Immunoaffinity Purification of Membrane Fractions from Mammalian Cells

  • Peter J. Richardson
  • J. Paul Luzio
Part of the Subcellular Biochemistry book series (SCBI, volume 12)


A wide variety of techniques have been developed for the subfractionation of mammalian cell membranes and organelles. The most widely used are density gradient centrifugation, free-flow electrophoresis, polymer phase partition, fluorescent activated “cell-sorting,” and immunoaffinity purification. While the immunoaffinity approach relies totally on antibody-antigen reactions, the specificity of the other systems, which depend largely on physical differences between particles, can be increased by the selective use of affinity procedures. This chapter, after discussing the relative merits of other membrane separation techniques, is concerned primarily with the design, application, and advantages of immunoaffinity purification using a solid matrix.


Solid Support Affinity Purification Coated Vesicle Ehrlich Ascites Carcinoma Cell Plasma Membrane Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addison, G. M., 1971, Preparation and properties of labelled antibodies. Ph.D. thesis, University of Cambridge, U.K.Google Scholar
  2. Albertson, P.-A., 1986, Partition of Cell Particles and Macromolecules, Wiley, New York.Google Scholar
  3. Antoine, J.-C., Ternynck, T., Rodrigot, M., and Avrameas, A., 1978, Lymphoid cell fractionation on magnetic Polyacrylamide-agarose beads. Immunochemistry 15: 443–452.PubMedCrossRefGoogle Scholar
  4. Atassi, M. Z., 1984, Antigenic structures of proteins. Eur. J. Biochem. 145: 1–20.PubMedCrossRefGoogle Scholar
  5. Au, M. M.-J., and Varon, S., 1979, Neural cell sequestration on immunoaffinity columns. Exp. Cell Res. 120: 269–276.PubMedCrossRefGoogle Scholar
  6. Bailyes, E. M., Richardson, P. J., and Luzio, J. P., 1987, Immunological methods applicable to membranes. In Biological Membranes: A Practical Approach (J. Findlay and W. H. Evans, eds.), IRL Press, Oxford, U.K.Google Scholar
  7. Boone, C. W., Ford, L. E., Bond, H. E., Stuart, D. C., and Lorenz, D., 1969, Isolation of plasma membrane fragments from Hela cells. J. Cell Biol. 41: 378–392.PubMedCrossRefGoogle Scholar
  8. Courtoy, P. J., Quintart, J., and Baudhuin, P., 1984, Shift of equilibrium density induced by 3, 3′-diamino-benzidine cytochemistry: A new procedure for the analysis and purification of peroxidase containing organelles. J. Cell Biol. 98: 870–876.PubMedCrossRefGoogle Scholar
  9. Davis, G. A., and Bloom, F. E., 1973, Subcellular particles separated through a histochemical reaction. Anal. Biochem. 51: 429–435.PubMedCrossRefGoogle Scholar
  10. Debanne, M. T., Bolyos, M., Gauldie, J., and Regoeczi, E., 1984, Two populations of prelysosomal structures transporting asialoglycoproteins in rat liver. Proc. Natl. Acad. Sci. U.S.A. 81: 2995–2999.PubMedCrossRefGoogle Scholar
  11. DeDuve, C., 1975, Exploring cells with a centrifuge. Science 189: 186–194.CrossRefGoogle Scholar
  12. de Kretser, T. A., Bodmer, J. G., and Bodmer, W. F., 1980, The separation of cell populations using monoclonal antibodies attached to sepharose. Tissue Antigens 16: 317–325.PubMedCrossRefGoogle Scholar
  13. Docherty, M., Bradford, H. F., and Wu, J.-Y., 1987, Purification and characterization of mammalian cholinergic and GABAergic synaptosomes. Biochem. Soc. Trans. 15: 638–641.Google Scholar
  14. Evans, W. H., 1987, Isolation of membranes. In Biological Membranes: A Practical Approach (J. Findlay and W. H. Evans, eds), IRL Press, Oxford, U.K.Google Scholar
  15. Ey, P. L., Prowse, S. J., and Jenkin C. R., 1978, Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-Sepharose. Immunochemistry 15: 429–436.PubMedCrossRefGoogle Scholar
  16. Flanagan, S. D., Johansson, G., Yost, B., Ito, Y., Sutherland, I. A., 1984, Toroidal coil countercurrent chromatography in the affinity partitioning of nicotinic cholinergic receptor enriched membranes. J. Liquid Chromatogr. 7: 385–402.CrossRefGoogle Scholar
  17. Gahmberg, C. G., and Simons, K., 1970, Isolation of plasma membrane fragments from BHK 21 cells. Acta Pathol. Microbiol. Scand. B 78: 176–182.Google Scholar
  18. George, S. G., and Kenny, A. J., 1973, Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochem. J. 134: 43–57.PubMedGoogle Scholar
  19. Ghetie, V., Mota, A., and Sjoquist, J., 1978, Separation of cells by affinity chromatography on SpA-sepharose 6MB. J. Immunol. Methods 21: 133–141.PubMedCrossRefGoogle Scholar
  20. Gorvel, J.-P., and Maroux, S., 1987, Characterization of intestinal membrane vesicles with FACS analysis. In Cell Free Analysis of Membrane Traffic (J. Moore, ed.), Alan R. Liss, New York.Google Scholar
  21. Gruenberg, J., and Howell, K. E., 1985, Immunoisolation of vesicles using antigenic sites either located on the cytoplasmic or exoplasmic domain of an implanted viral protein. A quantitative analysis. Eur. J. Cell Biol 38: 312–321.PubMedGoogle Scholar
  22. Gruenberg, J., and Howell, K. E., 1986, Reconstitution of vesicle fusions occurring in endocytosis with a cell-free system. EMBO J. 5: 3091–3101.PubMedGoogle Scholar
  23. Hales, C. N., 1972, Immunological techniques in diabetes research. Diabetologia 8: 229–235.PubMedCrossRefGoogle Scholar
  24. Hales, C. N., and Woodhead, J. S., 1980, Labelled antibodies and their use in the immunoradiometric assay. Methods Enzymol. 70: 334–355.PubMedCrossRefGoogle Scholar
  25. Hannig, K., and Heidrich, H.-G., 1977, Continuous freeflow electrophoresis and its application in biology. In Cell Separation Methods Part IV Electrophoretic Methods (Hannig, K., and Heidrich, H.-G., ed.), pp. 93–116, Elsevier, Amsterdam.Google Scholar
  26. Howell, K. E., Ansorge, W., and Gruenberg, J., 1985, Immunoisolation system using beads maintained in free flow within a magnetic field. In Microspheres: Medical and Biological Applications (A. Rembaum and Z. Tokes, eds.), CRC Press, Boca Raton, FL.Google Scholar
  27. Ito, Y., and Bowman, R. L., 1978, Countercurrent chromatography with the flow-through centrifuge without rotating seals. Anal. Biochem. 85: 614–617.PubMedCrossRefGoogle Scholar
  28. Ito, A., and Palade, G. E., 1978, Presence of NADPH-cytochrome P-450 reductase in rat liver golgi membranes. Evidence obtained by immunoadsorption method. J. Cell Biol. 79: 590–597.PubMedCrossRefGoogle Scholar
  29. Jackson, A. P., Siddle, K., and Thompson, R. J., 1984, Two site monoclonal antibody assays for human heart- and brain-type creatine kinase. Clin. Chem. 30: 1157–1162.PubMedGoogle Scholar
  30. Jones, R. T., Walker, J. H., Richardson, P. F., Fox, G. W., and Whittaker, V. P., 1981, Immunohistochemical localization of cholinergic nerve terminals. Cell Tissue Res. 218: 355–373.PubMedCrossRefGoogle Scholar
  31. Kamat, V. B., and Wallach, D. F. H., 1965, Separation and partial purification of plasma membrane fragments from Ehrlich ascites carcinoma microsomes. Science 148: 1343–1345.PubMedCrossRefGoogle Scholar
  32. Kaplan, G., Unkeless, J. C., and Cohn, Z. A., 1979, Insertion and turnover of macrophage plasma membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 76: 2824–2828.Google Scholar
  33. Kawajiri, K., Ito, A., and Omura, T., 1977, Subfractionation of rat liver microsomes by immunoprecipitation and immunoadsorbtion methods. J. Biochem. 81: 779–789.PubMedGoogle Scholar
  34. Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.PubMedCrossRefGoogle Scholar
  35. Krassig, H., 1985, Structure of cellulose and its relation to properties of cellulose fibres. In Cellulose and Its Derivatives: Chemistry, Biochemistry and Applications (Krassig, H., eds.), pp. 3–25, Ellis Horwood, Chichester, U.K.Google Scholar
  36. Kronvall, G., Seal, V. S., Finstad, J., and Williams, R. C., 1970, Phylogenetic insight into evolution of mammalian Fc fragment of γG globulin using staphylococcal protein A. J. Immunol. 104: 140–147.PubMedGoogle Scholar
  37. Lerner, R. A., 1982, Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299: 592–596.CrossRefGoogle Scholar
  38. Leskes, A., Siekewitz, P., and Palade, G. E., 1971, Differentiation of endoplasmic reticulum in hepatocytes II. Glucose-6-phosphatase in rough microsomes. J. Cell Biol. 49: 288–302.PubMedCrossRefGoogle Scholar
  39. Luzio, J. P., 1977, Immunological approaches to the study of membrane features in adipocytes. In Methodological Surveys in Biochemistry (E. Reid, ed.), Vol 6, pp. 131–142, Ellis Horwood, Chichester, U.K.Google Scholar
  40. Luzio, J. P., and Stanley, K. K., 1983, The isolation of endosome derived vesicles from rat hepatocytes. Biochem. J. 216: 27–36.PubMedGoogle Scholar
  41. Luzio, J. P., Newby, A. C., and Hales, C. N., 1974, Immunological isolation of rat fat cell plasma membranes. Biochem. Soc. Trans. 2: 1385–1386.Google Scholar
  42. Luzio, J. P., Newby, A. C., and Hales, C. N., 1976, A rapid immunological procedure for the isolation of hormonally sensitive rat fat cell plasma membrane. Biochem. J. 154: 11–21.PubMedGoogle Scholar
  43. Matthew, W. D., Tsavaler, L., and Reichardt, L. F., 1981, Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91: 257–269.PubMedCrossRefGoogle Scholar
  44. Merisko, E. M., Farquhar, M. G., and Palade, G. E., 1982, Coated vesicle isolation by immunoad-sorption on staphylococcal aureus cells. J. Cell Biol. 92: 846–857.PubMedCrossRefGoogle Scholar
  45. Miljanich, G. P., Brasier, A. R., and Kelly, R. B., 1982, Partial purification of presynaptic plasma membrane by immunoadsorption. J. Cell Biol. 84: 88–96.CrossRefGoogle Scholar
  46. Molday, R. A., and Molday, L. L., 1984, Separation of cells labelled with immunospecific iron dextran microspheres using high gradient magnetic chromatography. FEBS Lett. 170: 232–238.PubMedCrossRefGoogle Scholar
  47. Mooré, D. J., Moore, D. M., and Heidrich, H.-G., 1983, Subfractionation of rat liver Golgi apparatus by free-flow electrophoresis. Eur. J. Cell Biol. 31: 263–274.Google Scholar
  48. Morris, S. J., and Schovanka, I., 1977, Some physical properties of adrenal medulla chromaffin granules isolated by a new continuous iso-osmotic density gradient method. Biochim. Biophys. Acta 464: 53–64.PubMedCrossRefGoogle Scholar
  49. Mueller, S. C., and Hubbard, A. L., 1986, Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: Receptor-positive and receptor-negative endosomes. J. Cell Biol. 102: 932–942.PubMedCrossRefGoogle Scholar
  50. Mullock, B. M., Hinton, R. H., Peppard, J. V., Slot, J. W., and Luzio, J. P., 1987, The preparative isolation of endosome fractions. Cell Biochem. Function 5: 235–243.CrossRefGoogle Scholar
  51. Murphy, R. F., 1985, Analysis and isolation of endocytic vesicles by flow cytometry and sorting: Demonstration of three kinetically distinct compartments involved in fluid phase endocytosis. Proc. Natl. Acad. Sci. U.S.A. 82: 8523–8526.PubMedCrossRefGoogle Scholar
  52. Odette, L. L., McCloskey, M. A., and Young, S. H., 1984, Ferritin conjugates as specific magnetic labels—implications for cell separation. Biophys. J. 45: 1219–1222.PubMedCrossRefGoogle Scholar
  53. Pearse, B., 1980, Coated vesicles. Trends Biochem. Sci. 5: 131–134.CrossRefGoogle Scholar
  54. Pfeffer, S. R., and Kelly, R. B., 1985, The subpopulation of brain coated vesicles that carries synaptic vesicle proteins contains two unique polypeptides. Cell 40: 949–957.PubMedCrossRefGoogle Scholar
  55. Phillips, R. E. H., and Richardson, P. J., 1986, The detection of the cholinergic ganglioside Chol-1 in rat brain using monoclonal antibodies. Biochem. Soc. Trans. 14: 765.Google Scholar
  56. Pontremoli, S., Diamine, G., Michetti, M., Salamino, F., Sparatore, B., and Honecker, B. L., 1984, Binding of monoclonal antibody to Cathepsin M located on the external surface of rabbit lysosomes. Arch. Biochem. Biophys. 233: 267–271.PubMedCrossRefGoogle Scholar
  57. Porter-Jordan, K., Benson, R. J. J., Buoniconti, P., and Fine, R. E., 1986, An acetylcholinesterase mediated density shift technique demonstrates that coated vesicles from chick myotubes may contain both newly synthesised acetylcholinesterase and acetylcholine receptors. J. Neurosci. 6: 3112–3119.PubMedGoogle Scholar
  58. Reijnierse, L. A., Velstra, H., and Van den Berg, C. J., 1975, Subcellular localization of γ- aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain. Biochem. J. 152: 469–475.PubMedGoogle Scholar
  59. Richardson, P. J., 1986, Choline uptake and metabolism in affinity purified cholinergic nerve terminals from rat brain. J. Neurochem. 46: 1251–1255.PubMedCrossRefGoogle Scholar
  60. Richardson, P. J., Siddle, K., and Luzio, J. P., 1984, Immunoaffinity purification of intact, meta-bolically active, cholinergic nerve terminals from mammalian brain. Biochem. J. 219: 647–654.PubMedGoogle Scholar
  61. Roman, L. R., and Hubbard, A. L., 1984, A domain specific marker for the hepatocyte plasma membrane. III. Isolation of bile canalicular membrane by immunoadsorption. J. Cell Biol. 98: 1497–1504.PubMedCrossRefGoogle Scholar
  62. Ryan, J. W., and Smith, U., 1971, A rapid simple method for isolating pinocytotic vesicles and plasma membrane of lung. Biochim. Biophys. Acta 249: 177–180.PubMedCrossRefGoogle Scholar
  63. Schneider, C., Newman, R. A., Sutherland, D. R., Asser, V., and Greaves, M. F., 1982, A one step purification of membrane proteins using a high efficiency immunomatrix. J. Biol. Chem. 257: 10766–10769.PubMedGoogle Scholar
  64. Sharp, K. A., Yalpani, M., Howard, S. J., and Brooks, D. E., 1986, Synthesis and application of a polyethylene-glycol-antibody affinity ligand for cell separations in aqueous two phase systems. Anal. Biochem. 154: 110–117.PubMedCrossRefGoogle Scholar
  65. Siddle, K., and Soos, M., 1981, Monoclonal antibodies for human pituitary. In Monoclonal Antibodies and Developments in Immunoassay (Siddle, K., and Soos, M., eds.), pp. 53–66, Elsevier, Amsterdam.Google Scholar
  66. Stanley, K. K., and Luzio, J. P., 1984, EMBO J. 3: 1429–1434.PubMedGoogle Scholar
  67. Stanley, K. K., Newby, A. C., and Luzio, J. P., 1982, What do ectoenzymes do? Trends Biochem. Sci. 7: 145–147.CrossRefGoogle Scholar
  68. Tooze, S.A., and Stanley, K. K., 1986, The identification of two epitopes in the carboxyterminal 15 amino acids of the El glycoprotein of MHV-A59 using hybrid proteins. J. Virol. 60: 928–934.PubMedGoogle Scholar
  69. Ugelstadt, J., Soderberg, L., Berge, A., and Bergstrom, J., 1983, Monodisperse polymer particles—a step forward for chromatography. Nature 303: 95–96.CrossRefGoogle Scholar
  70. Walsh, F. S., Barber, B. H., and Crumpton, M. J., 1976, Preparation of inside-out vesicles of pig lymphocyte plasma membrane. Biochemistry 15: 3557–3563.PubMedCrossRefGoogle Scholar
  71. Westwood, S. A., Luzio, J. P., Flockhart, D. A., and Siddle, K., 1979, Investigation of the subcellular distribution of cyclic AMP phosphodiesterase in rat hepatocytes, using a rapid immunological procedure for the isolation of plasma membrane. Biochim. Biophys. Acta 583: 454–466.PubMedCrossRefGoogle Scholar
  72. Whittaker, V. P., 1984, The synaptosome. In Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 7, pp. 1–30, Plenum Press, New York.Google Scholar
  73. Young, R. A., and Davis, R. Z., 1983, Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. U.S.A. 80: 1194–1198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Peter J. Richardson
    • 1
  • J. Paul Luzio
    • 1
  1. 1.Department of Clinical BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations