Skip to main content

Intracellular Parasites

New Developments in Chemotherapy

  • Chapter
Intracellular Parasites

Part of the book series: Subcellular Biochemistry ((SCBI,volume 18))

Abstract

Intracellular protozoan parasites cause many of the most severe and widespread diseases of man, particularly malaria, leishmaniasis, Chagas’ disease, and toxoplasmosis. This chapter will summarize some recent advances in the chemotherapy of these diseases, which have received considerable attention in earlier chapters of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa, M., 1972, High-resolution autoradiography of malarial parasites treated with 3H-chloro-quine, Am. J. Pathol. 67:277–280.

    PubMed  CAS  Google Scholar 

  • Allahyari, R., Strother, A., Fraser, I. M., and Verbiscar, A. J., 1984, Synthesis of certain hydroxy analogs of the antimalarial drug priamquine and their in vitro methemoglobin-producing and glutathione-depleting activity in human erythrocytes, J. Med. Chem. 27:407–410.

    Article  PubMed  CAS  Google Scholar 

  • Allegra, C., Boarman, J. D., Kovacs, J. A., Morrison, P., Beaver, J., Chabner, B. A., and Masur, H., 1990, Interaction of sulfonamide and sulfone compounds with Toxoplasma gondii dihydropteroate synthase, J. Clin. Invest. 85:371–379.

    Article  PubMed  CAS  Google Scholar 

  • Avila, J. L., and Avila, A., 1981, Trypanosoma cruzi: Allopurinol in the treatment of mice with experimental acute Chagas disease, Exp Parasitol. 51:204–28.

    Article  PubMed  CAS  Google Scholar 

  • Avila, J. L., Avila, A., and Monzon, H., 1984, Differences in allopurinol and 4-aminopyrazolo (3,4-d)pyrimidine metabolism in drug sensitive and insensitive strains of Trypanosoma cruzi, Mol. Biochem. Parasitol. 11:51–60.

    Article  PubMed  CAS  Google Scholar 

  • Avila, J. L., Avila, A., and Munoz, E., 1981, Effect of allopurinol on different strains of Trypanosoma cruzi, Am. J. Trop. Med. Hyg. 30:769–774.

    PubMed  CAS  Google Scholar 

  • Bass, G. E., Hudson, D. R., Parker, J. E., and Purcell, W. P., 1971, Mechanism of antimalarial activity of chloroquine analogs from quantitative structure-activity studies. Free enery related model, J. Med. Chem. 14:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Bates, M. D., Meshnick, S. R., Sigler, C. I., Leland, P., and Hollingdale, M. R., 1990, In vitro effects of primaquine and primaquine metabolites on exoerythrocytic stages of Plasmodium berghei, Am. J. Trop. Med. Hyg. 42:532–537.

    PubMed  CAS  Google Scholar 

  • Berens, R. L., and Nelson, D. J., 1981, Purine metabolism in T. cruzi, Mol. Biochem. Parasitol. 3:187–196.

    Article  PubMed  CAS  Google Scholar 

  • Berens, R. L., Marr, J. J., Nelson, D. J., and LaFon, S. W., 1980, Antileishmanial effect of allopurinol and allopurinol ribonucleoside on the intracellular forms of Leishmani donovani: Biology and biochemical action, Biochem. Pharmacol. 29:2397–2402.

    Article  PubMed  CAS  Google Scholar 

  • Berens, R. L., Marr, J. J., da Cruz, F. S., and Nelson, D. J., 1989, Effect of allopurinol on Trypanosoma cruzi: Metabolism and biological activity in intracellular and blood stream forms, Antimicrob. Agents Chemother. 22:657–661.

    Article  Google Scholar 

  • Berens, R. L., Marr, J. J., LaFon, S. W., and Nelson, D. J., 1981b, Purine metabolism in Trypanosoma cruzi, Mol. Biochem. Parasitol. 3:187–197.

    Article  PubMed  CAS  Google Scholar 

  • Berens, R. L., Marr, J. J., Cruz, F. S., and Nelson, D. J., 1982, Metabolism of allopurinol by intracellular and bloodstream forms Trypanosoma cruzi, Antimicrob. Agents Chemother. 22:657–661.

    Article  PubMed  CAS  Google Scholar 

  • Bitonti, A. J., Sjoerdsma A., McCann, P. P., Kyle, D. E., Oduola, A. M. J., Rossan, R. N., Milhous, W. K., and Davidson, D. E., 1988, Reversal of chloroquine resistance in malaria parasite Plasmodium falciparum by desipramine, Science 242:1301–1303.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau, E. F., Webster, H. K., Pavanand, K., and Thosingha, L., 1982, Type II mefloquine-resistance in Thailand, Lancet 2:1335.

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge, A., Back, D. J., Edwards, I. G., Mihaly, G., Orme, M., Purba, H., and Ward, S., 1984, The clinical and biochemical pharmacology of primaquine, in Primaquine: Pharmacokinetics, Metabolism, Toxicity, and Activity (W. H. Wernsdorfer and P. I. Trigg, eds.), pp. 65–76, Wiley, New York.

    Google Scholar 

  • Brener, Z., 1982, Recent developments in the field of Chagas’ disease, Bull. WHO 60:463–473.

    PubMed  CAS  Google Scholar 

  • Brossi, A., Venugopaplan, B., Gerpe, L. D., Yeh, H. J. C., Flippen-Anderson, J. L., Luo, X. D., Milhous, W., and Peters, W., 1988, Arteether, a new antimalarial drug: Synthesis and antimalarial properties, J. Med. Chem. 31:645–650.

    Article  PubMed  CAS  Google Scholar 

  • Bueding, E., and Mansour, J. M., 1957, The relationship between inhibition of PFK activity and the mode of action of trivalent organic antimonials on Schistosoma mansoni, Br. J. Pharmacol. 12:159–163.

    CAS  Google Scholar 

  • Carson, P. E., 1984, 8-Aminoquinolines, in Antimalarial Drugs II (W. Peters and W. H. G. Richards, eds.), pp. 83–121, Springerr Verlag, Berlin.

    Chapter  Google Scholar 

  • Ceron, C. R., Caldas, R. D. A., Felix, C. R., Mimdim, M. H., and Roitman, I., 1979, Purine metabolism in trypanosomatids, J. Protozool. 26:479–483.

    PubMed  CAS  Google Scholar 

  • Chen, G., 1948, Effects of arsenicals and antimonials on the activity of glycolytic enzymes in lysed preparations of Trypanosoma equiperdium, J. Inf. Dis. 82:226–231.

    Article  CAS  Google Scholar 

  • Chevli, R., and Fitch, C. D., 1982. The antimalarial drug mefloquine binds to membrane phospholipids, Antimicrob. Agents Chemother. 21:581–586.

    Article  PubMed  CAS  Google Scholar 

  • Chou, A. C., Chevli, R., and Fitch, C. D., 1980, Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites, Biochemistry 19:1543–1549.

    Article  PubMed  CAS  Google Scholar 

  • Clark, I. A., Chaudri, G., and Cowden, W. B., 1989, Some roles of free radicals in malaria, Free Radicals Biol. Med. 6:315–321.

    Article  CAS  Google Scholar 

  • Cruz, F. S., Marr, J. J., and Berens, R. L., 1980, Prevention of transfusion-induced Chagas’ disease by amphotericin B, Am. J. Trop. Med. Hyg. 29:761–765.

    PubMed  CAS  Google Scholar 

  • Davidson, M. W., Griggs, B. G., Boykin, D. W., and Wilson, W. D., 1977, Molecular structure effects involved in the interaction of quinolinemethanols with DNA. Implications for antimalarial action, J. Med. Chem. 20:1117–1122.

    Article  PubMed  CAS  Google Scholar 

  • Davies, C. S., Pudney, M., Matthews, P. J., and Sinden, R. E., 1989, The causal prophylactic activity of the novel hydroxynaphthaquinone 566C80 against Plasmodium berghei infections in rats, Acta Leiden. 58:115–128.

    PubMed  CAS  Google Scholar 

  • Docampo, R., and Moreno, S. N. J., 1984a, Free radical metabolites in the mode of action of chemotherapeutic agents and phagocytic cells on Trypanosoma cruzi, Rev. Infect. Dis. 6:223–238.

    Article  PubMed  CAS  Google Scholar 

  • Docampo, R., and Moreno, S. N. J., 1984b, Free radical intermediates in the trypanocidal action of drugs and phagocytes, in Oxygen Radicals in Chemistry and Biology (M. Saran and D. Tait, eds.), pp. 749–751, Walter de Gruyter, Berlin.

    Google Scholar 

  • Docampo, R., and Moreno, S. N. J., 1985, Biochemical toxicology of antiparasitic compounds used in the chemotherapy and chemoprophylaxis of American trypanosomiasis (Chagas’ disease), Rev. Biochem. Toxicol. 7:159–204.

    Google Scholar 

  • Editorial, 1989, Halofantrine in the treatment of malaria, Lancet 2:537–538.

    Google Scholar 

  • Estensen, R. D., Krey, A. K., and Hahn, F. E., 1969, Studies on a deoxyribonucleic acid-quinine complex, Mol. Pharmacol. 5:532–541.

    PubMed  CAS  Google Scholar 

  • Fairfield, A. S., Abosch, A. Ranz, A., Eaton, J. W, Meshnick, S. R., 1986a, Oxidative defense enzymes of Plasmodium falciparum, Mol. Biochem. Parasitol. 30:77–82.

    Article  Google Scholar 

  • Fairfield, A., Eaton, J. W., and Meshnick, SR., 1986b, Superoxide dismutase and catalase in the murine malaria Plasmodium berghei: Content and subcellular distribution, Arch. Biochem. Biophys. 250:526–629.

    Article  PubMed  CAS  Google Scholar 

  • Ferone, R., 1984, Dihydrofolate reductase inhibitors, in Antimalarial Drugs II (W. Peters and W. H. G. Richards, eds.), pp. 207–221, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Ferone, R., Burchall, J. I, and Hitchings, G. H., 1969, Plasmodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates, Mol. Pharmacol. 5:49–59.

    PubMed  CAS  Google Scholar 

  • Fitch, C. D., 1972, Chloroquine resistance in malaria: Drug binding and cross resistance patterns, J. Parasitol. 39:265–271.

    CAS  Google Scholar 

  • Fitch, C.D., 1986, Antimalarial schizonticide: Ferriprotoporphyrin IX interaction hypothesis, Parasitol. Today 2:330–331.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, C. D., Yunis, N. G., Chevli, R., and Gonzales, Y., 1974, High-affinity accumulation of chlroquine by mouse erythrocytes infected with Plasmodium berghei, J. Clin. Invest. 54:24–43.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. J., Kyle, D. E., Martin, R. K., Oduola, A. M., Forsyth, K., Kemp, D. J., and Cowman, A. F., 1990, Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum, Nature 345:255–258.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M. J., 1979, Oxidant damage mediates variant red cell resistance to malaria, Nature 280:245–247.

    Article  PubMed  CAS  Google Scholar 

  • Fritsch, G., and Jung, A., 1986, 14C-Desferrioxamine B: Uptake into erythrocytes infected with Plasmodium falciparum, Z. Parasitenkd. 72:709–713.

    Article  PubMed  CAS  Google Scholar 

  • Gallerano, R. H., Sosa, R. R., and Man, J. J., 1990, Therapeutic efficacy of allopurinol in patients with chronic Chagas’ disease, Am. J. Trop. Med. Hyg. 43:(2):146–158.

    Google Scholar 

  • Ginsburg, H., Kutner, S., Krugliak, M., and Cabantchik, Z. I., 1985, Characterizattion of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells, Mol. Biochem. Parasitol. 14:312–322.

    Article  Google Scholar 

  • Glader, B. E., and Conrad, M. E., 1973, Hemolysis by diphenylsulphones: Comparative effects of DDS and hydroxylamine-DDS, J. Lab. Clin. Med. 81:267–272.

    PubMed  CAS  Google Scholar 

  • Goldberg, D. E., Slater, A. F. G., Cerami, A., and Henderson, G. B., 1990, Hemoglobin degradation in the malaria parasite Plasmodium falciparum: An ordered process in a unique organelle, Proc. Natl. Acad. Sci. USA 87:2931–2953.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, L. G., and Page, J. E., 1943, A study of the eccretin of certain antimonials using a Polarographic procedure, Biochem. J. 37:198–205.

    PubMed  CAS  Google Scholar 

  • Grunberg, E., and Titsworth, E. H., 1973, Chemotherapeutic properties of heterocyclic compounds: Monocyclic compounds with five-membered rings, Annu. Rev. Microbiol. 27:317–346.

    Article  PubMed  CAS  Google Scholar 

  • Gu, H. M., Warhurst, D. C., and Peters, W., 1984, Uptake of pH]dihydroartemisinin by erythrocytes infected with Plasmodium falciparum in vitro, Trans. R. Soc. Trop. Med. Hyg. 78:265–270.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, W. E., and Coombs, G. H., 1977, Biochemistry of Parasitic Protozoa, University Park Press, Baltimore.

    Google Scholar 

  • Gutteridge, W. E., and Davies, M. J., 1981, Enzymes of purine salvage in Trypanosoma cruzi, FEBS Lett. 127:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, W. E., and Davies, M. J., 1982, Properties of the purine phosphoribosyltransferases of Trypanosoma cruzi, FEMS Microbiol. Lett. 13:207–212.

    Article  CAS  Google Scholar 

  • Gutteridge, W. E., and Gaborak, M., 1979, A re-examination of purine and pyrimidine synthesis in the three main forms of Trypanosoma cruzi, Int. J. Biochem. 10:415–422.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, W. E., Dave, D., Richards, W. H. G., 1979, Conversion of dihydroorotate to orotate in parasitic protozoa, Biochim. Biophys. Acta 582:390–401.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1989, Free Radicals in Biology and Medicine, Clarendon Press, Oxford.

    Google Scholar 

  • Hammond, D. J., and Gutteridge, W. E., 1984, Purine and pyrimidine metabolism in trypanosomatidae, Mol. Biochem. Parasitol. 13:243–261.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, D. J., Burchell, J. R., and Pudney, M., 1985, Inhibition of Pyrimidine biosynthesis de novo in Plasmodium Falciparum by 2-(4-â– +-butycycloyhexyl)-3-hydroxy-l, 4-naphthoquinone in vitro, Mol. Biochem. Parasitol. 14:97–109.

    Article  PubMed  CAS  Google Scholar 

  • Hatton, C. S., Peto, T. E., Bunch, C., Pasvol, G., Rusell, S. J., Singer, C. R., Edwards, G., and Winstanley, P., 1986, Frequency of severe neutropenia associated with amodiaquine prophylaxis against malaria, Lancet 1:411–414.

    Article  PubMed  CAS  Google Scholar 

  • Heppner, D. G., Hallaway, P. E., Kontoghiorghes, G. J., and Eaton, J. W., 1988, Antimalarial properties of orally active iron chelators, Blood 72:358–361.

    PubMed  CAS  Google Scholar 

  • Hernborg, A., 1985, Stevens-Johnson syndrome after mass prophylaxis with sulfadoxine for cholera in Mozambique, Lancet 2:1072–1073.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, C., and Peto, T. E., 1988, Deferoxamine inhibition of malaria is independent of host iron status, J. Exp. Med. 168:375–387.

    Article  PubMed  CAS  Google Scholar 

  • Hitchings, G. H., 1962, Daraprim as an antagonist of folic and folinic acids, Trans. R. Soc. Trop. Med. Hyg. 46:467–473.

    Article  Google Scholar 

  • Hjelm, M., and De Verdier, C. H., 1965, Biochemical effects of aromatic amines I. Methemoglobinemia, hemolysis, and Heinz body formation induced by 4,4′-diaminodiphenylsulfone, Biochem. Pharmacol. 14:1119–1128.

    Article  PubMed  CAS  Google Scholar 

  • Hoffheinz, W., and Meikli, B., 1984, Quinine and quinine analogs, in Antimalarial Drugs II (W. Peters and W. H. G. Richards, eds.), pp. 61–81, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Homewood, C. A., Warhurst, D. C., Peters, W., and Baggaley, V. C., 1972, Lysosomes, pH, and the antimalaria action of chloroquine, Nature 235:50–52.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, A. T., 1984, Lapinone, menoctone, hydroxyquinolinequinones and similar structures, in Antimalarial Drugs II (W. Peters and W. H. G. Richards, eds.), pp. 343–361, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Irvin, J. L., and Irvin, E. M., 1947, Spectrophotometric and Potentiometric evaluation of apparent acid dissociation exponents of various 4-aminoquinolines, J. Am. Chem. Soc. 69:1091–1099.

    Article  PubMed  CAS  Google Scholar 

  • Irvin, J. L., Irvin, E. M., and Parker, F. S., 1949, The interaction of antimalarials with nucleic acids, Science 110:426–428.

    Article  PubMed  CAS  Google Scholar 

  • Ke, O.-Y., Krug, E. C., Marr, J. J., and Berens, R. L., 1990, Inhibition of Toxoplasma gondii growth by qinghaosu and derivatives, Antimicrob. Agents Chemother. 34:1961–1965.

    Article  PubMed  CAS  Google Scholar 

  • Keystone, J. S., 1990, Prevention of malaria, Drugs 39:337–354.

    Article  PubMed  CAS  Google Scholar 

  • Klaasen, C. D., 1985, Heavy metals and heavy metal antagonists, in The Pharmacological Basis of Therapeutics, 7th ed. (A. G. Gilman, L. S. Goodman, T. W. Rail, and F. Murad, eds.), pp. 1605–1607, Macmillan, New York.

    Google Scholar 

  • Klayman, D. L., 1985, Quinghaosu (artemisinin): An antimalarial drug from China, Science 228:1049–1055.

    Article  PubMed  CAS  Google Scholar 

  • Konigk, E., 1978, Purine nucleotide metabolism in promastigotes of Leishmania tropica: Inhibitory effect on allopurinol and analogues of purine nucleosides, Tropenmed. Parasitol. 29:435–438.

    PubMed  CAS  Google Scholar 

  • Konigk, E., and Rasoul, S. A., 1978, Catabolism of adenosine-5′-monophosphate in promastigotes of Leishmania tropica, Tropenmed. Parasitol. 28:319–322.

    Google Scholar 

  • Kovacs, J. A., Allegra, C. J., and Masur, H., 1990, Characterization of dihydrofolate reductase of Pneumocystis carinii and Toxoplasma gandii, Exp. Parasitol. 71;60–68.

    Article  PubMed  CAS  Google Scholar 

  • Kozalka, G. W., and Krenitsky, T. A., 1979, Nucleosidases from Leishmania donoani, J. Biol. Chem. 254:8185–8193.

    Google Scholar 

  • Krogstad, D. J., and Schlesinger, P. H., 1987, The basis of antimalarial action: Non-weak base effects of chloroquine on acid vesicle pH, Am. J. Trop. Med. Hyg. 36:213–220.

    PubMed  CAS  Google Scholar 

  • Krogstad, D. J., Gluzman, I. Y., Kyle, D. E., Odvola, A. M. J., Martin, S. K., Milhjouse, W. K., and Schlesinger, P. H., 1987, Efflux of chloroquine from Plasmodium falciparum: Mechanism of chloroquine resistance, Science 238:1283–1285.

    Article  PubMed  CAS  Google Scholar 

  • Krug, E., Marr. J. J., and Berens, R. L., 1989, Purine metabolism in Toxoplasma gondii, J. Biol. Chem. 264:10601–10607.

    PubMed  CAS  Google Scholar 

  • Krungkrai, S. R., and Yuthavong, Y, 1987, The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress, Trans. R. Soc. Trop. Med. Hyg. 81:710–714.

    Article  PubMed  CAS  Google Scholar 

  • Kwakye-Berko, F., and Meshnick, S. R., 1989, Binding of chloroquine to DNA, Mol. Biochem. Parasitol. 35:51–56.

    Article  PubMed  CAS  Google Scholar 

  • Kwakye-Berko, F., and Meshnick, S. R., 1990, Sequence preference of chloroquine binding to DNA and prevention of Z-DNA formation, Mol. Biochem. Parasitol. 39:275–278.

    Article  PubMed  CAS  Google Scholar 

  • Laranja, F. S., Diaz, E., Nobrega, G., and Miranda, A., 1956, Chagas’ disease: Clinical, epidemiologic, and pathologic study, Circulation 14:1035–1060.

    Article  PubMed  Google Scholar 

  • Levander, O. A., Ager, A. L., Morris, V. C., and May, R. G., 1989, Qinghaosu, dietary vitamin E, selenium, and cod liver oil: Effect on the susceptibility of mice to the malarial parasite Plasmodium yoelii, Am. J. Clin. Nutr. 50:346–352.

    PubMed  CAS  Google Scholar 

  • Lin, A. J., Klayman, D. L., and Milhaus, W. K., 1987, Antimalarial activity of new water-soluble dihydroartemisinin derivatives, J. Med. Chem. 30:2147–2150.

    Article  PubMed  CAS  Google Scholar 

  • Looareesuwan, S., Viravan, C., Varijanonta, S., Wilairatana, P., Suntharasamai, P., Charoenlarp, P., Arnold, K., Kyle, D., Canfield, C., and Webster, K., 1992, Randomized trial of artensunate and mefloquine alone and in sequence for acute uncomplicated falciparum malaria, Lancet i:821–824.

    Article  Google Scholar 

  • Looker, D. L., Berens, R. L., and Marr, J. J., 1983, Purine metabolism in Leishmania donovani in amastigotes and promastigotes, Mol. Biochem. Parasitol. 9:15–28.

    Article  PubMed  CAS  Google Scholar 

  • Looker, D. L., Martinez, S., Horton, J. M., and Marr, J. J., 1986, Growth of Leishmania donovani amastigotes in a continuous human macrophage culture, J. Inf. Dis. 154:323–327.

    Article  CAS  Google Scholar 

  • Luo, X.-D., and Shen, C.-C., 1987, The chemistry, pharmacology, and clinical applications of qinghaosu (artemisinin) and its derivatives, Med. Res. Rev. 7:29–52.

    Article  PubMed  CAS  Google Scholar 

  • Malin, A. S., and Hall, A. P., 1990, Falciparum malaria resistant to quinine and pyrimethamine-sulfadoxine successfully treated with mefloquine, Br. Med. J. 300:1175.

    Article  CAS  Google Scholar 

  • Marr, J. J., 1984, Chemotherapy of leishmaniasis, in Parasitic Diseases, Vol. 2, The Chemotherapy (J. M. Mansfield, ed.), pp. 201–229, Marcel Dekker, New York and Basel.

    Google Scholar 

  • Marr, J. J., and Berens, R. L., 1983, Pyrazolopyrimidine metabolism in the pathogenic try-panosomatidae, Mol. Biochem. Parasitol. 7(4):339–356.

    Article  PubMed  CAS  Google Scholar 

  • Marr, J. J., and Berens, R. L., 1985, Purine metabolism in Leishmania, in Parasitic Diseases, Vol. 1 (Leishmaniasis) (K. P. Chang and R. S. Bray, eds.), pp. 69–78, Elsevier, Amsterdam.

    Google Scholar 

  • Marr, J. J., and Docampo, R., 1986, Chemotherapy for Chagas’ disease: A perspective of current therapy and considerations for future research, Rev. Infect. Dis. 8:893–904.

    Article  Google Scholar 

  • Marr, J. J., Berens, R. L., and Nelson, D. J., 1978, Antitrypanosomal effect of allopurinol: Conversion in vivo to aminopyrazolopyrimidine nucleotides by Trypanosoma cruzi, Science 201:1018–1020.

    Article  PubMed  CAS  Google Scholar 

  • Marr, J. J., 1992a, Leishmaniasis, in Textbook of Internal Medicine, (W. N. Kelley, ed.), pp. 1525–1527, J. B. Lippincott Company, Philadelphia.

    Google Scholar 

  • Marr, J. J., 1992b, Toxoplasmosis, in Textbook of Internal Medicine, (W. N. Kelley, ed.), pp. 1535–1539, J. B. Lippincott Company, Philadelphia.

    Google Scholar 

  • Martin, S. K., Oduola, A. M., and Milhous, W. K., 1987, Reversal of chloroquine resistance in Plasmodium falciparum by verapamil, Science 235:899–901.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, S., and Marr, J. J., 1992, Allopurinol in the treatment of cutaneous leishmaniasis, N. Engl. J. Med. 326:741–744.

    Article  PubMed  CAS  Google Scholar 

  • Mason, R. P., 1982, Free-radical intermediates in the metabolism of toxic chemicals, in Free radicals in biology, Vol. 5 (W. A. Pryor, ed.), pp. 161–222, Academic Press, New York.

    Google Scholar 

  • McChesney, W. W., and Fitch, C. D., 1984, 4-Aminoquinolines, in Antimalaral Drugs II (W. Peters and W. H. G. Richards, eds.), pp. 4–59, Springer Verlag, Berlin.

    Google Scholar 

  • Meshnick, S. R., 1990, Chloroquine as intercalator: A hypothesis revived, Parasitol. Today 6:77–79.

    Article  PubMed  CAS  Google Scholar 

  • Meshnick, S. R., Tsang, T. W., Lin, F. B., Pan, H. Z., Chang, C. N., Kuypers, F., Chiu, D., and Lubin, B., 1989, Activated oxygen mediates the antimalarial activity of qinghaosu, Prog. Clin. Biol. Res. 313:95–104.

    PubMed  CAS  Google Scholar 

  • Meshnick, S. R., Scott, M. D., Lubin, B. H., Ranz, A., and Eaton, J. W., 1990a, The antimalarial activity of diethyldithiocarbamate: Potentiation by copper, Biochem. Pharmacol. 40:213–216.

    Article  PubMed  CAS  Google Scholar 

  • Meshnick, S. R., Thomas, A., Ranz, O., Xu, C. M., and Pon, H. Z., 1991, Artemisinin (qinghaosu): The role of intracellular hemin in its mechanism of antimalarial action, Mol. Biochem. Parasitol. 49:181–190.

    Article  PubMed  CAS  Google Scholar 

  • Milhous, W. K., Gerena, L., Kyle, D. E., and Oduola, A. M. J., 1989, In vitro strategies for circumventing antimalarial drug resistance, Prog. Clin. Biol. Res. 313:61–72.

    PubMed  CAS  Google Scholar 

  • Mintzer, S., Kadison, E. L., Shales, W. M., and Felsenfeld, O., 1953, Treatment of urinary tract infections with a new antibacterial nitrofuran, Antibiot. Chemother. 3:151–157.

    CAS  Google Scholar 

  • Moreno, S. N. J., Docampo, R., Mason, R. P., Leon, W., and Stoppani, A. O. M., 1982, Different behaviors of benznidazole as free radical generator with mammalian and Trypanosoma cruzi microsomal preparations, Arch. Biochem. Biophys. 218:585–591.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R. L., and Hahn, F. E., 1965, Chloroquine structural requirements for binding to deoxy-nucleic acid and antimalarial activity, Antimicrob. Agents Chemother. 315-320.

    Google Scholar 

  • Packchanian, A., 1952, Chemotherapy of experimental Chagas’ disease with nitrofuran compounds, Antibiot. Chemother. 7:13–23.

    Google Scholar 

  • Panisko, D. M., and Keystone, J. S., 1990, Treatment of Malaria—1990, Drugs 39:160–189.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, N. M., and Konigk, E., 1981, A nucleotidase from Leishmania tropica promastigotes: Partial purification and properties, Tropenmed. Parasitol. 32:209–214.

    PubMed  CAS  Google Scholar 

  • Peters, W., Lin, L., Robinson, B. L., and Warhurst, D. C., 1986, The chemotherapy of rodent malaria XL: The action of artemisinin and related sequiterpenes, Ann. Trop. Med. Hyg. 80:483–489.

    CAS  Google Scholar 

  • Peters, W., 1987, Chemotherapy and Drug Resistance in Malaria, vols. I and II, Academic Press, London.

    Google Scholar 

  • Peters, W., and Richards, W. H. G., 1984, Antimalarial Drugs, vols. I and II, Springer Verlag, Berlin.

    Google Scholar 

  • Peterson, D. S., Milhous, W. K., and Wellems, T. E., 1990, Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria, Proc. Natl. Acad. Sci. USA 87:3018n–3022.

    Article  Google Scholar 

  • Polet, H., and Barr, C., 1968, Chloroquine and dihydroquinine. In vitro studies of their antimalarial effect upon Plasmodium knowlesii, J. Pharmacol. Exp. Ther. 164:380–386.

    PubMed  CAS  Google Scholar 

  • Pollack, S., 1989, P. falciparum iron metabolism, Prog. Clin. Biol. Res. 313:151–161.

    PubMed  CAS  Google Scholar 

  • Pryor, W. A., 1976, The role of free radical reactions in biological systems, in Free Radicals in Biology, Vol. 1 (W. A. Pryor, ed.), pp. 1–49, Academic Press, New York.

    Chapter  Google Scholar 

  • Ranz, A., and Meshnick, S. R., 1989, Plasmodium falciparum: Inhibitor sensitivity of the endogenous superoxide dismutase, Exp. Parasitol. 69:125–128.

    Article  PubMed  CAS  Google Scholar 

  • Raventos-Suarez, C., Pollack, S., and Nagel, R. L., 1982, Plasmodium falciparum: Inhibition of in vitro growth by desferoxamine, Am. J. Trop. Med. Hyg. 31:319–922.

    Google Scholar 

  • Rodriguez, M. H., and Jungery, M., 1986, A protein on Plasmodium falciparum infected erythrocytes functions as a transferrin receptor, Nature 324:388–391.

    Article  PubMed  CAS  Google Scholar 

  • Roth, E. F., Raventos-Suarez, C., Ribaldi, A., and Nagel, R., 1983, Glucose-6-phosphate dehydrogenase deficiency inhibits growth of Plasmodium falciparum, Proc. Natl. Acad. Sci. USA 80:298–299.

    Article  PubMed  CAS  Google Scholar 

  • Saenz, R. E., Paz, H. M., Johnson, C. M., Marr, J. J., Nelson, D. J., Pattishall, K. H., and Rogers, M. D., 1989, Treatment of cutaneous leishmaniasis with orally administered allopurinol riboside, J. Infect. Dis. 160:153–158.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, L. W., and Adler, A., 1980, Antimalarial activity of selected aromatic chelators, Mol. Pharmacol. 18:320–325.

    PubMed  CAS  Google Scholar 

  • Scheibel, L. W., and Adler, A., 1982, Antimalarial activity of selected aromatic chelators. III. 8-hydroxyquinoline (oxine) substituted in positions 5 and 7 and oxines annelated in position 5,6 by an aromatic ring, Mol. Pharmacol. 22:140–144.

    PubMed  CAS  Google Scholar 

  • Scheibel, L. W., Adler, A., and Trager, W., 1979, Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum, Proc. Natl. Acad. Sci. USA 76:5303–5307.

    Article  PubMed  CAS  Google Scholar 

  • Scholer, H. J., Leimer, R., and Richie, R., 1984, Sulphonamides and sulphones, in Antimalarial Drugs II (W. Peters and W. H. G. Richards, eds.), pp. 123–206, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Scott, M. D., Ranz, A., Kuypers, F. A., Lubin, B. H., and Meshnick, S. R., 1990, Parasite uptake of deferoxamine: A prerequisitte for antimalarial activity, Br. J. Hematol. 75:598–602.

    Article  CAS  Google Scholar 

  • Sherman, I. W., 1984, Metabolism, in Antimalarial Drugs I (W. Peters and W. H. G. Richards, eds.), pp. 21–81, Springer Verlag, Berlin.

    Google Scholar 

  • Silveira, A. C., 1982, Epidemiolgia da doenca da Chagas, in Epidemiologie das Doencas Endemicas [A. Prata (Sucam Ministerial da Saude Brazil), ed.] Editoria Universidad de Brasilia, Brazil.

    Google Scholar 

  • Slater, A., and Cerami, A., 1992, Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites, Nature 355:167–169.

    Article  PubMed  CAS  Google Scholar 

  • Spector, T., Berens, D. L., and Marr, J. J., 1982, Adenylosuccinate synthetase and adenylosuccinate lyase from Trypanosoma cruzi; Specificity studies with potential chemotherapeutic agents, Biochem. Pharmacol. 31:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Steck, E. A., 1971, The Chemotherapy of Protozoan Diseases, Walter Reed Army Institute of Medicine, Washington.

    Google Scholar 

  • Steck, E. A., 1981, The chemotherapy of protozoal infections: Whither man? J. Protozool. 28:30–35.

    PubMed  CAS  Google Scholar 

  • Strother, A., Allahyari, R., Buchholz, X., Fraser, I. M., and Tilton, B. E., 1984, In vitro metabolism of the antimalarial agent primaquine by mouse liver enzymes and identification of a methemoglobin-forming metabolite, Drug Metabl. Disposit. 12:35–44.

    CAS  Google Scholar 

  • Sturchler, D., 1989, How much malaria is there world-wide? Parasitol. Today 5:39.

    Article  Google Scholar 

  • Sturchler, D., Handschin, J., Kaiser, D., Kerr, L. Mittelholzer, M. L., Reber, R., and Fernex, M., 1990, Neuropsychiatric side effects of mefloquine, N. Engl. J. Med. 322:1752–1753.

    PubMed  CAS  Google Scholar 

  • Sweeney, T. R., 1984, Drugs with quinine-like action, in Antimalarial Drugs II (W. Peters and W. H. G. Richards, eds.), pp. 267–324, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Sweeney, T. R., and Strube, R. E., 1980, Antimalarials, in Burger’s Medicinal Chemistry, Fourth ed. (M. Wolff, ed.), pp. 333–413, Wiley, New York.

    Google Scholar 

  • Tuttle, J. B., and Krenitsky, T. A., 1980, Purine phosphoribosyltransferases from Leishmania donovani, J. Biol. Chem. 255:909–916.

    PubMed  CAS  Google Scholar 

  • UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, 1991, Tropical Diseases: Progress in Research, 1989–1990, pp. 29–40, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Walton, B. C., 1979, Racial differences in espundia, Ann. Trop. Med. Parasitol. 73:23–28.

    PubMed  CAS  Google Scholar 

  • Wang, T. Y., and Xu, R. C., 1985, Clinical studies of the treatment of falciparum malaria with artemether, a derivative of qinghaosu, J. Trad. Chin. Med. 5:240–242.

    CAS  Google Scholar 

  • Warhurst, D. C., 1981, The quinine-hemin interaction and its relationship to antimalarial activity, Biochem. Pharmacol. 30:3323–3327.

    Article  PubMed  CAS  Google Scholar 

  • Warhurst, D. C., 1986, Parasitol. Today 2:331–334.

    Article  PubMed  CAS  Google Scholar 

  • Warhurst, D. C., 1987, Antimalarial drugs. An update, Drugs 33:50–65.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, W. M., Oloo, J. A., Lury, J. D., Mosoba, M., Kariuki, D., Mjumba, M., Koech, D. K., and Gilles, H. M., 1988, Effects of multiple-dose halofantrine in treatment of chloroquine-resistant malaria in children in Kenya, Lancet 2:247–251.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, W. M., Sixsmith, D. G., Chulay, J. D., and Spencer, H. C., 1984, Antagonism of sulfadoxine and pyrimethamine antimalarial activity in vitro by p-aminobenzoic acid, p-aminobenzoylglutamic acid, and folic acid, Mol. Biochem. Parasitol. 14:55–61.

    Article  Google Scholar 

  • Wellems, T. E., Panton, L. J., Gluzman, I. Y, do Rosario, V. E., Gwadz, R. W., Walker-Jonah, A., and Krogstad, D. J., 1990, Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross, Nature 345:253–255.

    Article  PubMed  CAS  Google Scholar 

  • White, N. J., 1985, Clinical pharmacokinetics of antimalarial drugs, Clin. Pharmacokinet. 10:187–215.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., and Hempelmann, E., 1987, Lysis of malarial parasites and erythrocytes by fer-riprotoporphyrin IX-chloroquine and the inhibition of this effect by proteins, Biochem. Pharmacol. 36:1267–1273.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., and Meshnick, S. R., 1991, Inhibition of the P. falciparum dihydropteroate synthetase and of parasite growth in vitro, Antimic. Agents Chemother. 35:267–271.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meshnick, S.R., Marr, J.J. (1992). Intracellular Parasites. In: Avila, J.L., Harris, J.R. (eds) Intracellular Parasites. Subcellular Biochemistry, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1651-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1651-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1653-2

  • Online ISBN: 978-1-4899-1651-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics