Advertisement

Molecular Characteristics of the Blood Group Rho(D) Molecule

  • Carl G. Gahmberg
Part of the Subcellular Biochemistry book series (SCBI, volume 12)

Abstract

Already in the seventeenth century jaundice of newborn infants had been described. The condition was first thought to be similar to that of adults, which often was due to occlusion of the bile ducts. The fact, however, that there often were several cases in the same family argued against this view (Clarke, 1982).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, R. E., and Schachter, D., 1976, Inactivation of the Rho(D) antigen of intact human erythrocytes by glutathione maleimide. J. Biol. Chem. 251: 7176–7183.PubMedGoogle Scholar
  2. Anderson, R. A., and Lovrien, R. E., 1984, Glycophorin is linked by band 4.1 protein to the human erythrocyte skeleton. Nature 307: 655–658.PubMedGoogle Scholar
  3. Anderson, R. A., and Marchesi, V. T., 1985, Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature 318: 295–298.PubMedGoogle Scholar
  4. Andersson, L. C., Gahmberg, C. G., Teerenhovi, L., and Vuopio, P., 1979, Glycophorin A as a marker for early erythroid differentiation in acute leukemia. Int. J. Cancer 24: 717–720.PubMedGoogle Scholar
  5. Ballas, S. K., Clark, M. R., Mohandas, N., Colfer, H. F., Caswell, M. S., Bergren, M. O., Perkins, H. A., and Shohet, S. B., 1984, Red cell membrane and cation deficiency in Rh null syndrome. Blood 63: 1046–1055.PubMedGoogle Scholar
  6. Bennett, V., and Stenbuck, P. J., 1980, Human erythrocyte ankyrin. J. Biol. Chem. 255: 2540–2548.PubMedGoogle Scholar
  7. Bretscher, M. S., 1972, Asymmetrical lipid bilayer structure for biological membranes. Nature New Biol. 236: 11–12.PubMedGoogle Scholar
  8. Brock, C. J., Tanner, M. J. A., and Kempf, C., 1983, The human erythrocyte anoin-transport protein. Biochem. J. 213: 577–586.PubMedGoogle Scholar
  9. Brown, P. J., Evans, J. P., Sinor, L. T., Tilzer, L. T., and Plapp, F. V., 1983, The rhesus D antigen. A dicyclohexyl-carbodiimide-binding proteolipid. Am. J. Pathol. 110: 127–134.PubMedGoogle Scholar
  10. Cabantchik, Z. I., and Rothstein, A., 1974, Membrane protein related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol. 15: 207–226.PubMedGoogle Scholar
  11. Clarke, C. A., 1982, Rhesus haemolytic disease of the newborn and its prevention. Historical annotation. Br. J. Haematol. 52: 525–535.PubMedGoogle Scholar
  12. Clarke, C. A., Finn, R., McConnell, R. B., and Sheppard, P. M, 1958, The protection afforded by ABO incompatibility against erythroblastosis due to rhesus anti-D. Int. Arch. Allergy 13: 380.Google Scholar
  13. Clarke, C. A., Donohoe, W. T. A., McConnell, R. B., Woodrow, J. C., Finn, R., Krevans, J. R., Kulke, W., Lehane, D., and Sheppard, P. M., 1963, Further experimental studies on the prevention of Rh haemolytic disease. Br. Med. J. i: 979–984.Google Scholar
  14. Colin, Y., Rahuel, C., London, J., Roméo, P.-H., d’Auriol, L., Galibert, F., and Cartron, J.-P., 1986, Isolation of cDNA clones and complete amino acid sequence of human erythorocyte C. J. Biol. Chem. 261: 229–233.PubMedGoogle Scholar
  15. Correas, I., Leto, T. L., Speicher, D. W., and Marchesi, V. T., 1986, Identification of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations. J. Biol. Chem. 261: 3310–3315.PubMedGoogle Scholar
  16. Crawford, D. H., Barlow, M. J., Harrison, J. F., Winger, L., and Huehns, E. R., 1983, Production of human monoclonal antibody to rhesus D antigen. Lancet i: 386–388.Google Scholar
  17. Cunningham, N. A., Zola, A. P., Hui, H. L., Taylor, L. M., and Green, R. A., 1985, Binding characteristics of anti-Rho(D) antibodies to Rho(D)-positive and Du red cells. Blood 66: 765–768.PubMedGoogle Scholar
  18. Dahr, W., Uhlenbruck, G., Janssen, E., and Schmalisch, R., 1977, Different N-terminal amino acids in the MN glycoproteins from MM and NN erythrocytes. Hum. Genet. 35: 335–343.PubMedGoogle Scholar
  19. Darrow, R., 1938, Icterus gravis (erythroblastosis) neonatorum. Arch. Pathol. 25: 378–417.Google Scholar
  20. Ekblom, M., Gahmberg, C. G., and Andersson, L. C., 1985, Late expression of M and N antigens on glycophorin A during erythroid differentiation. Blood 66: 233–236.PubMedGoogle Scholar
  21. Evans, J. P., Sinor, L. T., Brown, P. J., Tilzer, L. L., and Plapp, F. V., 1982, Identification of Rho(D) antigen in Polyacrylamide gels by an enzyme-linked immunoassay. Mol. Immunol. 19: 671–675.PubMedGoogle Scholar
  22. Evans, J. P., Brown, P. J., Sinor, L. T., Tilzer, L. L., Beck, M., and Plapp, F. V., 1983. Detection of an antigen on the inner surface of Rh negative erythrocytes which binds anti-D IgG. Mol. Immunol. 20: 529–536.PubMedGoogle Scholar
  23. Falkenburg, J. H. F., Fibbe, W. E., van der Vaart-Duinkerken, N., Nichols, M. E., Rubinstein, P., and Jansen, J., 1985, Human erythroid progenitor cells express rhesus antigens. Blood 66: 660–663.PubMedGoogle Scholar
  24. Finn, R., 1960, Erythroblastosis. Lancet i: 526.Google Scholar
  25. Finn, R., Clarke, C. A., Donohoe, W. T. A., McConnell, R. B., Sheppard, P. M., Lehane, D., and Kulke, W., 1961, Experimental studies on the prevention of Rh haemolytic disease. Br. Med. J. i: 1486–1490.Google Scholar
  26. Finne, J., 1980, Identification of the blood-group ABH-active glycoprotein components of human erythrocyte membrane. Eur. J. Biochem. 104: 181–189.PubMedGoogle Scholar
  27. Folkerd, E. J., Ellory, J. C., and Hughes-Jones, N. C., 1977, A molecular size determination of Rh(D) antigen by radiation inactivation. Immunochemistry 14: 529–531.PubMedGoogle Scholar
  28. Freda, V. J., Gorman, J. G., and Pollack, W., 1964, Successful prevention of experimental Rh sensitisation in man with an anti-Rh gammaglobulin antibody preparation. Transfusion 4: 26–32.PubMedGoogle Scholar
  29. Fukuda, M., Fukuda, M. N., and Hakomori, S., 1979, Developmental change and genetic defect in the carbohydrate structure of band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 254: 5458–5465.PubMedGoogle Scholar
  30. Furthmayr, H., 1978, Structural comparison of glycophorins and immunochemical analysis of genetic variants. Nature 271: 519–524.PubMedGoogle Scholar
  31. Gahmberg, C. G., 1976, External labeling of erythrocyte glycoproteins. Studies with galactose oxidase and fluorography. J. Biol. Chem. 251: 510–515.PubMedGoogle Scholar
  32. Gahmberg, C. G., 1982, Molecular identification of the human Rho(D) antigen. FEBSLett. 140: 93–97.Google Scholar
  33. Gahmberg, C. G., 1983, Molecular characterization of the human red cell Rho(D) antigen. EMBO J. 2: 223–227.PubMedGoogle Scholar
  34. Gahmberg, C. G., and Hakomori, S., 1973, External labeling of cell surface galactose and galac-tosamine in glycolipid and glycoprotein of human erythrocytes. J. Biol. Chem. 248: 4211–4317.Google Scholar
  35. Gahmberg, C. G., and Karhi, K. K., 1984, Association of Rh„(D) polypeptides with the membrane skeleton in Rho(D)-positive human red cells. J. Immunol. 133:334–337.PubMedGoogle Scholar
  36. Gahmberg, C. G., and Karhi, K. K., 1986, Chemistry of ABH/Ii, MN/Ss, and Rho(D) blood group-active proteins of the human red-cell membrane. In Receptors in Cellular Recognition and Developmental Processes (Gahmberg, C. G., and Karhi, K. K., ed.), pp. 251–266, Academic Press, New York.Google Scholar
  37. Gahmberg, C. G., Myllylä, G., Leikola, J., Pirkola, A., and Nordling, S., 1976, Absence of the major sialoglycoprotein in the membrane of human En(a-) erythrocytes and increased glycosylation of band 3. J. Biol. Chem. 251: 6108–6116.PubMedGoogle Scholar
  38. Gahmberg, C. G., Jokinen, M., and Andersson, L. C., 1978, Expression of the major sialoglycoprotein (glycophorin) on erythroid cells in human bone marrow. Blood 52: 379–387.PubMedGoogle Scholar
  39. Gahmberg, C. G., Jokinen, M., and Andersson, L. C., 1979, Expression of the major red cell sialoglycoprotein, glycophorin A, in the human leukemic cell line K562. J. Biol. Chem. 254: 7442–7448.PubMedGoogle Scholar
  40. Gahmberg, C. G., Jokinen, M., Karhi, K. K., and Andersson, L. C., 1980. Effect of tunicamycin on the biosynthesis of the major human red cell sialoglycoprotein, glycophorin A, in the leukemia cell line K562. J. Biol. Chem. 255: 2169–2175.PubMedGoogle Scholar
  41. Gahmberg, C. G., Jokinen, M., Karhi, K. K., Kämpe, O., Peterson, P. A., and Andersson, L. C., 1983, Glycophorin A, in vitro biogenesis and processing. Methods Enzymol. 96: 281–298.PubMedGoogle Scholar
  42. Gahmberg, C. G., Ekblom, M., and Andersson, L. C., 1984, Differentiation of human erythroid cells is associated with an increased O-glycosylation of the major sialoglycoprotein, glycophorin A. Proc. Natl. Acad. Sci. U.S.A. 81: 6752–6756.PubMedGoogle Scholar
  43. Gahmberg, C. G., Ekblom, M., and Andersson, L. C., 1986, Markers of normal and malignant erythroid differentiation: Role in clinical practice. In Tumour Markers: Concepts and Applications (Gahmberg, C. G., Ekblom, M., and Andersson, L. C., ed.), pp. 379–429, Blackwell Scientific, Oxford.Google Scholar
  44. Greaves, M. F., Sieff, C., and Edwards, P. A. W., 1983, Monoclonal antiglycophorin as a probe for erythroleukemias. Blood 61: 645–651.PubMedGoogle Scholar
  45. Green, F. A., 1965, Studies on the Rh(D) antigen. Vox Sang. 10: 32–53.PubMedGoogle Scholar
  46. Green, F. A., 1972, Erythrocyte membrane lipids and Rh antigen activity. J. Biol. Chem. 247: 881–887.PubMedGoogle Scholar
  47. Green, F. A., Owens, N. A., Hui, J. L., Jung, C. Y., and Cuppoletti, J., 1983, Molecular size of the Rho(D) antigen of the human erythrocyte in situ by radiation inactivation. Mol. Immunol. 20: 361–365.PubMedGoogle Scholar
  48. Hadley, T. J., David, P. H., McGinniss, M. H., and Miller, L. H., 1984, Identification of an erythrocyte component carrying the Duffy blood group Fya antigen. Science 223: 597–599.PubMedGoogle Scholar
  49. Hakomori, S., 1981, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu. Rev. Biochem. 50: 733–764.PubMedGoogle Scholar
  50. Hakomori, S., and Kobata, A., 1975, Blood group antigens. In The Antigens (M. Sela, ed.), Vol. 2, p. 80, Academic Press, New York.Google Scholar
  51. Helenius, A., and Simons, K., 1975, Solubilization of membranes by detergents. Biochim. Biophys. Acta 415: 29–79.PubMedGoogle Scholar
  52. Issitt, P. D., 1986, Biochemistry of the Rh blood group system. In Recent Advances in Blood Group Biochemistry (Issitt, P. D., eds.), pp. 105–138, American Association of Blood Banks, Arlington, VA.Google Scholar
  53. Jay, D. G., 1986, Glycosylation site of band 3, the human erythrocyte anion-exchange protein. Biochemistry 25: 554–556.PubMedGoogle Scholar
  54. Järnefelt, J., Rush, J., Li, Y.-T., and Laine, R. A., 1978, Erythroglycan, a high molecular weight glycopeptide with the repeating structure (galactosyl(1–4)-2-deoxy-2-acetamidoglucosyl(1–3)) comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stroma. J. Biol. Chem. 253: 8006–8009.PubMedGoogle Scholar
  55. Jokinen, M., Andersson, L. C., and Gahmberg, C. G., 1985, Biosynthesis of the major human red cell sialoglycoprotein, glycophorin A. O-glycosylation. J. Biol. Chem. 260: 11314–11321.PubMedGoogle Scholar
  56. Jokinen, M., Gahmberg, C. G., and Andersson, L. C., 1979, Biosynthesis of the major human red cell sialoglycoprotein, glycophorin A, in a continuous cell line. Nature 279: 604–607.PubMedGoogle Scholar
  57. Jokinen, M., Ulmanen, I., Andersson, L. C., Kääriäinen, L., and Gahmberg, C. G., 1981, Cell-free synthesis and glycosylation of the major human red cell sialoglycoprotein, glycophorin A. Eur. J. Biochem. 114: 393–397.PubMedGoogle Scholar
  58. Karhi, K. K., and Gahmberg, C. G., 1980, Identification of blood group A-active glycoproteins in the human erythrocyte membrane. Biochim. Biophys. Acta 622: 344–354.PubMedGoogle Scholar
  59. Karhi, K. K., Andersson, L. C., Vuopio, P., and Gahmberg, C. G., 1981, Expression of blood group A antigens in human bone marrow cells. Blood 57: 147–151.PubMedGoogle Scholar
  60. Kleeman, J. E., Masouredis, S. P., and Victoria, E. J., 1982, Exposure of the Rho(D) antigen on the surface and cytoplasmic domains of the red cell membrane. Immunology 45: 27–30.PubMedGoogle Scholar
  61. Kopito, R. R., and Lodish, H. F., 1985, Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–238.PubMedGoogle Scholar
  62. Krusius, T., Finne, J., and Rauvala, H., 1978, The poly(glycosyl) chains of glycoproteins. Characterization of a novel type of glycoprotein saccharides from human erythrocyte membranes. Eur. J. Biochem. 92: 289–300.PubMedGoogle Scholar
  63. Kuypers, F., van Linde-Sibenius-Trip, M., Roelofsen, B., Tanner, M. J. A., Anstee, D. J., and Opden Kamp, J. A. F., 1984, Rhnull human erythrocytes have an abnormal membrane phospholipid organization. Biochem. J. 221: 931–934.PubMedGoogle Scholar
  64. Lampio, A., Finne, J., Homer, D., and Gahmberg, C. G., 1984, Exposure of the major human red cell glycolipid, globoside, to galactose oxidase. Eur. J. Biochem. 145: 77–82.PubMedGoogle Scholar
  65. Lampio, A., Rauvala, H., and Gahmberg, C. G., 1986, Exposure of major neutral glycolipids in red cells to galactose oxidase. Effect of neuraminidase. Eur. J. Biochem. 157: 611–616.PubMedGoogle Scholar
  66. Landsteiner, K., and Wiener, A. S., 1940, An agglutinable factor in human blood recognised by immune sera for rhesus blood. Proc. Soc. Exp. Biol. Med. 43: 223.Google Scholar
  67. Lauf, P. K., and Joiner, C. H., 1976, Increased potassium transport and ouabain binding in human Rhnull red blood cells. Blood 48: 457–468.PubMedGoogle Scholar
  68. Lee, J. S., Trowsdale, J., and Bodener, W. F., 1980, Synthesis of HLA antigens from membrane-associated messenger RNA. J. Exp. Med. 152: 3S-10S.Google Scholar
  69. Levine, P., 1943, Serological factors as possible causes in spontaneous abortions. J. Hered. 34: 71–80.Google Scholar
  70. Levine, P., and Stetson, R. E., 1939, An unusual case of intragroup agglutination. J. Am. Med. Assoc. 113: 126–127.Google Scholar
  71. Levine, P., Burnham, L., Katzin, W. M., and Vogel, P., 1941, The role of iso-immunization in the pathogenesis of erythroblastosis fetalis. Am. J. Obstet. Gynecol. 42: 925–937.Google Scholar
  72. Levine, P., Tripodi, D., Struck, J., Jr., Zmijewski, C. M., and Pollack, W., 1973, Hemolytic anemia associated with Rhnull but not with Bombay blood. Vox Sang. 24: 417–424.PubMedGoogle Scholar
  73. Litten, J., Culpepper, R., and Bakerman, S., 1978, Studies on the characterization of the Rho(D) antigen. Biochem. Biophys. Acta 543: 226–234.PubMedGoogle Scholar
  74. Lorusso, D. J., and Green, F. A., 1975, Reconstitution of Rh(D) antigen activity from human erythrocyte membranes solubilized by deoxycholate. Science 188: 66–67.PubMedGoogle Scholar
  75. Mäkelä, O., and Cantell, K., 1958, Destruction of M and N blood group receptor of human red cells by some influenza viruses. Ann. Med. Exp. Biol. Fenn. 36: 366–374.Google Scholar
  76. Mallinson, G., Martin, P. G., Anstee, D. J., Tanner, M. J. A., Merry, A. H., Tills, D., and Sonneborn, H. H., 1986, Identification and partial characterization of the human erythrocyte membrane component(s) that express the antigens of the LW blood-group system. Biochem. J. 234: 649–652.PubMedGoogle Scholar
  77. Marchesi, V. T., 1983, The red cell membrane skeleton: Recent progress. Blood 61: 1–11.PubMedGoogle Scholar
  78. Marchesi, V. T., Furthmayr, H., and Tomita, M., 1976, The red cell membrane. Annu. Rev. Biochem. 45: 667–698.PubMedGoogle Scholar
  79. Masouredis, S. P., Sudora, E. J., Mahan, L., and Victoria, E. J., 1976, Antigen site densities and ultrastructural distribution patterns of red cell Rh antigens. Transfusion 16: 94–106.PubMedGoogle Scholar
  80. Mawby, W. J., and Findlay, J. B. C., 1983, Characterization and partial sequences of di-iodosulphophenyl siothiocyanate-binding peptide from human erythrocyte anion-transport protein. Biochem. J. 205: 465–475.Google Scholar
  81. Moore, S., 1983, Identification of red cell membrane components associated with rhesus blood group antigen expression. In Red Cell Membrane Glycoconjugates and Related Genetic Markers (Moore, S., eds.), pp. 97–106. Librarire Arnette, Paris.Google Scholar
  82. Moore, S., Woodrow, C. F., and McClelland, D. B. L., 1982, Isolation of membrane components associated with human red cell antigens Rh(D), (c), (E) and Fya. Nature 295: 529–531.PubMedGoogle Scholar
  83. Mueckler, M., and Lodish, H. F., 1986, The human glucose transporter can insert posttranslationally into microsomes. Cell 44: 629–637.PubMedGoogle Scholar
  84. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F., 1985, Sequence and structure of a human glucose transporter. Science 229: 941–945.PubMedGoogle Scholar
  85. Nevanlinna, H. R., and Vainio, T., 1956, The influence of mother-child ABO incompatibility on Rh immunisation. Vox Sang. 1: 26–36.Google Scholar
  86. Nigg, E. A., Bron, C., Girardet, M., and Cherry, R. J., 1980, Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross-linking. Biochemistry 19: 1887–1892.PubMedGoogle Scholar
  87. Owen, M. J., Kissonerghis, A. M., and Lodish, H. F., 1980, Biosynthesis of HLA-A and HLA-B antigen in vivo. J. Biol. Chem. 255: 9678–9684.PubMedGoogle Scholar
  88. Paradis, G., Bazin, R., and Lemieux, R., 1986, Protective effect of the membrane skeleton on the immunologic reactivity of the human red cell Rho(D) antigen. J. Immunol. 137: 240–244.PubMedGoogle Scholar
  89. Parker, J. C., and Berkowitz, L. R., 1986, Genetic variants affecting the structure and function of the human red cell membrane. In Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, J. C. Parker, L. R. Berkowitz, D. D. Fanestil, and S. G. Schultz, eds.), pp. 785–814, Plenum Press, New York.Google Scholar
  90. Plapp, F. V., Evans, J. P., and Tilzer, L. L., 1981, Detection of Rho(D) antigen on the inner surface of Rh negative erythrocyte membranes. Fed. Proc. 40: 208.Google Scholar
  91. Plapp, F. V., Kowalski, M. M., Tilzer, L., Brown, P. J., Evans, J., and Chiga, M., 1979, Partial purification of Rho(D) antigen from Rh positive and negative erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 76: 2964–2968.PubMedGoogle Scholar
  92. Ploegh, H. L., Cannon, L. E., and Strominger, J. L., 1979, Cell-free translation of the mRNAs for the heavy and light chains of HLA-A and HLA-B antigens. Proc Natl. Acad. Sci. U.S.A. 76: 2273–2277.PubMedGoogle Scholar
  93. Race, R. R., and Sanger, R., 1950, Blood Groups in Man, pp. 234–236, Blackwell Scientific, Oxford.Google Scholar
  94. Rearden, A., and Chiu, P., 1983, Lack of rhesus antigen expression by human committed erythroid progenitors. Blood 61: 525–529.PubMedGoogle Scholar
  95. Rearden, A., and Masouredis, S. P., 1981, Protease modification enhances anti-D binding to nucleated red blood cell precursors. Vox Sang. 41: 160–164.PubMedGoogle Scholar
  96. Redman, C. M., Avellino, G., Pfeffer, S. R., Mukherjee, T. K., Nichols, M., Rubinstein, P., and Marsh, W. L., 1986, Kell blood group antigens are part of a 93,000-dalton red cell membrane protein. J. Biol. Chem. 261: 9521–9525.PubMedGoogle Scholar
  97. Ridgwell, K., Roberts, S. J., Tanner, M. J. A., and Anstee, D. J., 1983, Absence of two membrane proteins containing extracellular thiol groups in Rhnull human erythrocytes. Biochem. J. 213: 267–269.PubMedGoogle Scholar
  98. Ridgwell, K., Tanner, M. J. A., and Anstee, D. J., 1984, The rhesus (D) polypeptide is linked to the human erythrocyte cytoskeleton. FEBS Lett. 174: 7–10.PubMedGoogle Scholar
  99. Robinson, J., Sieff, C., Delia, D., Edwards, P. A. W., and Greaves, M., 1981, Expression of cell-surface HLA-DR, HLA-ABC and glycophorin during erythroid differentiation. Nature 289: 68–71.PubMedGoogle Scholar
  100. Sege, K., Rask, L., and Peterson, P. A., 1981, Role of β2-microglobulin in the intracellular processing of HLA antigens. Biochemistry 20: 4523–4530.PubMedGoogle Scholar
  101. Shaklai, N., Yguerabide, J., and Ranney, H. M., 1977, Classification and localization of hemoglobin binding sites on the red blood cell membrane. Biochemistry 16: 5593–5597.PubMedGoogle Scholar
  102. Shapiro, D. L., and Marchesi, V. T., 1977, Phosphorylation in membranes of intact human erythrocytes. J. Biol. Chem. 252: 508–517.PubMedGoogle Scholar
  103. Siebert, P. D., and Fukuda, M., 1986, Isolation and characterization of human glycophorin A cDNA clones by a synthetic oligonucleotide approach: Nucleotide sequence and mRNA structure. Proc. Natl. Acad. Sci. U.S.A. 83: 1665–1669.PubMedGoogle Scholar
  104. Sieff, C., Bicknell, D., Caine, G., Robinson, J., Lam, G., and Greaves, M. F., 1982, Changes in cell surface antigen expression during hemopoietic differentiation. Blood 60: 703–713.PubMedGoogle Scholar
  105. Sinor, L. T., Brown, P. J., Evans, J. P., and Plapp, F. V., 1984, The Rh antigen specificity of erythrocyte proteolipid. Transfusion 24: 179–180.PubMedGoogle Scholar
  106. Springer, G. F., and Ansell, N. J., 1958, Inactivation of human erythrocyte agglutinogens M and N by influenza viruses and receptor-destroying enzyme. Proc. Natl. Acad. Sci. U.S.A. 44: 182–189.PubMedGoogle Scholar
  107. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane. A review. J. Cell Biol. 62: 1–19.PubMedGoogle Scholar
  108. Steck, T. L., and Dawson, G., 1974, Topographical distribution of complex carbohydrates in the erythrocyte membrane. J. Biol. Chem. 249: 2135–2142.PubMedGoogle Scholar
  109. Stern, K., and Berger, M., 1960, Experimental isosensitization to hemoantigens in man. Paper given at the 13th Annual Meeting of the American Association of Blood Banks, San Francisco.Google Scholar
  110. Strapazon, E., and Steck, T. L., 1976, Binding of rabbit muscle aldolase to band 3, the predominant polypeptide of the human erythrocyte membrane. Biochemistry 15: 1421–1424.PubMedGoogle Scholar
  111. Sturgeon, P., 1970, Hematological observations in the anemia associated with blood type Rhnull. Blood 36: 310–320.PubMedGoogle Scholar
  112. Takakuwa, Y., Tchernia, G., Rossi, M., Benabadji, M., and Mohandas, N., 1986, Restoration of normal membrane stability to unstable protein 4.1-deficient erythrocyte membranes by incorporation of purified protein. 4.1. J. Clin. Invest. 78: 80–85.PubMedGoogle Scholar
  113. Tchernia, G., Mohandas, N., and Shohet, B., 1981, Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis: Implications for erythrocyte membrane stability. J. Clin. Invest. 68: 454–460.PubMedGoogle Scholar
  114. Tomita, M., and Marchesi, V. T., 1975, Amino acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc. Natl. Acad. Sci. U.S.A. 72: 2964–2968.PubMedGoogle Scholar
  115. Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Confucius, P., Kastelijn, D., and van Deenen, L. L. M., 1973, The asymmetric distribution of phospholipids in the human red cell membrane. Biochim. Biophys. Acta 323: 178–193.PubMedGoogle Scholar
  116. Victoria, E. J., Mahan, L. C., and Masouredis, S. P., 1981, Anti-Rho(D) binds to band 3 glycoprotein of the human erythrocyte membrane. Proc. Natl. Acad. Sci. U.S.A. 78: 2898–2902.PubMedGoogle Scholar
  117. Vos, G. H., Vos, D., Kirk, R. L., and Sanger, R., 1961, A sample of blood with no detectable Rh antigens. Lancet i: 14–15.Google Scholar
  118. Wasniowska, K., Drzeniek, Z., and Lisowska, E., 1977, The amino acids of M and N blood group glycopeptides are different. Biochem. Biophys. Res. Commun. 76: 385–390.Google Scholar
  119. Wiener, A. S., and Peters, H. R., 1940, Hemolytic reactions following transfusions of blood of the homologous group, with three cases in which the same agglutinogen was responsible. Ann. Intern. Med. 13: 2306–2322.Google Scholar
  120. Yu, J., and Steck, T. L., 1975, Associations of band 3, the predominant polypeptide of the human erythrocyte membrane. J. Biol. Chem. 250: 9176–9184.Google Scholar
  121. Yurchenko, P. D., and Furthmayr, H., 1980, Expression of red cell membrane proteins in erythroid precursor cells. J. Supramol. Struct. 13: 255–269.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Carl G. Gahmberg
    • 1
  1. 1.Gahmberg Department of BiochemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations