P., 1995, Grand unification theory in sight, Curr. Biol. 5:128–131.

    Article  PubMed  CAS  Google Scholar 

  • Briskin, D. P., and Hanson, J. B., 1992, How does the plant plasma membrane H+-ATPase pump protons?, J. Exp. Bot. 43:269–289.

    Article  CAS  Google Scholar 

  • Brosch, G., Ransom, R., Lechner, T., Walton, J. D., and Loidl, P., 1995, Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum, Plant Cell 7:1941–1950.

    PubMed  CAS  Google Scholar 

  • Burbelo, P. D., and Hall, A., 1995, Hot numbers in signal transduction, Curr. Biol. 5:95–96.

    Article  PubMed  CAS  Google Scholar 

  • Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F., and Schulze-Lefert, P., 1997, The barley Mlo gene: a novel control element of plant pathogen resistance, Cell 88:695–705.

    Article  PubMed  Google Scholar 

  • Bushnell, W. R., and Rowell, J. B., 1981, Suppressors of defense reactions: A model for roles in specificity, Phytopathology 71:1012–1014.

    Article  Google Scholar 

  • Caddick, M. X., 1992, Characterization of a major Aspergillus regulatory gene, areA, in Molecular Biology of Filamentous Fungi (U. Stahl and P. Tudzinski, eds.), pp. 141–152, VCH, Weinheim, Germany.

    Google Scholar 

  • Cai, D., Kleine, M., Kifle, S., Harloff, H. J., Sandal, N. N., Marcker, K. A., Klein-Lankhorst, R. M., Salentijn, E. M. J., Lange, W. Stiekema, W. J., Syss, U., Grundler, F. M. W., and Jung, C., 1997, Positional cloning of a gene for nematode resistance in sugar beet, Science 275:832–834.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, C. E., Mueller, R. J., Kazmierczak, P., Zhang, L., Villalon, D. K., and Van Alfen, N. K., 1992, Effect of a virus on accumulation of a tissue-specific cell-surface protein of the fungus Cryphonectria parasitica, Mol. Plant-Microbe Interact. 5:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C., Schaller, G. E., Patterson, S. E., Kwok, S. F., Meyerowitz, E. M., and Bleecker, A. B., 1992, The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase, Plant Cell 4:1263–1271.

    PubMed  CAS  Google Scholar 

  • Cheong, J. J., and Hahn, M. G., 1991, A specific, high affinity binding site for the hepta-β-glucoside elicitor exists in soybean membranes, Plant Cell 3:137–147.

    PubMed  CAS  Google Scholar 

  • Corrêa, A., Jr., and Hoch, H. C., 1995, Identification of thigmoresponsive loci for cell differentiation in Uromyces germlings, Protoplasma 186:34–40.

    Article  Google Scholar 

  • Cosio, E. G., Frey, T., and Ebel, J., 1992, Identification of a high-affinity binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean, Eur. J. Biochem. 204:1115–1123.

    Article  PubMed  CAS  Google Scholar 

  • Côté, F., and Hahn, M. G., 1994, Oligosaccharins: Structures and signal transduction, Plant Mol. Biol. 26:1379–1411.

    Article  PubMed  Google Scholar 

  • Dangl, J. L., 1992, The major histocompatibility complex à la carte: Are there analogies to plant disease resistance genes on the menu? Plant J. 2:3–11.

    Article  CAS  Google Scholar 

  • Dangl, J. L., 1994, The enigmatic avirulence genes of phytopathogenic bacteria, in Bacterial Pathogenesis of Plants and Animals (J. L. Dangl, ed.), pp. 99–118, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Dangl, J. L., 1995, Pièce de résistance: Novel classes of plant disease resistance genes, Cell 80:363–366.

    Article  PubMed  CAS  Google Scholar 

  • Danko, S. J., Kono, Y., Daly, J. M., Suzuki, Y., Takeuchi, S., and McCrery, D. A., 1984, Structure and biological activity of a host-specific toxin produced by the fungal corn pathogen Phyllosticta maydis, Biochemistry 23:759–766.

    Article  CAS  Google Scholar 

  • Després, C., Subramaniam, R., Matton, D. P., and Brisson, N., 1995, The activation of the potato PR-10a gene requires the phosporylation of the nuclear factor PBF-1, Plant Cell 7:589–598.

    PubMed  Google Scholar 

  • Dewey, R. E., Timothy, D. H., and Levings, C. S., III, 1987, A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize, Proc. Natl. Acad. Sci. USA 84:5374–5378.

    Article  PubMed  CAS  Google Scholar 

  • De Wit, P. J. G. M., 1995, Fungal avirulence genes and plant resistance genes: Unravelling the molecular basis of gene-for-gene interactions, in Advances in Botanical Research, Vol. 21 (J. H. Andrews and I. C. Tommerup, eds.), pp. 147–185, Academic Press, London.

    Google Scholar 

  • Dickman, M. B., Podila, G. K., and Kolattukudy, P. E., 1989, Insertion of cutinase gene into a wound pathogen enables it to infect intact host, Nature 342:446–448.

    Article  CAS  Google Scholar 

  • Dietrich, A., Mayer, J. E., and Hahlbrock, K., 1990, Fungal elicitors trigger rapid, transient and specific protein phosphorylation in parsley cell suspension cultures, J. Biol. Chem. 265:6360–6368.

    PubMed  CAS  Google Scholar 

  • Dinesh-Kumar, S. P., Whitham, S., Choi, D., Hehl, R., Corr, C., and Baker, B., 1995, Transposon tagging of tobacco mosaic virus resistance gene N: Its possible role in the TMV-N-mediated signal transduction pathway, Proc. Natl. Acad. Sci. USA 92:4175–4180.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, M. S., Jones, D. A., Keddie, J. S., Thomas, C. M., Harrison, K., and Jones, J. D. G., 1996, The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins, Cell 84:451–459.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, J. L., and Hooker, A. L., 1990, Previously undescribed pathotype of Bipolaris zeicola on corn, Plant Dis. 74:530.

    Article  Google Scholar 

  • Doke, N., and Tomiyama, K., 1980, Effect of hyphal wall components from Phytophthora infestons, Physiol. Plant Pathol. 16:169–176.

    Article  Google Scholar 

  • Doke, N., Garas, N. A., and Kuc, J., 1979, Partial characterization and aspects of the mode of action of the hypersensitivity-inhibiting factor (HIF) isolated from Phytophthora infestons, Physiol. Plant Pathol. 15:127–140.

    Article  CAS  Google Scholar 

  • Doke, N., Garas, N. A., and Kuc, J., 1980, Effect on host hypersensitivity of suppressors released during the germination of Phytophthora infestans cystospores, Phytopathology 70:35–39.

    Article  CAS  Google Scholar 

  • Durbin, R. D., and Uchytil, T. F., 1977, A survey of plant insensitivity to tentoxin, Phytopathology 67:602–603.

    Article  Google Scholar 

  • Ebel, J., and Cosio, E. G., 1994, Elicitors of plant defense responses, Int. Rev. Cytol. 148:1–36.

    Article  CAS  Google Scholar 

  • Ebel, J., and Scheel, D., 1997, Signals in host-parasite interactions, in Plant Relationships, Vol. VI (G. C. Carroll and P. Tudzinsky, eds.), pp. 85–105, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Ebel, J., Bhagwat, A. A., Cosio, E. G., Feger, M., Kissel, U., Mithöfer, A., and Waldmüller, T., 1995, Elicitor-binding proteins and signal transduction in the activation of a phytoalexin defense response, Can. J. Bot. 73:S506–S510.

    Article  CAS  Google Scholar 

  • Felix, G., Grosskopf, D. G., Regenass, M., and Boller, T., 1991, Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells, Proc. Natl. Acad. Sci. USA 88:8831–8834.

    Article  PubMed  CAS  Google Scholar 

  • Ferl, R. J., 1996, 14-3-3 proteins and signal transduction, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:49–73.

    Article  PubMed  CAS  Google Scholar 

  • Flor, H. H., 1955, Host-parasite interactions in flax rust—Its genetics and other implications, Phytopathology 45:680–685.

    Google Scholar 

  • Flor, H. H., 1971, Current status of the gene-for-gene concept, Annu. Rev. Phytopathol. 9:275–296.

    Article  Google Scholar 

  • Freialdenhoven, A., Scherag, B., Hollricher, K., Collinge, D. B., Thordal-Christensen, H., and Schulze-Lefert, P., 1994, Nar-1 and Nar-2, two loci required for Mla 12-specified race-specific resistance to powdery mildew in barley, Plant Cell 6:983–994.

    PubMed  CAS  Google Scholar 

  • Freialdenhoven, A., Peterhänsel, C., Kurth, J., Kreuzaler, F., and Schulze-Lefert, P., 1996, Identification of genes required to the function of non-race-specific mlo resistance to powdery mildew in barley, Plant Cell 8:5–14.

    PubMed  CAS  Google Scholar 

  • Fu, Y.-H., and Marzluf, G. A., 1990, Nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein, Proc. Natl. Acad. Sci. USA 87:5331–5335.

    Article  PubMed  CAS  Google Scholar 

  • Garas, N. A., Doke, N., and Kuc, J., 1979, Suppression of the hypersensitive reaction in potato tubers by mycelial components from Phytophthora infestons, Physiol. Plant Pathol. 15:117–126.

    Article  CAS  Google Scholar 

  • Gopalan, S., Bauer, D. W., Alfano, J. R., Loniello, A. O., He, S. Y., and Collmer, A., 1996, Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death, Plant Cell 8:1095–1105.

    PubMed  CAS  Google Scholar 

  • Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., Innes, R. W., and Dangl, J. L., 1995, Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance, Science 269:843–846.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, M., Jüngling, S., and Knogge, W., 1993, Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis, Mol. Plant-Microbe Interact. 6:745–754.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E., Jones, D. A., and Jones, J. D. G., 1994, Identification of two genes required in tomato for full Cf-9-dependent resistance to Cladosporium fulvum, Plant Cell 6:361–374.

    PubMed  CAS  Google Scholar 

  • He, S. Y., Huang, H. C., and Collmer, A., 1993, Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants, Cell 73:1255–1266.

    Article  PubMed  CAS  Google Scholar 

  • Heath, M. C., 1981, A generalized concept of host-parasite specificity, Phytopathology 71:1121–1123.

    Article  Google Scholar 

  • Heath, M. C., 1982, The absence of active defense mechanisms in compatible host—pathogen interactions, in Active Defense Mechanisms in Plants (R. K. S. Wood, ed.), pp. 143–156, Plenum Press, New York.

    Chapter  Google Scholar 

  • Heath, M. C., 1991, The role of gene-for-gene interactions in the determination of host species specificity, Phytopathology 81:127–130.

    Google Scholar 

  • Hoch, H. C., Staples, R. C., Whitehead, B., Comeau, J., and Wolf, E. D., 1987, Signaling for growth orientation and cell differentiation by surface topography in Uromyces, Science 235:1659–1662.

    Article  PubMed  CAS  Google Scholar 

  • Howard, R. J., Ferrari, M. A., Roach, D. H., and Money, D. H., 1991, Penetration of hard substances by a fungus employing enormous turgor pressures, Proc. Natl. Acad. Sci. USA 88:11281–11284.

    Article  PubMed  CAS  Google Scholar 

  • Hu, N., Mills, D. A., Huchzermeyer, B., and Richter, M. L., 1993, Inhibition by tentoxin of cooperativity among nucleotide binding sites on chloroplast coupling factor 1, J. Biol. Chem. 268:8536–8540.

    PubMed  CAS  Google Scholar 

  • Hultmark, D., 1994, Ancient relationships, Nature 367:116–117.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, T., 1995, Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling, Cell 80:225–236.

    Article  PubMed  CAS  Google Scholar 

  • Innes, R. W., 1996, Plant-pathogen interactions: Unexpected findings on signal input and output, Plant Cell 8:133–136.

    CAS  Google Scholar 

  • Johal, G. S., and Briggs, S. P., 1992, Reductase activity encoded by the HM1 disease resistance gene in maize, Science 258:985–987.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. A., and Jones, J. D. G., 1997, The role of leucine-rich repeat proteins in plant defences, Adv. Bot. Res. 24:89–167.

    Article  Google Scholar 

  • Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J., and Jones, J. D. G., 1994, Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging, Science 266:789–793.

    Article  PubMed  CAS  Google Scholar 

  • Joosten, M. H. A. J., Cozijnsen, A. J., and De Wit, P. J. G. M, 1994, Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene, Nature 367:384–387.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S., Sweigard, J. A., and Valent, B., 1995, The PWL host specificity gene family in the blast fungus Magnaporthe grisea, Mol. Plant-Microbe Interact. 8:939–948.

    Article  PubMed  CAS  Google Scholar 

  • Kato, T., Shiraishi, T., Toyoda, K., Saitoh, K., Satoh, Y., Tahara, M., Yamada, T., and Oku, H., 1993, Inhibition of ATPase activity in pea plasma membranes by fungal suppressors from Mycosphaerella pinodes and their peptide moieties, Plant Cell Physiol. 34:439–445.

    PubMed  CAS  Google Scholar 

  • Keen, N. T., 1982, Specific recognition in gene-for-gene host-parasite systems, Adv. Plant Pathol. 1:35–82.

    Google Scholar 

  • Keen, N. T., 1986, Pathogenic strategies of fungi, in Recognition in Microbe-Plant Symbiotic and Pathogenic Interactions, Vol. H 4 (B. Lugtenberg, ed.), pp. 171–188, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Keen, N. T., 1990, Gene-for-gene complementarity in plant-pathogen interactions, Annu. Rev. Genet. 24:447–463.

    Article  PubMed  CAS  Google Scholar 

  • Keen, N. T., 1992, The molecular biology of disease resistance, Plant Mol. Biol. 19:109–122.

    Article  PubMed  CAS  Google Scholar 

  • Keen, N. T., Yoshikawa, M., and Wang, M. C., 1983, Phytoalexin elicitor activity of carbohydrates from Phytophthora megasperma f.sp. glycinea and other sources, Plant Physiol. 71:466–471.

    Article  PubMed  CAS  Google Scholar 

  • Keen, N. T., Tamaki, S., Kobayashi, D., Gerhold, D., Stayton, M., Shen, H., Gold, S., Lorang, J., Thordal-Christensen, H., Dahlbeck, D., and Staskawicz, B., 1990, Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction, Mol. Plant-Microbe Interact. 3:112–121.

    Article  CAS  Google Scholar 

  • Kim, S.-D., Knoche, H. W., and Dunkle, L. D., 1987, Essentiality of the ketone function for toxicity of the host-selective toxin produced by Helminthosporium carbonum, Physiol. Mol. Plant Pathol. 30:433–440.

    Article  CAS  Google Scholar 

  • Klotz, M. G., 1988, The action of tentoxin on membrane processes in plants, Physiol. Plant. 74:575–582.

    Article  CAS  Google Scholar 

  • Knogge, W., 1991, Plant resistance genes for fungal pathogens—Physiological models and identification in cereal crops, Z. Naturforsch. 46c:969–981.

    Google Scholar 

  • Knogge, W., 1996, Fungal infection of plants, Plant Cell 8:1711–1722.

    PubMed  CAS  Google Scholar 

  • Knogge, W., 1997, Elicitors and suppressors of the resistance response, in Resistance of Crop Plants Against Fungi (R. Heitefuss, H. H. Hoppe and H. Hartleb, eds.), pp. 159–182, Fischer Verlag, Jena, Germany.

    Google Scholar 

  • Kobe, B., and Deisenhofer, J., 1994, The leucine-rich repeat: A versatile binding motif, Trends Biochem. Sci. 19:415–421.

    Article  PubMed  CAS  Google Scholar 

  • Kobe, B., and Deisenhofer, J., 1995, Proteins with leucine-rich repeats, Curr. Opin. Struct. Biol. 5:409–416.

    Article  PubMed  CAS  Google Scholar 

  • Kogel, G., Beissmann, B., Reisener, H. J., and Kogel, K. H., 1988, A single glycoprotein from Puccinia graminis f.sp. tritici cell walls elicits the hypersensitive lignification response in wheat, Physiol. Mol. Plant Pathol. 33:173–185.

    Article  CAS  Google Scholar 

  • Kolattukudy, P. E., 1985, Enzymatic penetration of the plant cuticle by fungal pathogens, Annu. Rev. Phytopathol. 23:223–250.

    Article  CAS  Google Scholar 

  • Kolattukudy, P. E., Rogers, L. M., Li, D., Hwang, C. S., and Flaishman, M. A., 1995, Surface signaling in pathogenesis, Proc. Natl. Acad. Sci. USA 92:4080–4087.

    Article  PubMed  CAS  Google Scholar 

  • Kombrink, E., and Somssich, I. E., 1995, Defense responses of plants to pathogens, in Advances in Botanical Research, Vol. 21 (J. H. Andrews and I. C. Tommerup, eds.), pp. 1–34, Academic Press, London.

    Google Scholar 

  • Kono, Y., and Daly, J. M., 1979, Characterization of the host-specific pathotoxin produced by Helminthosporium maydis, race T, affecting corn with Texas male sterile cytoplasm, Bioorg. Chem. 8:391–397.

    Article  CAS  Google Scholar 

  • Kono, Y., Knoche, H. W., and Daly, J. M., 1981, Structure: Fungal host-specific, in Toxins in Plant Disease (E. D. Durbin, ed.), pp. 221–257, Academic Press, New York.

    Google Scholar 

  • Kooman-Gersmann, M., Honée, G., Bonnema, G., and De Wit, P. J. G. M., 1996, A high affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants, Plant Cell 8:929–939.

    PubMed  CAS  Google Scholar 

  • Korthout, H. A. A. J., and De Boer, A. H., 1994, A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs, Plant Cell 6:1681–1692.

    PubMed  CAS  Google Scholar 

  • Kubo, Y., and Furusawa, I., 1991, Melanin biosynthesis: Prerequisite for successful invasion of the plant host by appressoria of Colletotrichum and Pyricularia, in The Fungal Spore and Disease Initiation in Plants and Animals (G. T. Cole and H. C. Hoch, eds.), pp. 205–218, Plenum Press, New York.

    Chapter  Google Scholar 

  • Kubo, Y., Nakamura, H., Kobayashi, K., Okuno, T., and Furusawa, I., 1991, Cloning of a melanin biosynthetic gene essential for appressorial penetration of Colletotrichum lagenarium, Mol. Plant-Microbe Interact. 4:440–445.

    Article  CAS  Google Scholar 

  • Lamb, C. J., 1994, Plant disease resistance genes in signal perception and transduction, Cell 76:419–422.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C. J., Lawton, M. A., Dron, M., and Dixon, R. A., 1989, Signals and transduction mechanisms for activation of plant defenses against microbial attack, Cell 56:215–224.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, G. J., Finnegan, E. J., Ayliffe, M. A., and Ellis, J. G., 1995, The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N, Plant Cell 7:1195–1206.

    PubMed  CAS  Google Scholar 

  • Lee, Y. H., and Dean, R. A., 1993, cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea, Plant Cell 5:693–700.

    PubMed  CAS  Google Scholar 

  • Lehnackers, H., and Knogge, W., 1990, Cytological studies on the infection of barley cultivars with known resistance genotypes by Rhynchosporium secalis, Can. J. Bot. 68:1953–1961.

    Google Scholar 

  • Levings, C. S., III, and Siedow, J. N., 1992, Molecular basis of disease susceptibility in the Texas cytoplasm of maize, Plant Mol. Biol. 19:135–147.

    Article  PubMed  CAS  Google Scholar 

  • Levings, C. S., III, Rhoads, D. M., and Siedow, J. N., 1995, Molecular interactions of Bipolaris maydis T-toxin and maize, Can. J. Bot. 73:S483–S489.

    Article  CAS  Google Scholar 

  • Loh, Y.-T., and Martin, G. B., 1995, The Pto bacterial resistance gene and the Fen insecticide sensitivity gene encode functional protein kinases with serine/threonine specificity, Plant Physiol. 108:1735–1739.

    Article  PubMed  CAS  Google Scholar 

  • Marrè, E., 1979, Fusicoccin: A tool in plant physiology, Annu. Rev. Plant Physiol. 30:273–288.

    Article  Google Scholar 

  • Marrè, E., and Ballarin-Denti, A., 1985, The proton pump of the plasmalemma and the tonoplast of higher plants, J. Bioenerg. Biomembranes 17:1–21.

    Article  Google Scholar 

  • Martin, G. B., Brommonschenkel, S. H., Chunwongse, J., Frary, A., Ganal, M. W., Spivey, R., Wu, T., Earle, E. D., and Tanksley, S. D., 1993, Map-based cloning of a protein kinase gene conferring resistance in tomato, Science 262:1432–1436.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. B., Frary, A., Wu, T., Brommonschenkel, S., Chunwongse, J., Earle, E. D., and Tanksley, S.D., 1994, A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death, Plant Cell 6:1543–1552.

    PubMed  CAS  Google Scholar 

  • Marzluf, G. A., Kanaan, M., and Fu, Y.-H., 1992, Molecular analysis of DNA-binding, trans-acting regulatory proteins of Neurospora crassa, in Molecular Biology of Filamentous Fungi (U. Stahl and P. Tudzynski, eds.), pp. 153–166, VCH, Weinheim, Germany.

    Google Scholar 

  • Matthews, D. E., Gregory, P., and Gracen, V. E., 1979, Helminthosporium maydis race T toxin induces leakage of NAD+ from T cytoplasm corn mitochondria, Plant Physiol. 63:1149–1153.

    Article  PubMed  CAS  Google Scholar 

  • Meeley, R. G., and Walton, J. D., 1991, Enzymatic detoxification of HC-toxin, the host-selective cyclic peptide from Cochliobolus carbonum, Plant Physiol. 97:1080–1086.

    Article  PubMed  CAS  Google Scholar 

  • Meeley, R. B., and Walton, J. D., 1993, Molecular biology and biochemistry of Hm1, a maize gene for fungal resistance, in Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 2 (E. W. Nester and D. P. S. Verma, eds.), pp. 463–467, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Meeley, R. B., Johal, G. S., Briggs, S. P., and Walton, J. D., 1992, A biochemical phenotype for a disease resistance gene of maize, Plant Cell 4:71–77.

    PubMed  CAS  Google Scholar 

  • Mendgen, K., and Deising, H., 1993, Infection structures of fungal plant pathogens—A cytological and physiological evaluation, New Phytol. 124:192–213.

    Article  Google Scholar 

  • Meyer, C., Waldkotter, K., Sprenger, A., Schlosser, U. G., Luther, M., and Weiler, E. W., 1993, Survey of the taxonomic and tissue distribution of microsomal binding sites for the non-host selective fungal phytotoxin, fusicoccin, Z. Naturforsch. 48c: 595–602.

    Google Scholar 

  • Meyer, W. L., Templeton, G. E., Grable, C. I., Jones, R., Kuiper, L. F., Lewis, R. B., Sigel, C. W., and Woodhead, S. M., 1975, Use of 1H nuclear magnetic resonance spectroscopy for sequence and configuration analysis of cyclic tetrapeptides. The structure of tentoxin, J. Am. Chem. Soc. 97:3802–3809.

    Article  CAS  Google Scholar 

  • Michelet, B., and Boutry, M., 1995, The plasma membrane H+-ATPase, Plant Physiol. 108:1–6.

    PubMed  CAS  Google Scholar 

  • Mindrinos, M., Katagiri, F., Yu, G.-L., and Ausubel, F. M., 1994, The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats, Cell 78:1089–1099.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, T. K., and Dean, R. A., 1995, The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea, Plant Cell 7:1869–1878.

    PubMed  CAS  Google Scholar 

  • Mu, J. H., Lee, H. S., and Kao, T. H., 1994, Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase, Plant Cell 6:709–721.

    PubMed  CAS  Google Scholar 

  • Nelson, O. E., and Ullstrup, A. J., 1964, Resistance to leaf spot in maize, J. Hered. 55:195–199.

    Google Scholar 

  • Nicholson, R. L., and Epstein, L., 1991, Adhesion of fungi to the plant surface, in The Fungal Spore and Disease Initiation in Plants and Animals (G. T. Cole and H. C. Hoch, eds.), pp. 3–23, Plenum Press, New York.

    Chapter  Google Scholar 

  • Nikolskaya, A. N., Panaccione, D. G., and Walton, J. D., 1995, Identification of peptide synthetase-encoding genes from filamentous fungi producing host-selective phytotoxins or analogs, Gene 165:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Nürnberger, T., Nennstiel, D., Hahlbrock, K., and Scheel, D., 1995, Covalent cross-linking of the Phytophthora megasperma oligopeptide elicitor to its receptor in parsley membranes, Proc. Natl. Acad. Sci. USA 92:2338–2342.

    Article  PubMed  Google Scholar 

  • Oecking, C., Eckerskorn, C., and Weiler, E. W., 1994, The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins, FEBS Lett. 352:163–166.

    Article  PubMed  CAS  Google Scholar 

  • Oku, H., Shiraishi, T., Ouchi, S., and Ishiura, M., 1980, A new determinant of pathogenicity in plant disease, Naturwissenschaften 67:310.

    Article  Google Scholar 

  • Osbourn, A., Bowyer, P., Lunness, P., Clarke, B., and Daniels, M., 1995, Fungal pathogens of oat roots and tomato leaves employ closely related enzymes to detoxify different host plant saponins, Mol. Plant-Microbe Interact. 8:971–978.

    Article  PubMed  CAS  Google Scholar 

  • Ouchi, S., Hibino, C., Oku, H., Fujiwara, M., and Nakabayashi, H., 1979, The induction of resistance or susceptibility, in Recognition and Specificity in Plant Host-Parasite Interactions (J. M. Daly and I. Uritani, eds.), pp. 49–65, University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Padgett, H. S., and Beachy, R. N., 1993, Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance, Plant Cell 5:577–586.

    PubMed  CAS  Google Scholar 

  • Panaccione, D. G., Scott-Craig, J. S., Pocard, J.-A., and Walton, J. D., A cyclic peptide synthetase gene required for pathogenicity of the fungus Cochliobolus carbonum, Proc. Natl. Acad. Sci. USA 89:6590-6594.

    Google Scholar 

  • Parker, J. E., Coleman, M. J., Szabo, V., Frost, L. N., Schmidt, R., Van der Biezen, E. A., Moores, T., Dean, C., Daniels, M. J., and Jones, J. D. G., 1997, The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and interleukin-1 receptors with N and L6, Plant Cell 9:879–894.

    Article  PubMed  CAS  Google Scholar 

  • Podila, G. K., Rogers, L. M., and Kolattukudy, P. E., 1993, Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides, Plant Physiol. 103:267–272.

    PubMed  CAS  Google Scholar 

  • Ranjeva, R., and Beudet, A. M., 1987, Phosphorylation of proteins in plants: Regulatory effects and potential involvement in stimulus/response coupling, Annu. Rev. Plant Physiol. 38:73–93.

    Article  CAS  Google Scholar 

  • Reuber, T. L., and Ausubel, F. M., 1996, Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes, Plant Cell 8:241–249.

    PubMed  CAS  Google Scholar 

  • Rhoads, D. M., Levings, C. S., III, and Siedow, J. N., 1995, URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria, J. Bioenerg. Biomembranes 27:437–445.

    Article  CAS  Google Scholar 

  • Ritter, C., and Dangl, J. L., 1996, Interference between two specific pathogen recognition events mediated by distinct plant disease resistance genes, Plant Cell 8:251–257.

    PubMed  CAS  Google Scholar 

  • Rogers, L. M., Flaishman, M. A., and Kolattukudy, P. E., 1994, Cutinase gene disruption in Fusarium solani f.sp. pisi decreases its virulence on pea, Plant Cell 6:935–945.

    PubMed  CAS  Google Scholar 

  • Rohe, M., Gierlich, A., Hermann, H., Hahn, M., Schmidt, B., Rosahl, S., and Knogge, W., 1995, The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype, EMBO J. 14:4168–4177.

    PubMed  CAS  Google Scholar 

  • Ryals, J., Uknes, S., and Ward, E., 1994, Systemic acquired resistance, Plant Physiol. 104:1109–1112.

    PubMed  CAS  Google Scholar 

  • Salmeron, J. M., Barker, S. J., Carland, F. M., Mehta, A. Y., and Staskawicz, B. J., 1994, Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition, Plant Cell 6:511–520.

    PubMed  CAS  Google Scholar 

  • Salmeron, J. M., Oldroyd, G. E. D., Rommens, C. M. T., Scofield, S. R., Kim, H. S., Lavelle, D. T., Dahlbeck, D., and Staskawicz, B. J., 1996, Tomato prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster, Cell 86:123–133.

    Article  PubMed  CAS  Google Scholar 

  • Sandrock, R. W., DellaPenna, D., and VanEtten, H., 1995, Purification and characterization of β2-tomatinase, an enzyme involved in the degradation of α-tomatine and isolation of the gene encoding β2-tomatinase from Septoria lycopersici, Mol. Plant-Microbe Interact. 8:960–970.

    Article  PubMed  CAS  Google Scholar 

  • Saraste, M., Sibbald, P. R., and Wittinghofer, A., 1990, The P-loop—A common motif in ATP-and GTP-binding proteins, Trends Biochem. Sci. 15:430–434.

    Article  PubMed  Google Scholar 

  • Scheffer, R. P., and Livingston, R. S., 1984, Host-selective toxins and their role in plant diseases, Science 223:17–21.

    Article  PubMed  CAS  Google Scholar 

  • Scheffer, R. P., Nelson, R. R., and Ullstrup, A. J., 1967, Inheritance of toxin production and pathogenicity in Cochliobolus carbonum and Cochliobolus victoriae, Phytopathology 57:1288–1291.

    Google Scholar 

  • Scott-Craig, J. S., Panaccione, D. G., Pocard, J. A., and Walton, J. D., 1992, The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame, J. Biol. Chem. 267:26044–26049.

    PubMed  CAS  Google Scholar 

  • Serrano, R., 1989, Structure and function of plasma membrane ATPase, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:61–94.

    Article  CAS  Google Scholar 

  • Shaw, D. S., 1991, Genetics, Adv. Plant Pathol. 7:131–170.

    Google Scholar 

  • Shiraishi, T., Oku, H., Yamashita, M., and Ouchi, S., 1978, Elicitor and suppressor of pisatin induction in spore germination fluid of pea pathogen, Mycosphaerella pinodes, Ann. Phytopathol. Soc. Japan 44:659–665.

    Article  Google Scholar 

  • Shiraishi, T., Araki, M., Yoshioka, H., Kobayashi, I., Yamada, T., Ichinose, Y., Kunoh, H., and Oku, H., 1991a, Inhibition of ATPase activity in pea plasma membranes in situ by a suppressor from a pea pathogen, Mycosphaerella pinodes, Plant Cell Physiol. 32:1067–1075.

    CAS  Google Scholar 

  • Shiraishi, T., Yamada, T., Oku, H., and Yoshioka, H., 1991b, Suppressor production as a key factor for fungal pathogenesis, in Molecular Strategies of Pathogens and Host Plants (S. S. Patil, S. Ouchi, D. Mills, and C. Vance, eds.), pp. 151–162, Springer-Verlag, New York.

    Google Scholar 

  • Shiraishi, T., Saitoh, K., Kim, H. M., Kato, T., Tahara, M., Oku, H., Yamada, T., and Ichinose, Y., 1992, Two suppressors, supprescins A and B, secreted by a pea pathogen, Mycosphaerella pinodes, Plant Cell Physiol. 33:663–667.

    CAS  Google Scholar 

  • Siedow, J. N., Rhoads, D. M., Ward, G. C., and Levings, C. S., III, 1995, The relationship between the mitochondrial gene T-urf13 and fungal pathotoxin sensitivity in maize, Biochim. Biophys. Acta 1271:235–240.

    Article  PubMed  Google Scholar 

  • Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Hosten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C., and Ronald, P., 1995, A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21, Science 270:1804–1806.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, D. J., and Schäfer, W., 1992, Cutinase is not required for fungal pathogenicity on pea, Plant Cell 4:621–629.

    PubMed  CAS  Google Scholar 

  • Staskawicz, B. J., Dahlbeck, D., and Keen, N. T., 1984, Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr., Proc. Natl. Acad. Sci. USA 81:6024–6028.

    Article  PubMed  CAS  Google Scholar 

  • Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G., and Jones, J. D. G., 1995, Molecular genetics of plant disease resistance, Science 268:661–667.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., and Shinshi, H., 1995, Transient activation and tyrosine phosphorylation of a protein kinase in tobacco cells treated with a fungal elicitor, Plant Cell 7:639–647.

    PubMed  CAS  Google Scholar 

  • Sweigard, J. A., Chumley, F. G., and Valent, B., 1992, Disruption of aMagnaporthe grisea cutinase gene, Mol. Gen. Genet. 232:183–190.

    PubMed  CAS  Google Scholar 

  • Sweigard, J. A., Carroll, A. M., Kang, S., Farrall, L., Chumley, F. G., and Valent, B., 1995, Identification, cloning and characterization of PWL2, a gene for host-species specificity in the rice blast fungus, Plant Cell 7:1221–1233.

    PubMed  CAS  Google Scholar 

  • Talbot, N. J., Ebbole, D. J., and Hamer, J. E., 1993, Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea, Plant Cell 5:1575–1590.

    PubMed  CAS  Google Scholar 

  • Talbot, N. J., Kershaw, M. J., Wakley, G. E., De Vries, O. M. H., Wessels, J. G. H., and Hamer, J. E., 1996, MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea, Plant Cell 8:985–999.

    PubMed  CAS  Google Scholar 

  • Toyoda, K., Shiraishi, T., Yoshioka, H., Yamada, T., Ichinose, Y., and Oku, H., 1992, Regulation of polyphosphoinositide metabolism in pea plasma membranes by elicitor and suppressor from a pea pathogen, Mycosphaerella pinodes, Plant Cell Physiol. 33:445–452.

    CAS  Google Scholar 

  • Toyoda, K., Shiraishi, T., Yamada, T., Ichinose, Y., and Oku, H., 1993, Rapid changes in polyphosphoinositide metabolism in pea in response to fungal signals, Plant Cell Physiol. 34:729–735.

    CAS  Google Scholar 

  • Tucker, B. E., Hoch, H. C., and Staples, R. C., 1986, The involvement of F actin in Uromyces cell differentiation: The effects of cytochalasin E and phalloidin, Protoplasma 135:88–101.

    Article  CAS  Google Scholar 

  • Turgeon, B. G., Kodama, M., Yang, G., Rose, M. S., Lu, S. W., and Yoder, O. C., 1995, Function and chromosomal location of the Cochliobolus heterostrophus Tox1 locus, Can. J. Bot. 73:S1071–S1076.

    Article  CAS  Google Scholar 

  • Tzeng, D. D., and DeVray, J. E., 1993, Role of oxygen radicals in plant disease development, Adv. Plant Pathol. 10:1–34.

    Google Scholar 

  • Tzeng, T. H., Lyngholm, L. K., Ford, C. F., and Bronson, C. R., 1992, A restriction fragment length polymorphism map and electrophoretic daryotype of the fungal maize pathogen Cochliobolus heterostrophus, Genetics 130:81–96.

    PubMed  CAS  Google Scholar 

  • Valent, B., and Chumley, F. G., 1991, Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea, Annu. Rev. Phytopathol. 29:443–467.

    Article  PubMed  CAS  Google Scholar 

  • Valent, B., and Chumley, F. G., 1994, Avirulence genes and mechanisms of genetic instability in the rice blast fungus, in Rice Blast Diseases (R. Zeigler, P. S. Teng, and S. Leong, eds.), pp. 111–134, CAB International, Wallingford, Oxon, U.K.

    Google Scholar 

  • Valon, C., Smalle, J., Goodman, H. M., and Giraudat, J., 1993, Characterization of an Arabidopsis thaliana gene (TMKL1) encoding a putative transmembrane protein with an unusual kinase-like domain, Plant Mol. Biol. 23:415–421.

    Article  PubMed  CAS  Google Scholar 

  • Van den Ackerveken, G. F. J. M., Van Kan, J. A. L., and De Wit, P. J. G. M., 1992, Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis, Plant J. 2:359–366.

    Article  PubMed  Google Scholar 

  • Van den Ackerveken, G. F., Vossen, P., and De Wit, P. J. G. M., 1993, The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases, Plant Physiol. 103:91–96.

    Article  PubMed  Google Scholar 

  • Van den Ackerveken, G. F., Dunn, R. M., Cozijnsen, A. J., Vossen, J. P., Van den Broek, H. W., and De Wit, P. J. G. M., 1994, Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum, Mol. Gen. Genet. 243:277–85.

    Article  PubMed  Google Scholar 

  • Van den Ackerveken, G., Marois, E., and Bonas, U., 1996, Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell, Cell 87:1307–1316.

    Article  PubMed  Google Scholar 

  • Van der Hoeven, P. C. J., Siderius, M., Korthout, H. A. A. J., Drabkin, A. V., and De Boer, A. H., 1996, A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor, Plant Physiol. 111:857–865.

    Article  PubMed  Google Scholar 

  • VanEtten, H. D., Matthews, D. E., and Matthews, P. S., 1989, Phytoalexin detoxification: Importance for pathogenicity and practical implications, Annu. Rev. Phytopathol. 27:143–164.

    Article  PubMed  CAS  Google Scholar 

  • VanEtten, H., Funnell-Baerg, D., Wasmann, C., and McCluskey, K., 1994a, Location of pathogenicity genes on dispensable chromosomes in Nectria haematococca MPVI, Ant. Leeuwenhoek 65:263–267.

    Article  CAS  Google Scholar 

  • VanEtten, H. D., Mansfield, J. W., Bailey, J. A., and Farmer, E. E., 1994b, Two classes of plant antibiotics: Phytoalexins versus “phytoanticipins,” Plant Cell 6:1191–1192.

    PubMed  CAS  Google Scholar 

  • Van Kan, J. A. L., Van den Ackerveken, G. F. J. M., and De Wit, P. J. G. M., 1991, Cloning and characterization of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold, Mol. Plant-Microbe Interact. 4:52–59.

    Article  PubMed  Google Scholar 

  • Vera-Estrella, R., Barkla, B. J., Higgins, V. J., and Blumwald, E., 1994, Plant defense response to fungal pathogens. Activation of host plasma membrane H+-ATPase by elicitor induced enzyme dephosphorylation, Plant Physiol. 104:209–215.

    PubMed  CAS  Google Scholar 

  • Wada, M., Kato, H., Malik, K., Sriprasertsak, P., Ichinose, Y., Shiraishi, T., and Yamada, T., 1995, A supprescin from a phytopathogenic fungus deactivates transcription of a plant defense gene encoding phenylalanine ammonia-lyase, J. Mol. Biol. 249:513–519.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J. C., 1993, Receptor-like protein kinase genes of Arabidopsis thaliana, Plant J. 3:451–456.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. D., 1993, Molecular basis of specificity in maize leaf spot disease, in Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 2 (E. W. Nester and D. P. S. Verma, eds.), pp. 313–323, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Walton, J. D., and Panaccione, D. G., 1993, Host-selective toxins and disease specificity: Perspectives and progress, Annu. Rev. Phytopathol. 31:275–303.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. D., Ahn, J.-H., Akimitsu, K., Pitkin, J. W., and Ransom, R., 1994a, Leaf-spot disease of maize: Chemistry, biochemistry, and molecular biology of a host-selective cyclic peptide, in Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 3 (M. J. Daniels, J. A. Downie, and A. E. Osbourn, eds.), pp. 231–237, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Walton, J. D., Akimitsu, K., Ahn, J. H., and Pitkin, J. W., 1994b, Towards an understanding of the T0X2 gene of Cochliobolus carbonum, in Host-Specific Toxin: Biosynthesis, Receptor and Molecular Biology (K. Kohmoto and O. C. Yoder, eds.), pp. 227–237, Tottori University, Tottori, Japan.

    Google Scholar 

  • Welz, H. G., and Leonard, K. J., 1988, Genetic variation in field populations of race 0, 2, and 3 of Bipolaris zeicola in 1988, Phytopathology 78:1574.

    Google Scholar 

  • Welz, H. G., and Leonard, K. J., 1993, Phenotypic variation and parasitic fitness of races of Cochliobolus carbonum on corn in North Carolina, Phytopathology 83:593–601.

    Article  Google Scholar 

  • Wessels, J. G. H., 1994, Developmental regulation of fungal wall formation, Annu. Rev. Phytopathol. 32:413–437.

    Article  CAS  Google Scholar 

  • Wevelsiep, L., Kogel, K. H., and Knogge, W., 1991, Purification and characterization of peptides from Rhynchosporium secalis inducing necrosis in barley, Physiol. Mol. Plant Pathol. 39:471–482.

    Article  CAS  Google Scholar 

  • Wevelsiep, L., Rüpping, E., and Knogge, W., 1993, Stimulation of barley plasmalemma H+-ATPase by phytotoxic peptides from the fungal pathogen Rhynchosporium secalis, Plant Physiol. 101:297–301.

    PubMed  CAS  Google Scholar 

  • Whitham, S., Dinesh-Kumar, S. P., Choi, D., Hehl, R., Corr, C., and Baker, B., 1994, The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the interleukin-1 receptor, Cell 78:1101–1115.

    Article  PubMed  CAS  Google Scholar 

  • Woloshuk, C. P., and Kolattukudy, P. E., 1986, Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f.sp. pisi, Proc. Natl. Acad. Sci. USA 83:1704–1708.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Hashimoto, H., Shiraishi, T., and Oku, H., 1989, Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycosphaerella pinodes, Mol. Plant-Microbe Interact. 2:256–261.

    Article  Google Scholar 

  • Yoshikawa, M., and Sugimoto, K., 1993, A specific binding site in soybean membranes for a phytoalexin elicitor released from fungal cells walls by β-1,3-endoglucanase, Plant Cell. Physiol. 34:1229–1237.

    CAS  Google Scholar 

  • Yoshioka, H., Shiraishi, T., Yamada, T., Ichinose, Y., and Oku, H., 1990, Suppression of pisatin production and ATPase activity in pea plasma membranes by orthovanadate, Verapamil and a suppressor from Mycosphaerella pinodes, Plant Cell Physiol. 31:1139–1146.

    CAS  Google Scholar 

  • Zhang, L., Villalon, D., Sun, Y., Kazmierczak, P., and Van Alfen, N. K., 1994, Virus-associated down-regulation of the gene encoding cryparin, an abundant cell-surface protein from the chestnut blight fungus, Cryphonectria parasitica, Gene 139:59–64.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X. L., Stumpf, M. A., Hoch, H. C., and Kung, C., 1991, A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces, Science 253:1415–1417.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J., Loh, Y. T., Bressan, R. A., and Martin, G. B., 1995, The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response, Cell 83:925–935.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, E., and Albersheim, P., 1977, Host-pathogen interactions. XIII. Extracellular invertases secreted by three races of a plant pathogen are glycoproteins which possess different carbohydrate structures, Plant Physiol. 59:1104–1110.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, E., and Pontzen, R., 1982, Specific inhibition of glucan-elicited glyceollin accumulation on soybeans by an extracellular mannan-glycoprotein of Phytophthora megasperma f.sp. glycinea, Physiol. Plant Pathol. 20:321–331.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knogge, W. (1998). Plant-Fungal Interactions and Plant Disease. In: Biswas, B.B., Das, H.K. (eds) Plant-Microbe Interactions. Subcellular Biochemistry, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1707-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1707-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1709-6

  • Online ISBN: 978-1-4899-1707-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics