Skip to main content

Recent Advances in Pharmacological Research on Alcohol

Possible Relations with Cocaine

  • Chapter
Recent Developments in Alcoholism

Part of the book series: Recent Developments in Alcoholism ((RDIA,volume 10))

Abstract

Alcohol dependence is a major public health problem. Studies have shown that a person dependent on alcohol often coabuses other substances, such as cocaine. Cocaine is a powerful stimulant whereas ethanol is generally considered to be a depressant, with some stimulating properties. The subjective effects of these two substances in a dependent individual may often appear to be more similar than they are different. Animals also self-administer both substances. Basically, although both substances have anesthetic properties and both act to functionally increase catecholaminergic function, especially that of dopamine, there are some differences in their actions. Both alcohol and cocaine have various effects on several neurotransmitters and systems, which ultimately interact to produce the feeling of well-being avidly sought by many individuals today. This drive often eventually produces a dependence which has associated social and medical consequences. It seems likely that the neurochemical changes that ensue following abuse of these substances underlie the phenomena of dependence, tolerance, and subsequent withdrawal. The apparent similarities and differences between these two substances will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Milam J, Ketchum K: Under the Influence. Grand Rapids, MI, Madrona, 9181.

    Google Scholar 

  2. Miller N: The Pharmacology of Alcohol and Drugs of Abuse and Addiction. New York, Springer-Verlag, 1991.

    Book  Google Scholar 

  3. Roberts LN, Heizer JE, Pryzbeck TR, et al.: Alcohol disorders in the community: a report from the epidemiologic catchment area, in Rose RM, Barrett J (eds): Alcoholism, Origins and Outcome. New York, Raven Press, 1988.

    Google Scholar 

  4. Heizer JE, Pryzbeck TR: The co-occurrence of alcoholism with other psychiatric disorders in the general population and its impact on treatment. J Stud Alcohol 49:219–224, 1988.

    Google Scholar 

  5. Schuckit MA: Studies of populations at high risk for alcoholism. Psychiatr Dev 3:31–63, 1985.

    PubMed  CAS  Google Scholar 

  6. Schuckit MA: Alcoholism and affective disorder: diagnostic confusion, in Goodwin DW, Erickson CK (eds): Alcoholism and Affective Disorders. New York, SP Medical and Scientific Books, 1979, pp 9–19.

    Google Scholar 

  7. Lieber CS: Medical Problems of Alcohol Pathogenesis and Treatment. Philadelphia, Saunders, 1982.

    Google Scholar 

  8. Goodwin DW, Guze SB: Psychiatric Diagnosis. New York, Oxford University Press, 1984.

    Google Scholar 

  9. Schuckit MA, Haglund RMJ: An overview of the etiologic theories on alcoholism, in Estes N, Heinemann E (eds): Alcoholism: Development, Consequences and Interventions. St Louis, Mosby, 1982, pp 16–31.

    Google Scholar 

  10. Miller NS, Gold WS: Research approaches to inheritance of alcoholism and substance abuse. Substance Abuse 96:157–168, 1988.

    Google Scholar 

  11. Galizio M, Maisto SA: Determinants of Substance Abuse. New York, Plenum Press, 1985, pp 383–424.

    Book  Google Scholar 

  12. Majchrowicz E, Nobel EP: Biochemistry and Pharmacology of Ethanol, Vol 1. New York, Plenum Press, 1979.

    Book  Google Scholar 

  13. National Institute on Drug Abuse: Data from the Drug Abuse Warning System (DAWN): annual data (1987). NIDA Statistical Series, No 7: DHHS publication no. (ADM) 88-1854. Washington, DC, Government Printing Office, 1987.

    Google Scholar 

  14. Kreek MJ, Stimmel B: Alcoholism and Polydrug Use. New York, Haworth Press, 1984.

    Google Scholar 

  15. Grant BF, Harford TC: Concurrent and simultaneous use of alcohol with cocaine: results of national survey. Drug Alcohol Depend 25:97–104, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Miller NS, Gold MS, Belkin B, Klahr AL: Family history of alcohol dependence in cocaine dependence. Psychiatr Res 29:113–121, 1989.

    Article  CAS  Google Scholar 

  17. Edwards G, Auf A, Hodgson R: Nomenclature and classification of drug and alcohol-related problems: a WHO memorandum. Bull WHO 59:225–242, 1981.

    PubMed  CAS  Google Scholar 

  18. Pohorecky LA, Brick J: Pharmacology of ethanol, in Balfour DJK (ed): Psychotropic Drugs of Abuse. New York, Pergamon Press, 1990, pp 189–281.

    Google Scholar 

  19. Lester D, Greenberg LA, Smith RF, Carroll RP: The inhalation of ethyl alcohol by man. 1. Industrial hygiene and medicolegal aspects. Q J Stud Alcohol 12:167–178, 1951.

    CAS  Google Scholar 

  20. Carpenter TM: Ethyl alcohol in fowls after exposure to alcohol vapour. J Pharmacol Exp Ther 37:217–219, 1929.

    CAS  Google Scholar 

  21. Bowers RV, Burleson WD, Blades JF: Alcohol absorption from the skin in man. Q J Stud Alcohol 3:31–33, 1942.

    CAS  Google Scholar 

  22. Karel L, Fleisher JH: Gastric absorption of ethyl alcohol in the rat. Am J Physiol 153:268–276, 1948.

    PubMed  CAS  Google Scholar 

  23. Haggard HW, Greenberg LA, Cohen LH, Takieten N: Studies on the absorption, distribution and elimination of alcohol. J Pharmacol Exp Ther 71:358–361, 1941.

    CAS  Google Scholar 

  24. Kalant H: Absorption, diffusion and elimination of ethanol: effects on biologic membranes, in Kissin B, Begleiter H (eds): The Biology of Alcoholism. Vol 1. Biochemistry. New York, Plenum Press, 1971, pp 1–62.

    Chapter  Google Scholar 

  25. Mellanby E: Alcohol: Its Absorption into and Disappearance from the Blood under Certain Conditions. Medical Research Committee Special Report Series, No. 31. London, HMSO, 1919.

    Google Scholar 

  26. Greenberg LA: Pharmacology of alcohol and its relationship to drinking and driving. Q J Stud Alcohol Suppl No. 4:252-266, 1968.

    Google Scholar 

  27. Lundquist F, Wolthers H: The kinetics of alcohol elimination in man. Acta Pharmacol Toxicol 14:265–289, 1958.

    Article  CAS  Google Scholar 

  28. Von Warthburg JP: Polymorphism of human alcohol and aldehyde dehydrogenase, in Lieber CS, Stimmel B (eds): Recent Advances in the Biology of Alcoholism, New York, Haworth Press, 1982.

    Google Scholar 

  29. Dubowski KM: Absorption, distribution and elimination of alcohol: highway safety aspects. J Stud Alcohol Suppl 10:98–108,1985.

    CAS  Google Scholar 

  30. Lieber CS, DeCarli LM: The feeding of ethanol in liquid diets. Alcohol Clin Exp Res 10:550–553, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Hawkins RD, Kalant H, Khanna JM: Effects of chronic intake of ethanol on ethanol metabolism. Can J Physiol Pharmacol 44:241–257, 1966.

    Article  CAS  Google Scholar 

  32. Lieber CS, DeCarli LM: Ethanol oxidation by hepatic microsomes. Adaptive increase after ethanol feeding. Science 162:917–918, 1968.

    Article  PubMed  CAS  Google Scholar 

  33. Tobon F, Mezey E: Effect of ethanol administration on hepatic ethanol and drug-metabolizing enzymes and on the rates of ethanol degradation. J Lab Clin Med 77:110–121, 1971.

    PubMed  CAS  Google Scholar 

  34. Lieber CS, DeCarli LM: The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J Pharmacol Exp Ther 81:279–287, 1972.

    Google Scholar 

  35. Lieber CS, Pirola RC: Clinical relevance of alcohol-drug interactions, in Lieber CS, Stimmel B (eds): Recent Advances in the Biology of Alcoholism. New York, Haworth Press, 1982.

    Google Scholar 

  36. Pohorecky LA: Biphasic action of ethanol: a review. Biobehav Rev 1:231–240, 1978.

    Article  Google Scholar 

  37. Goldberg L: Quantitative studies on alcohol tolerance in man. Acta Physiol Scand Suppl 5:1–126, 1943.

    Article  Google Scholar 

  38. Conners GJ, Maisto SA: Methodological issues in alcohol and stress research with human participants, in Pohorecky LA, Brick J (eds): Stress and Alcohol Use. New York, Elsevier, 1983, pp 105–120.

    Google Scholar 

  39. Mello NK, Mendelson JH: Alcohol and human behavior. Handbook Psychopharmacol 12:235–317, 1978.

    CAS  Google Scholar 

  40. Barry H: Behavioral manifestations of ethanol intoxication and physical dependence, in Majchrowicz E, Noble EP (eds): Biochemistry and Pharmacology of Ethanol, Vol 2. New York, Plenum Press, 1979, pp 511–531.

    Chapter  Google Scholar 

  41. Badawy A: Alcohol intoxication and withdrawal, in Rosalki EB (ed): Clinical Biochemistry of Alcoholism. New York, Churchill Livingstone, 1986, pp 95–116.

    Google Scholar 

  42. Brown RM: Pharmacology of cocaine abuse, in Redda KK, Walker CA, Barnett G (eds): Cocaine, Marijuana, Designer Drugs: Chemistry, Pharmacology and Behavior. Boca Raton, FL, CRC Press, 1989, pp 39–52.

    Google Scholar 

  43. Kozel NJ, Adams EH: Cocaine use in America: Epidemiologic and Clinical Perspectives. NIDA Research Monograph 61, DHHS pub. no. (ADM) 85-1414. Washington, DC, Government Printing Office, 1985.

    Google Scholar 

  44. Siegal RK: New patterns of cocaine use: changing doses and routes. NIDA RES Monogr Ser 61:204–220, 1985.

    Google Scholar 

  45. Gold MS, Giannini AJ: Cocaine and cocaine addiction, in Giannini AJ, Slaby AE (eds): Drugs of Abuse. Oradell, NJ, Medical Economics, 1989, pp 83–95.

    Google Scholar 

  46. Kalant H: Effects of ethanol on the nervous system, in Tremolieres J (ed): International Encyclopedia of Pharmacology and Therapeutics, section 20, Alcohols and derivatives. Oxford, Pergamon Press, 1970, pp 189–236.

    Google Scholar 

  47. Berry MS, Pentreath VW: The neurophysiology of alcohol, in Sandier MS (ed): Psychopharmacology of Alcohol. New York, Raven Press, 1980, pp 43–72.

    Google Scholar 

  48. Wayner MJ, Ono T, Nolley D: Effects of ethyl alcohol on central neurons. Pharmacol Biochem Behav 3:499–506, 1975.

    Article  PubMed  CAS  Google Scholar 

  49. Tabakoff B, Hoffman PL: Biochemical pharmacology of alcohol, in Meltzer HY (ed): Psychopharmacology: The Third Generation of Progress. New York, Raven Press, 1987.

    Google Scholar 

  50. Chin JM, Goldstein DB: Effects of low concentrations of ethanol on the fluidity of spin-labelled erythrocyte and brain membranes. Mol Pharmacol 13:425–441, 1977.

    Google Scholar 

  51. Seeman P: The membrane actions of anesthetics and tranquilisers. Pharmacol Rev 24:583–655, 1972.

    PubMed  CAS  Google Scholar 

  52. Suzdak PD, Glowa JR, Crawley JN, Schwartz RD, Skolnik P, Paul SM: A selective imidazobenztropine antagonist of ethanol in the rat. Science 234:1243–1247,1986.

    Article  PubMed  CAS  Google Scholar 

  53. Littleton J, Harper J, Hudspith M, Pagonis C, Dolin S, Little H: Adaptation in neuronal CA2+-channels may cause alcohol physical dependence, in Lader M (ed): The Psychopharmacology of Addiction. Oxford, London, Oxford University Press, 1988, pp 60–72.

    Google Scholar 

  54. Chin JH, Parsons LM, Goldstein DB: Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice. Biochem Biophys Acta 513:358–363, 1978.

    Article  PubMed  CAS  Google Scholar 

  55. Vanderkoii JM: Effect of ethanol on membranes: a flourescent probe study. Alcohol Clin Exp Res 3:60–63, 1979.

    Article  Google Scholar 

  56. Johnson DA, Lee NM, Cooke R, Loh HH: Adaptation of ethanol-increased fluidization of brain lipid bilayers: cross tolerance and reversibility. Mol Pharmacol 17:52–55, 1979.

    Google Scholar 

  57. Holman RB: Specificity of ethanol’s action in the CNS. Alcohol Alcoholism Suppl 1:147–150, 1987.

    CAS  Google Scholar 

  58. Hunt WA: Neurotransmitter function in the basal ganglia after acute and chronic ethanol treatment. Fed Proc 40:2077–2081, 1981.

    PubMed  CAS  Google Scholar 

  59. Myers RD: Psychopharmacology of ethanol. Annu Rev Pharmacol Toxicol 18:125–144, 1978.

    Article  PubMed  CAS  Google Scholar 

  60. Tabakoff B: Neurochemical aspects of ethanol dependence, in Blum K (ed): Alcohol and Opiates. New York, Academic Press, 1977, pp 21–39.

    Google Scholar 

  61. Deitrich RA, Dunwiddie TV, Harris RA, Erwin VG: Mechanism of action of ethanol: initial central nervous system actions. Pharmacol Rev 41:489–537, 1989.

    PubMed  CAS  Google Scholar 

  62. Scheel-Kruger J, Braestrup C, Nielsen M, Golembioska K, Mogilnicka E: Cocaine: discussion on the role of dopamine in the biochemical mechanism of action, in Ellinwood EH, Kilbey MM (eds): Cocaine and Other Stimulants. New York, Plenum Press, 1977, pp 373–407.

    Chapter  Google Scholar 

  63. Carney TP: Alkaloids as local anesthetics, in Manske RNF (ed): The Alkaloids. Vol V Pharmacology. New York, Academic Press, 1955, pp 211–223.

    Google Scholar 

  64. Ritchie JM, Greene NM: Local anesthetics, in Goodman AG, Goodman LS, Rall TW, Murad F (eds): The Pharmacological Basis of Therapeutics. New York, Macmillan, 1985, pp 309–310.

    Google Scholar 

  65. Mathews JC, Collins A: Interactions of cocaine and cocaine cogenors with sodium channels. Biochem Pharmacol 32:455–460, 1983.

    Article  Google Scholar 

  66. Woolverton WL, Balster RL: Reinforcement properties of some local anesthetics in rhesus monkeys. Pharmacol Biochem Behav 11:669–672, 1979.

    Article  PubMed  CAS  Google Scholar 

  67. Wise R: Neural mechanisms of the reinforcing action of cocaine, in Volkow ND, Swann AC (eds): Cocaine in the Brain. New Brunswick, NJ, Rutgers University Press, 1990, pp 42–57.

    Google Scholar 

  68. Fischman MW: The behavioral pharmacology of cocaine in humans, in Grabowski J (ed): Cocaine: Pharmacology, Effects and Treatment of Abuse. NIDA Res Monogr No 50, DHHS Publ. NO. (ADM) 84-1326. Washington, DC, DHHS, 1984.

    Google Scholar 

  69. Johanson CE, Aigner T: Comparison of the reinforcing properties of cocaine and procaine in rhesus monkeys. Pharmacol Biochem Behav 15:49–53, 1981.

    Article  PubMed  CAS  Google Scholar 

  70. Byck R: Cocaine Papers: Sigmund Freud. New York, Stonehill, 1974.

    Google Scholar 

  71. Byck R, VanDyke C: What are the effects of cocaine in man? in Petresen R, Stillman R (eds): Cocaine, DHEW Publ. No (ADM 77-471). Washington, DC, National Institute on Drug Abuse, Department of Health, Education and Welfare, 1977.

    Google Scholar 

  72. VanDyke C, Jatlow P, Ungerer J, Barash P, Byck R: Cocaine and lidocaine have similar psychological effects after intranasal application. Life Sci 24:271–274, 1979.

    Article  CAS  Google Scholar 

  73. VanDyke C, Ungerer J, Jatlow P, Batrash P, Byck R: Intranasal cocaine: dose relationships of psychological effects and plasma levels. Int J Psychiatr Med 12:1–13, 1982.

    Article  CAS  Google Scholar 

  74. Wise RA, Bozarth MA: Action of drugs of abuse on brain reward systems: an update with specific attention to opiates. Pharmacol Biochem Behav 17:239–243, 1982.

    Article  PubMed  CAS  Google Scholar 

  75. Fibiger HC, Phillips AG: Dopamine and the neural mechanisms of reinforcement, in Horn AS, Korf J, Westerink BHC (eds): The Neurobiology of Dopamine. New York, Academic Press, 1979, pp 979–986.

    Google Scholar 

  76. Carmichael FJ, Israel Y: Effects of ethanol on neurotransmitter release by rat brain cortical slices. J Pharmacol Exp Ther 193:824–834, 1975.

    PubMed  CAS  Google Scholar 

  77. Gysling K, Bustos G, Concha I, Matrinez G: Effect of ethanol on dopamine synthesis and release from rat corpus striatum. Biochem Pharmacol 25:157–162, 1976.

    Article  PubMed  CAS  Google Scholar 

  78. Seeman P, Lee T: The dopamine-releasing actions of neuroleptics and ethanol. J Pharmacol Exp Ther 190:131–140, 1974.

    PubMed  CAS  Google Scholar 

  79. Murphy JM, Cunningham SD, McBride WJ: Effects of 250mg% ethanol on monoamine and amino acid release from rat striatal slices. Brain Res Bull 14:439–442, 1985.

    Article  PubMed  CAS  Google Scholar 

  80. Karoum F, Wyatt RJ, Majchrowicz E: Brain concentrations of biogenic amine metabolites in acutely treated and ethanol-dependent rats. Br J Pharmacol 56:403–411, 1976.

    Article  PubMed  CAS  Google Scholar 

  81. Wajda IJ, Manigault I, Hudlick JP: Dopamine levels in the striatum and the effect of alcohol and reserpine. Biochem Pharmacol 26:653–655, 1977.

    Article  PubMed  CAS  Google Scholar 

  82. Bacopoulos NG, Bhatnagar RK, Van Orden LS: The effects of subhypnotic doses of ethanol on regional catecholamine turnover. J Pharmacol Exp Ther 204:1–10, 1978.

    PubMed  CAS  Google Scholar 

  83. Lai H, Makous WL, Horita A, Leung H: Effects of ethanol on turnover and function of striatal dopamine. Psychopharmacology 61:1–9, 1979.

    Article  PubMed  CAS  Google Scholar 

  84. Reggiani AS, Barbaccia ML, Spano PF, Trabucchi M: Dopamine metabolism and receptor function after acute and chronic ethanol. J Neurochem 35:34–37, 1980.

    Article  PubMed  CAS  Google Scholar 

  85. Fadda F, Argiolas A, Melis MR, Serra G, Gessa GL: Differential effect of acute and chronic ethanol on dopamine metabolism in frontal cortex, caudate nucleus and substantia nigra. Life Sci 27:979–986, 1980.

    Article  PubMed  CAS  Google Scholar 

  86. Weiner H, Myers RD, Simpson CW, Thurman JA: The effect of ethanol on dopamine metabolism in the caudate nucleus of an unanesthetized monkey. Alcohol Clin Exp Res 4:427–429, 1980.

    Article  PubMed  CAS  Google Scholar 

  87. Hunt WA, Majchrowicz E: Alterations in the turnover of brain norepinephrine and dopamine in alcohol-dependent rats. J Neurochem 23:549–552, 1974.

    Article  PubMed  CAS  Google Scholar 

  88. Di Chiara G, Imperato A: Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278, 1988.

    Article  PubMed  Google Scholar 

  89. Wozniak KM, Pert A, Mele A, Linnoila M: Focal application of alcohols elevates extracellular dopamine in rat brain: a microdialysis study. Brain Res 540:31–40, 1991.

    Article  PubMed  CAS  Google Scholar 

  90. McCreery MJ, Hunt WA: Physico-chemical correlates of alcohol intoxication. Neuropharmacology 17:451–461, 1978.

    Article  PubMed  CAS  Google Scholar 

  91. Lovinger DM, White G, Weight FF: Ethanol inhibits NMDA-activated ion current in hippocampal neurones. Science 243:1721–1724, 1989.

    Article  PubMed  CAS  Google Scholar 

  92. Carlen PL, Gurevich N, Durand D: Ethanol in low doses augments calcium-mediated mechanisms measured intracellularly in hippocampal neurones. Science 215:306–309, 1982.

    Article  PubMed  CAS  Google Scholar 

  93. Friedman M, Erickson, GK, Leslie SW: Effects of acute and chronic ethanol administration on whole brain synaptosomal calcium influx. Biochem Pharmacol 29:1903–1908, 1980.

    Article  PubMed  CAS  Google Scholar 

  94. Leslie SW, Brown LM, Dildy JE, Sims JS: Ethanol and neuronal calcium channels. Alcohol 7:233–236, 1990.

    Article  PubMed  CAS  Google Scholar 

  95. Engel JA, Fahlke C, Hulthe P, Hard E, Johannessen K, Snape B, Svennson L: Biochemical and behavioral evidence for an interaction between ethanol and calcium channel antagonists. J Neural Transm 74:181–193, 1988.

    Article  PubMed  CAS  Google Scholar 

  96. Feldman RS, Quenzer LF: Fundamentals of Neuropsychopharmacology. Sunderland MA, Sinauer, 1984.

    Google Scholar 

  97. Reith MEA, Sershen H, Lajtha A: Saturable (3H) cocaine biding in central nervous system of mouse. Life Sci 27:1055–1062, 1980.

    Article  PubMed  CAS  Google Scholar 

  98. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ: Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–1223, 1987.

    Article  PubMed  CAS  Google Scholar 

  99. Bonnet J, Constentin J: GBR 12783, a potent and selective inhibitor of dopamine uptake: biochemical studies in vivo and ex vivo. Eur J Pharmacol 121:199–209,1986.

    Article  PubMed  CAS  Google Scholar 

  100. Izenwasser S, Cox BM: Daily cocaine treatment produces a persistent reduction of [3H] dopamine uptake in vitro in rat nucleus accumbens but not in striatum. Brain Res 531:338–341, 1990.

    Article  PubMed  CAS  Google Scholar 

  101. Akimoto K, Hamamura T, Otsuki S: Subchronic cocaine treatment enhances cocaine-induced dopamine efflux, studied by in vivo intracerebral dialysis. Brain Res 490:339–344, 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Bradberry CW, Roth RH: Cocaine increases extracellular dopamine in rat nucleus accumbens and ventral tegmental area as shown by in vivo microdialysis. Neurosci Lett 103:97–102, 1989.

    Article  PubMed  CAS  Google Scholar 

  103. Carboni E, Imperato A, Perezzani L, Di Chiara G: Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661, 1989.

    Article  PubMed  CAS  Google Scholar 

  104. Hernandez L, Hoebel BG: Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1712, 1988.

    Article  PubMed  CAS  Google Scholar 

  105. Nicolaysen LC, Pan HT, Justice JB: Extracellular cocaine and dopamine concentrations are linearly correlated in rat striatum. Brain Res 456:317–323, 1988.

    Article  PubMed  CAS  Google Scholar 

  106. Pettit HO, Justice JB: Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol Biochem Behav 34:899–904, 1989.

    Article  PubMed  CAS  Google Scholar 

  107. Hurd YL, Ungerstedt U: Cocaine: An in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse 3:48–54, 1989.

    Article  PubMed  CAS  Google Scholar 

  108. Tabakoff B, Hoffman PL: Alterations in receptors controlling dopamine synthesis after chronic ethanol ingestion. J Neurochem 31:1223–1229, 1978.

    Article  PubMed  CAS  Google Scholar 

  109. Ahtee L, Svartstrom-Fraser M: Effect of ethanol dependence and withdrawal on the catecholamines in rat brain and heart. Acta Pharmacol Toxicol 36:289–298, 1975.

    CAS  Google Scholar 

  110. Lucchi L, Luppini M, Govini S, Covelli V, Spano PF, Trabucchi M: Ethanol and dopaminergic systems. Pharmacol Biochem Behav 18(Suppl 1):379–382,1983.

    Article  PubMed  CAS  Google Scholar 

  111. Hruska RE, Silbergeld EK: Inhibition of (3H)spiroperidol binding by in vitro addition of ethanol. J Neurochem 35:750–752, 1980.

    Article  PubMed  CAS  Google Scholar 

  112. Rabin RA, Molinoff PB: Activation of adenylate cyclase by ethanol on mouse striatal tissue. J Pharmacol Exp Ther 216:129–134, 1981.

    PubMed  CAS  Google Scholar 

  113. Muller P, Britton RS, Seeman P: The effects of long-term ethanol on brain receptors for dopamine, acetylcholine, serotonin and noradrenaline. Eur J Pharmacol 65:31–37, 1980.

    Article  PubMed  CAS  Google Scholar 

  114. Pelham TW, Marquis JK, Kugelmann K, Munsat TL: Prolonged ethanol consumption produces persistent alterations of cholinergic function in rat brain. Alcohol Clin Exp Res 4:282–287, 1980.

    Article  PubMed  CAS  Google Scholar 

  115. Lai H, Carino MA, Horita A: Effects of ethanol on central DA function. Life Sci 27:299–304, 1980.

    Article  PubMed  CAS  Google Scholar 

  116. Taylor DL, Ho BT, Fagan JD: Increased dopamine receptor binding in rat brain by repeated cocaine injections. Commun Psychopharmacol 3:137–142, 1979.

    PubMed  CAS  Google Scholar 

  117. Patrick RL, Barchas JD: Potentiation by cocaine of the stimulus-induced increase in dopamine synthesis in rat striatal synaptosomes. Neuropharmacology 16:327–332, 1977.

    Article  PubMed  CAS  Google Scholar 

  118. Pradhan S: Effect of cocaine on rat brain enzymes. Arch Int Pharmacodyn 266:221–228, 1983.

    PubMed  CAS  Google Scholar 

  119. Bustos G, Roth RH: Effect of acute ethanol treatment on transmitter synthesis in central dopaminergic neurons. J Pharmacol Exp Ther 28:580–582, 1976.

    CAS  Google Scholar 

  120. Post RM, Kopanda RT, Black KE: Progressive effects of cocaine on behavior and central monoamine metabolism in rhesus monkeys: relationship to kindling and psychosis. Biol Psychiatry 11:403–419, 1976.

    PubMed  CAS  Google Scholar 

  121. Pohorecky LA, Jaffe LS: Noradrenergic involvement in the acute effects of ethanol. Res Commun Chem Pathol Pharmacol 12:433–447, 1975.

    PubMed  CAS  Google Scholar 

  122. Carlsson A, Lindqvist M: Effect of ethanol on the hydroxylation of tyrosine and tryptophan in rat brain in vivo. J Pharm Pharmacol 25:437–440, 1973.

    Article  PubMed  CAS  Google Scholar 

  123. Svennson TH, Waldeck B: Significance of acetaldehyde ethanol-induced effects on catecholamine metabolism and motor activity in the mouse. Psychopharmacologia 31:229–238, 1973.

    Article  Google Scholar 

  124. Pohorecky LA: Effects of ethanol on central and peripheral noradrenergic neurones. J Pharmacol Exp Ther 189:380–391, 1974.

    PubMed  CAS  Google Scholar 

  125. Engel CK, Rudberg U: Age-dependent effects of ethanol on central monoamine synthesis in the male rat. Acta Pharmacol Toxicol 57:336–339, 1985.

    Article  CAS  Google Scholar 

  126. Smith TL, Jacobyansky A, Shen A, Pathman D, Thurman RG: Adaptation of cyclic AMP generating system in rat cerebral cortical slices during chronic ethanol treatment and withdrawal. Neuropharmacology 20:67–72, 1981.

    Article  PubMed  CAS  Google Scholar 

  127. Hunt WA, Dalton TK: Neurotransmitter-receptor binding in various regions in ethanoldependent rats. Pharmacol Biochem Behav 14:733–739, 1978.

    Article  Google Scholar 

  128. Banerjee SP, Sharma VK, King-Cheung LS, Chanda SK, Riggs SJ: Cocaine and d-amphetamine induce changes in central beta-adrenoceptor sensitivity: effects of acute and chronic drug treatment. Brain Res 175:119–130, 1979.

    Article  PubMed  CAS  Google Scholar 

  129. Rabin RA, Wolfe BB, Dibner MK, Zahniser NR, Melchoir C, Molinoff PB: Effects of ethanol administration and withdrawal on neurotransmitter receptor systems in C57 mice. J Pharmacol Exp Ther 213:491–496, 1980.

    PubMed  CAS  Google Scholar 

  130. Linnoila M: Alcohol withdrawal and noradrenergic function. Ann Intern Med 107:875–889, 1987.

    Article  PubMed  CAS  Google Scholar 

  131. Nutt DJ: Alpha-2-adrenoceptor function during ethanol withdrawal, p880-884, in: Linnoila M (moderator): Alcohol withdrawal and noradrenergic function. Ann Intern Med 107:875-889, 1987.

    Google Scholar 

  132. Gold MS, Redmond DE Jr, Kleber HD: Noradrenergic hyperactivity in opiate withdrawal supported by clonidine reversal of opiate withdrawal. Am J Psychiatry 136:100–102, 1979.

    PubMed  CAS  Google Scholar 

  133. Katz RJ, Carroll BJ: Brain stimulation reward: evidence for an adrenergic contribution in the rat. Neurosci Lett 5:227–231, 1977.

    Article  PubMed  CAS  Google Scholar 

  134. Katz RJ, Turner BB, Roth KA, Carroll BJ: Central adrenergic neurons as mediators of motivation and behavior-evidence from specific inhibition of PNMT, in Usdin E, Kopin IJ, Barchas JD (eds): Catecholamines: Basic and Clinical Frontiers. New York, Pergamon Press, 1979.

    Google Scholar 

  135. Azzarro AJ, Ziance RT, Rutledge CO: The importance of neuronal uptake of amines for amphetamine-induced release of 3H-norepinephrine from isolated brain tissue. J Pharmacol Exp Ther 189:110–118, 1974.

    Google Scholar 

  136. Hadfield MG, Mott DEW, Ismay JA: Cocaine: effect of the in vivo administration on synaptosomal uptake of norepinephrine. Biochem Pharmacol 29:1861–1863, 1980.

    Article  PubMed  CAS  Google Scholar 

  137. Koe BK: Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199:649–661, 1976.

    PubMed  CAS  Google Scholar 

  138. Ross SB, Renyi AL: Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. Eur J Pharmacol 2:181–186, 1967.

    Article  PubMed  CAS  Google Scholar 

  139. Tennant FS: Effect of cocaine dependence on plasma phenylalanine and tyrosine levels and on urinary MHPG excretion. Am J Psychiatry 142:1200–1201, 1985.

    PubMed  Google Scholar 

  140. Fekete M, Borsy J: Chlorpromazine-cocaine antagonism: its relation to changes in dopamine metabolism in the brain. Eur J Pharmacol 16:171–175, 1971.

    Article  PubMed  CAS  Google Scholar 

  141. Cools AR, Van Den Bos R, Ploeger G, Ellenbrook BA: Gating function of noradrenaline in the ventral striatum: its role in behavioral responses to environmental and physiological challenges, in Willner P, Scheel-Kruger J (eds): The Mesolimbic Dopamine System: From Motivation to Action. London, Wiley, 1991, pp 141–173.

    Google Scholar 

  142. Misu Y, Goshima Y, Veda H, Kubo T: Presynaptic inhibition of dopamine receptors on noradrenergic terminals: analysis of biphasic actions of dopamine and apomorphine on the release of endogenous norepinephrine in rat hypothamic slices. J Pharmacol Exp Ther 235:771–777, 1985.

    PubMed  CAS  Google Scholar 

  143. Jakisch R, Moll S, Feuerstein TJ, Hertting G: Dopaminergic modulation of hippocampal noradrenaline release. Evidence for alpha-2 antagonistic effects of some dopamine receptor agonists and antagonists. Naunyn Schmiedeberg’s Arch Pharmacol 330:105–115, 1985.

    Article  Google Scholar 

  144. Nurse B, Russell VA, Taljaard JJF: Alpha-2 and beta-adrenoceptor agonists modulate dopamine release from rat nucleus accumbens slices: implications for research into depression. Neurochem Res 9:1231–1238, 1984.

    Article  PubMed  CAS  Google Scholar 

  145. Rawat AK: Brain levels and turnover rates of presumptive neurotransmitters influenced by administration and withdrawal of ethanol in mice. J Neurochem 22:915–922, 1974.

    Article  PubMed  CAS  Google Scholar 

  146. Tabakoff B, Boggan WO: Effects of ethanol on serotonin metabolism in brain. J Neurochem 22:759–764, 1974.

    Article  PubMed  CAS  Google Scholar 

  147. Moscatelli EA, Fujimoto K, Gilfoil TC: Effects of chronic consumption of ethanol and sucrose on whole brain 5-hydroxytryptamine. J Neurochem 25:273–276, 1975.

    Article  PubMed  CAS  Google Scholar 

  148. Pohorecky LA, Newman B, Sun J, Bailey W: Acute and chronic ethanol ingestion and serotonin metabolism in rat brain. J Pharmacol Exp Ther 204:424–432, 1974.

    Google Scholar 

  149. Littleton JM, Griffiths P, Ortiz A: The induction of ethanol dependence and the ethanol withdrawal syndrome: the effects of pyrazole. J Pharm Pharmacol 25:81–91, 1974.

    Article  Google Scholar 

  150. Pohorecky LA, Jaffe LS, Berkley HA: Effect of ethanol on serotonergic neurons in the rat brian. Res Commun Chem Pathol Pharmacol 8:1–11, 1974.

    PubMed  CAS  Google Scholar 

  151. Myers RD, Melchoir CL: Alcohol and alcoholism: role of serotonin, in Essman WB (ed): Serotonin in Health and Disease, Vol 3. New York, Spectrum, 1977, pp 373–430.

    Google Scholar 

  152. Myers RD, Veale WL: Alcohol preference in the rat: reduction following depletion of brain serotonin. Science 160:1469–1471, 1968.

    Article  PubMed  CAS  Google Scholar 

  153. Geller I: Effects of para-chlorophenylanine and 5-hydroxytryptophan on alcohol intake in the rat. Pharmacol Biochem Behav 1:361–365, 1973.

    Article  PubMed  CAS  Google Scholar 

  154. Myers RD, Martin GE: The role of cerebral serotonin in the ethanol preference of animals. Ann NY Acad Sci 215:135–144, 1973.

    Article  PubMed  CAS  Google Scholar 

  155. Rockman GE, Amit Z, Carr G, Brown ZW, Ogren SO: Attenuation of ethanol intake in laboratory rats. 1. Involvement of brain 5-hydroxytryptamine in the mediation of the positive reinforcing properties of ethanol. Arch Int Pharmacodyn Ther 241:245–259, 1979.

    PubMed  CAS  Google Scholar 

  156. Jackson EA, Kelly PH, Schultz A: Effects of serotonergic activity in nucleus accumbens septa on drug-induced circling. Neuropharmacology 24:721–727, 1985.

    Article  PubMed  CAS  Google Scholar 

  157. Chesselet MF: Presynaptic regulation of neurotransmitter release in the brain: facts and hypotheses. Neuroscience 12:347–375, 1984.

    Article  PubMed  CAS  Google Scholar 

  158. Blandina P, Goldfarb J, Craddock-Royal B, Green JP: Release of endogenous dopamine by stimulation of 5-hydroxytrptamine3 receptors in rat striatum. J Pharmacol Exp Ther 251:803–809, 1989.

    PubMed  CAS  Google Scholar 

  159. Jiang LH, Ashby CR, Kasser RJ, Wang RY: The effect of intraventricular administration of the 5-HT3 receptor agonist 2-methylserotonin on the release of dopamine in the nucleus accumbens: an in vivo chronocoulometric study. Brain Res 513:156–160, 1990.

    Article  PubMed  CAS  Google Scholar 

  160. Chen J, Van Praag HM, Gardner EL: Activation of 5-HT3 receptor by l-phenylbiguanide increases dopamine release in the rat nucleus accumbens. Brain Res 543:354–357, 1991.

    Article  PubMed  CAS  Google Scholar 

  161. Lovinger DM: Ethanol potentiation of 5-HT3 receptor-mediated ion current in NCB-20 neuroblastoma cells. Neurosci Lett 122:57–60, 1991.

    Article  PubMed  CAS  Google Scholar 

  162. Banerjee DK, Lutz RE, Levine MA, Rodbard D, Pollard HB: Uptake of norepinephrine and related catecholamines by cultured chromaffin cells: characterization of cocaine-sensitive and-insensitive plasma membrane transport sites. Proc Natl Acad Sci USA 84:1749–1753, 1987.

    Article  PubMed  CAS  Google Scholar 

  163. Hadfield MG, Nugent EA: Cocaine: Comparative effect on dopamine uptake in extrapyramidal and limbic systems. Biochem Pharmacol 32:744–746, 1983.

    Article  PubMed  CAS  Google Scholar 

  164. Hoffman IS, Talmaciu RK, Cubeddu LX: Interactions between endogenous dopamine and dopamine agonists at release modulatory receptors: multiple effects of neuronal uptake inhibitors on transmitter release. J Pharmacol Exp Ther 238:437–446, 1986.

    Google Scholar 

  165. Friedman E, Gershon S, Rotrosen J: Effects of acute cocaine on the turnover of 5-hydroxytryptamine in the brain. Br J Pharmacol 54:61–64, 1975.

    PubMed  CAS  Google Scholar 

  166. Schubert J, Fyro B, Nyback H, Sedvall G: Effects of cocaine and amphetamine on the metabolism of tryptophan and 5-hydroxytryptamine in mouse brain in vivo. J Pharm Pharmacol 22:860–877, 1970.

    Article  PubMed  CAS  Google Scholar 

  167. Pradhan S, Roy SN, Pradhan SN: Correlation of behavioral and neurochemical effects of acute administration of cocaine in rats. Life Sci 22:1737–1744, 1978.

    Article  PubMed  CAS  Google Scholar 

  168. Ho BT, Taylor DL, Estevez VS, Englert LF, McKenna ML: Behavioral effects of cocainemetabolic and neurochemical approach, in Ellinwood EH, Kilbey MM (eds): Cocaine and Other Stimulants. New York, Plenum Press, 1977, pp 229–240.

    Chapter  Google Scholar 

  169. Knapp S, Mandell AJ: Narcotic drugs: effects on serotonin biosynthetic systems of the brain. Science 177:1209–1211, 1972.

    Article  PubMed  CAS  Google Scholar 

  170. Fozard JR, Mobarok ATM, Newgrosh G: Blockade of serotonin receptors on autonomic neurons by (−)cocaine and some related compounds. Eur J Pharmacol 59:195–210, 1979.

    Article  PubMed  CAS  Google Scholar 

  171. Reith ME, Sershen H, Allen DL, Lajtha A: A portion of 3[H] cocaine binding in brain is associated with serotonergic neurones. Mol Pharmacol 23:600–606, 1983.

    PubMed  CAS  Google Scholar 

  172. Kilpatrick GJ, Jones BJ, Tyers MB: Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748, 1987.

    Article  PubMed  CAS  Google Scholar 

  173. Ritz MC, Kuhar MJ: Relationship between self-administration of amphetamine and monoamine receptors in brain: comparison with cocaine. J Pharmacol Exp Ther 248:1010–1017, 1989.

    PubMed  CAS  Google Scholar 

  174. Reith MEA: 5-HT3 receptor antagonists attenuate cocaine-induced locomotion in mice. Eur J Pharmacol 186:327–330, 1990.

    Article  PubMed  CAS  Google Scholar 

  175. Costall B, Jones BJ, Kelley ME, Naylor RJ, Onaivi ES, Tyers MB: Sites of action of ondansetron to inhibit withdrawal from drugs of abuse. Pharmacol Biochem Behav 36:97–104, 1990.

    Article  PubMed  CAS  Google Scholar 

  176. Erickson CK, Graham DT: Alteration of cortical and reticular acetylcholine release by ethanol in vivo. J Pharmacol Exp Ther 185:583–593, 1973.

    PubMed  CAS  Google Scholar 

  177. Morgan EP, Phillis JW: The effects of ethanol on acetylcholine release from the brain of anesthetized cats. Gen Pharmacol 6:281–284, 1975.

    Article  CAS  Google Scholar 

  178. Kalant H, Grove W: Effects of ethanol and pentobarbital on release of acetylcholine from cerebral cortex slices. J Pharmacol Exp Ther 158:386–393, 1967.

    PubMed  CAS  Google Scholar 

  179. Sunahara GI, Kalant H: Effect of ethanol on potassium stimulated and electrically stimulated acetylcholine release in vitro from rat cortical slices. Can J Physiol Pharmacol 58:706–711, 1980.

    Article  PubMed  CAS  Google Scholar 

  180. Hunt WA, Dalton DK: Regional brain acetylcholine levels in rats acutely treated with ethanol or rendered ethanol-dependent. Brain Res 109:628–631, 1976.

    Article  PubMed  CAS  Google Scholar 

  181. Kochar A, Erickson CK: Central cholinergic correlates of low dose ethanol-induced locomotor stimulation. Alcohol Clin Exp Res 10:595–601, 1986.

    Article  Google Scholar 

  182. Ebel A, Vigran R, Mack G, Durkin T, Mandel P: Cholinergic involvement in ethanol intoxication and withdrawal-induced seizure susceptibility. Psychopharmacology (Berl) 61:251–254, 1979.

    Article  CAS  Google Scholar 

  183. Massarelli R, Syapin PJ, Noble EP: Increased uptake of choline by neural cell cultures chronically exposed to ethanol. Life Sci 18:397–404, 1966.

    Article  Google Scholar 

  184. Tabakoff B, Munoz-Marcus M, Fields JZ: Chronic ethanol feeding produces an increase in muscarinic cholinergic receptors in mouse brain. Life Sci 25:2173–2180, 1979.

    Article  PubMed  CAS  Google Scholar 

  185. Erickson CK, Burnam WL: Cholinergic alteration of ethanol-induced sleep and death in mice. Agents Actions 21:8–13, 1971.

    Article  Google Scholar 

  186. Pohorecky LA, Makowske E, Newman B, Rassi E: Cholinergic mediation of motor effects of ethanol in rats. Eur J Pharmacol 55:67–72, 1979.

    Article  PubMed  CAS  Google Scholar 

  187. Baud P, Arbilla S, Langer SZ: Inhibition of the electrically evoked release of [3H] acetylcholine in rat striatal slices: an experimental model for drugs that enhance dopaminergic neurotransmission. J Neurochem 44:331–337, 1985.

    Article  PubMed  CAS  Google Scholar 

  188. Gilad GM, Gilad VH, Rabey JM: Dopaminergic modulation of the septo-hippocampal cholinergic system activity under stress. Life Sci 39:2387–2393, 1986.

    Article  PubMed  CAS  Google Scholar 

  189. Hoffman IS, Cubeddu LX: Differential effects of bromocriptine on dopamine and acetylcholine modulatory receptors. J Neurochem 42:278–282, 1984.

    Article  Google Scholar 

  190. Wong DT, Bymaster FP, Reid LR, Fuller RW, Perry KW, Kornfield EC: Effect of a stereospecific D2-dopamine agonist on acetylcholine concentration in corpus striatum of rat brain. J Neural Transm 58:55–67, 1983.

    Article  PubMed  CAS  Google Scholar 

  191. Hurd YL, Weiss F, Koob G, Ungerstedt U: The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudate-putamen. Neurosci Lett 109:227–233, 1990.

    Article  PubMed  CAS  Google Scholar 

  192. Memo M, Pradhan A, Hanbauer I: Cocaine-induced supersensitivity of striatal dopamine receptors: role of endogenous calmodulin. Neuropharmacology 20:1145–1150, 1981.

    Article  PubMed  CAS  Google Scholar 

  193. Robinson SE, Hambrecht KL: The effect of cocaine on hippocampal cholinergic and noradrenergic metabolism. Brain Res 457:383–385, 1988.

    Article  PubMed  CAS  Google Scholar 

  194. Yabase M, Chinn C, Charino MA, Horita A: Cocaine produces a cholinergically mediated analeptic and EEG arousal response in rabbits and rats. Proc West Pharmacol Soc 32:333, 1989.

    Google Scholar 

  195. Roberts E, Chase TN, Tower DB: GABA in Nervous System Function. New York, Raven Press, 1976.

    Google Scholar 

  196. Yu S, Ho IK: Effects of acute barbiturate administration, tolerance and dependence on brain GABA system: comparison to alcohol and barbiturates. Alcohol 7:261–272, 1990.

    Article  PubMed  CAS  Google Scholar 

  197. Seilicovich A, Duvilanski BH, Diaz MC, Lasaga M, Carbini LA: Ethanol and hypothalamic GABAergic system. Adv Biochem Psychopharmacol 42:209–218, 1986.

    PubMed  CAS  Google Scholar 

  198. Seilicovich A, Duvilanski BH, Lasaga M, Debeljuk L, Diaz MC: Effect of ethanol on GABA uptake and release from hypothalamus fragments. Psychopharmacology (Berl) 95:418–422, 1988.

    Article  CAS  Google Scholar 

  199. Sutton I, Simmonds MA: Effects of acute and chronic ethanol on the gamma-aminobutyric acid system in rat brain. Biochem Pharmacol 22:1685–1692, 1973.

    Article  PubMed  CAS  Google Scholar 

  200. Frye GD, Breeese GR: GABAergic modulation of ethanol-induced motor impairment. J Pharmacol Exp Ther 223:750–756, 1982.

    PubMed  CAS  Google Scholar 

  201. Supavilai P, Karobath M: Ethanol and other CNS depressants decrease GABA synthesis in mouse cerebral cortex and cerebellum in vivo. Life Sci 27:1035–1040, 1980.

    Article  PubMed  CAS  Google Scholar 

  202. Peinado JM, Collins DM, Myers RD: Ethanol challenge alters amino acid neurotransmitter release from frontal cortex of the aged rat. Neurobiol Aging 8:241–247, 1987.

    Article  PubMed  CAS  Google Scholar 

  203. Wilxon HN, Hunt WA: Effect of acute and chronic treatment on gamma-aminobutyric acid levels and on aminooxyacetic acid-induced GABA accumulation. Subst Alcohol Actions Misuse 1:481–491, 1980.

    Google Scholar 

  204. McCabe ER, Layne EC, Sayler DF, Slusher N, Bessman SP: Synergy of ethanol and a natural soporific—gamma hydroxybutyrate. Science 171:404–406, 1971.

    Article  PubMed  CAS  Google Scholar 

  205. Cott J, Carlsson A, Engel J, Lindquist M: Suppression of ethanol-induced locomotor stimulation by GABA-like drugs. Naunyn Schmied Arch Pharmacol 295:203–209, 1976.

    Article  CAS  Google Scholar 

  206. Martz A, Dietrich RA, Harris RA: Behavioral evidence for the involvement of gammaaminobutyric acid in the actions of ethanol. Eur J Pharmacol 89:53–62, 1983.

    Article  PubMed  CAS  Google Scholar 

  207. Dar MS, Wooles WR: GABA mediation of the central effects of acute and chronic ethanol in mice. Pharmacol Biochem Behav 22:77–84, 1985.

    Article  PubMed  CAS  Google Scholar 

  208. Suzdak PD, Schwartz RD, Skolnick P, Paul SM: Ethanol stimulates gamma-aminobutyric receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci USA 83:4071–4075, 1986.

    Article  PubMed  CAS  Google Scholar 

  209. Ticku MK, Lowrimore P, Lehoullier P: Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons. Brain Res Bull 17:123–126, 1986.

    Article  PubMed  CAS  Google Scholar 

  210. Pritchett D, Sontheimer N, Gorman C, Kettenmann S, Seeburg P, Schofield PR: Transient expression shows ligand gating and alklosteric potentiation of GABA-A receptor subunits. Science 242:1306–1308, 1988.

    Article  PubMed  CAS  Google Scholar 

  211. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann N, Schofield PR, Seeburg PN: Importance of a novel GABA-a receptor subunit for benzodiazepine pharmacology. Nature (Lond) 338:582–585, 1989.

    Article  CAS  Google Scholar 

  212. Gale K, Casu M: Dynamic utilization of GABA in substantia nigra: regulation by dopamine and GABA in the striatum and its clinical and biochemical implications. Mol Cell Biochem 39:369–405, 1981.

    Article  PubMed  CAS  Google Scholar 

  213. Luttinger D, Nemeroff CB, Gau B, Prange AJ Jr: Investigation of the interactions of ethanol with neuropeptides. Alchol Gin Exp Res 5:348,1981, (abstract).

    Google Scholar 

  214. Kiianmaa K, Hoffman PL, Tabakoff B: Antagonism of the behavioral effects of ethanol by naltrexone in BALB/C, C57BL/6, and DBA/2 mice. Psychopharmacology 79:291–294, 1983.

    Article  PubMed  CAS  Google Scholar 

  215. Boada J, Feira M, Sanz E: Inhibitory effect of naloxone on the ethanol-induced antinociception in mice. Pharmacol Res Commun 13:673–678, 1981.

    Article  PubMed  CAS  Google Scholar 

  216. Schultz R, Wuster M, Duka T, Herz A: Acute and chronic ethanol treatment changes endorphin levels in brain and pituitary. Psychopharmacology 68:221–227, 1980.

    Article  Google Scholar 

  217. Cheng SS, Tseng L-F: Chronic administration of ethanol on pituitary and hypothalamic b-endorphin in rats and golden hamsters. Pharmacol Res Commun 14:1001–1008, 1982.

    Article  PubMed  CAS  Google Scholar 

  218. Wilkinson CW, Crabbe JC, Keith LD, Kendall JW, Dorsa DM: Influence of ethanol on regional brain content of B-endorphin in the mouse. Brain Res 378:107–114, 1986.

    Article  PubMed  CAS  Google Scholar 

  219. Dave JR, Karanian JW, Eskay RL: Chronic ethanol treatment decreases specific nonopoid B-endorphin binding to hepatic and kidney membranes and lowers plasma B-endorphin in the rat. Alcohol Clin Exp Res 10:161–165, 1986.

    Article  PubMed  CAS  Google Scholar 

  220. Goodkind MJ, Gerber NH, Meilen JR, Kostis JB: Altered cardiac conduction after acute administration of ethanol in the dog. J Pharmacol Exp Ther 194:633–638, 1975.

    PubMed  CAS  Google Scholar 

  221. Ettinger PO, Wu CF, De La Cruz C Jr, Weisse AB, Ahmed SS, Regan TJ: Arrthymias and the “holiday heart”: alcohol associated cardiac rhythm disorders. Am Heart J 95:555–562, 1978.

    Article  PubMed  CAS  Google Scholar 

  222. Pachinger OM, Tillmanns H, Mao JC, Fauvel JM, Bing RJ: The effect of prolonged administration of ethanol on cardiac metabolism and performance in the dog. J Clin Invest 52:2690–2696, 1973.

    Article  PubMed  CAS  Google Scholar 

  223. Bing RJ, Tillmanss H, Fauvel J, Seeler K, Mao J: Effect of prolonged alcohol administration on calcium transport in heart muscle of the dog. Circ Res 35:33–38, 1974.

    Article  PubMed  CAS  Google Scholar 

  224. Sarma JSM, Ikeda S, Fischer R, Maruyama T, Weishaar R, Bing RJ: Biochemical and contractile properties of heart muscle after prolonged ethanol administration. J Mol Cell Cardiol 8:951–972, 1976.

    Article  PubMed  CAS  Google Scholar 

  225. Weishaar R, Bertugglia S, Ashikawa K, Sarma JSM, Bing RJ: Comparative effects of chronic ethanol and acetaldehyde exposure on myocardial function in rats. J Clin Pharm 18:377–387, 1978.

    Article  CAS  Google Scholar 

  226. Rawat AK: Inhibition of cardiac protein synthesis by prolonged ethanol administration. Res Commun Pathol Pharmacol 25:89–102, 1979.

    CAS  Google Scholar 

  227. Schreiber SS, Reff F, Evans CD, Rothschild MA, Oratz M: Prolonged feeding of ethanol to the young growing guinea pig. II. Effect on the synthesis of the myocardial contractile proteins. Alcohol Clin Exp Res 10:531–534, 1986.

    Article  PubMed  CAS  Google Scholar 

  228. Regan TJ, Ettinger PO, Haider B, Ahmed SS, Oldewurtel HA, Lyons MM: The role of ethanol in cardiac disease. Annu Rev Med 28:393–409, 1977.

    Article  PubMed  CAS  Google Scholar 

  229. Somer JB, Colley PW, Pirola RC, Wilson JS: Ethanol-induced changes in cardiac lipid metabolism. Alcohol Clin Exp Res 5:536–539, 1981.

    Article  PubMed  CAS  Google Scholar 

  230. Polimeni PI, Otten MO, Hoeschen LE: In vivo effects of ethanol on the rat myocardium: evidence for a reversible non-specific increase of sarcolemmal permeability. J Mol Cell Cardiol 15:113–123, 1983.

    Article  PubMed  CAS  Google Scholar 

  231. Regan TJ, Levinson GE, Oldewurtel HA: Ventricular function in noncardiacs with alcoholic fatty liver. Role of ethanol in the production of cardiomyopathy. J Clin Invest 48:397–407, 1969.

    Article  PubMed  CAS  Google Scholar 

  232. Fischman M, Shuster C: Cocaine self-administration in humans. Fed Proc Am Soc Exp Biol 41:241, 1982.

    CAS  Google Scholar 

  233. Commissaris RL: Cocaine pharmacology and toxicology, in Redda KK, Walker CA, Barnett G (eds): Cocaine, Marijuana, Designer Drugs: Chemistry, Pharmacology and Behavior. Boca Raton, FL, CRC Press, 1989, pp 71–81.

    Google Scholar 

  234. Israel Y, Kalant H, LeBlanc AE: Effects of lower alcohols on potassium transport and microsomal adenosine-triphosphate activity of rat cerebral cortex. Biochem J 100:1803–1814, 1966.

    Google Scholar 

  235. Israel Y, Kalant H, Laufer I: Effects of ethanol on Na, K, Mg-stimulated microsomal ATPase activity. Biochem Pharmacol 14:1803–1814, 1965.

    Article  PubMed  CAS  Google Scholar 

  236. Tabakoff B: Inhibition of sodium, potassium and magnesium activated ATPases by acetaldehyde and “biogenic” aldehydes. Res Commun Chem Pathol Pharmacol 7:621–624, 1974.

    PubMed  CAS  Google Scholar 

  237. Aloi RC, Paxton J, Davaiu JS, VanGelb O, Mlekusch W, Truppe W, Meyer JA, Brauer FS: Effect of chronic alcohol consumption on rat brain microsome lipid composition, membrane fluidity and Na+, K+−ATPase activity. Life Sci 36:1003–1007, 1985.

    Article  Google Scholar 

  238. Roach MK, Khan MM, Coffman R, Pennington W, Davis DL: Brain (Na+, K+)−activated adenosine triphosphate activity and neurotransmitter uptake in alcohol-dependent rats. Brain Res 63:323–329, 1973.

    Article  PubMed  CAS  Google Scholar 

  239. Rangaraj N, Kalant H: Effect of chronic ethanol treatment on temperature dependence and on norepinephrine sensitization of rat brain (Na+ K+)-adenosine triphosphate. J Pharmacol Exp Ther 223:536–539, 1982.

    PubMed  CAS  Google Scholar 

  240. Rangaraj N, Kalant H: Effect of ethanol tolerance on norepinephrine-ethanol inhibition of (Na+ + K+)−ATPase in various regions of rat brain. J Pharmacol Exp Ther 231:416–421, 1984.

    PubMed  CAS  Google Scholar 

  241. Volicer L, Gold BI: Effects of ethanol on cyclic AMP levels in the rat brain. Life Sci 13:269–280, 1973.

    Article  PubMed  CAS  Google Scholar 

  242. Volicer L, Hunter BP: Effects of acute and chronic ethanol administration and withdrawal on adenosine 3′, 5′-monophosphate and guanine 3,5-monophosphate levels in the rat brain. J Pharmacol Exp Ther 200:298–305, 1977.

    PubMed  CAS  Google Scholar 

  243. Weitbrecht WU, Cramer H: Depression of cyclic AMP and Cyclic GMP in the cerebrospinal fluid of rats after acute administration of ethanol. Brain Res 200:478–480, 1980.

    Article  PubMed  CAS  Google Scholar 

  244. Rabin RA, Molinoff PB: Multiple sites of action of ethanol on adenylate cyclase. J Pharmacol Exp Ther 227:551–556, 1983.

    PubMed  CAS  Google Scholar 

  245. Hoffman PL, Tabakoff B: Effects of ethanol on Arrhenius parameters and activity of mouse striatal adenylate cyclase. Biochem Pharmacol 31:3101–3106, 1982.

    Article  PubMed  CAS  Google Scholar 

  246. Seeber U, Kuchinsky K: Dopamine-sensitive adenylate cyclase in homogenates of rat striata during ethanol and barbiturate withdrawal. Arch Toxicol 35:247–253, 1976.

    Article  PubMed  CAS  Google Scholar 

  247. Hunt WA, Majchrowicz E, Dalton TK, Swartzwelder HS, Wixon H: Alterations in neurotransmitter activity after acute and chronic ethanol treatment: studies of transmitter interactions. Alcohol Clin Exp Res 3:359–363, 1979.

    Article  PubMed  CAS  Google Scholar 

  248. Billman GE: Mechanisms responsible for the cardiotoxic effects of cocaine. FASEB J 4:2469–2475, 1990.

    PubMed  CAS  Google Scholar 

  249. Engelking LR, Anwer MS, McConnell J, Sullivan D, Shuster L: Cocaine and lidocaine interfere with epinephrine-induced changes in intracellular calcium concentration and glucose efflux from rat hepatocytes. Pharmacology 40:129–136, 1990.

    Article  PubMed  CAS  Google Scholar 

  250. Dackis CA, Gold MS: New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev 9:469–477, 1985.

    Article  PubMed  CAS  Google Scholar 

  251. Alkana RL, Parker ES, Malcolm RD, Cohen HB, Birch H, Noble EP: Interactions of aopomorphine and amantidine with ethanol in men. Alcohol Clin Exp Res 6:403–411, 1982.

    Article  PubMed  CAS  Google Scholar 

  252. Ahlenius SD, Carlsson A, Engel J, Svensson T, Sodersten P: Antagonism by alpha methylparatyrosine of the ethanol-induced stimulation and euphoria in man. Clin Pharmacol Ther 14:586–593, 1973.

    PubMed  CAS  Google Scholar 

  253. Carlsson A, Engel J, Svensson TH: Inhibition of ethanol-induced excitation in mice and rats by alpha-methyl-para-tyrosine. Psychopharmacology 26:307–312, 1972.

    Article  CAS  Google Scholar 

  254. Carlsson A, Engel J, Strombon U, Svensson TH, Waldeck B: Suppression by dopamine agonists of the ethanol-induced stimulation of locomotor activity and brain dopamine synthesis. Naunyn Schmied Arch Pharmacol 283:117–128, 1974.

    Article  CAS  Google Scholar 

  255. Strombon UH, Liedman B: Role of dopaminergic neurotransmission in locomotor stimulation by dexamphetamine and ethanol. Psychopharmacology 78:271–276, 1982.

    Article  Google Scholar 

  256. Blum K, Calhoun W, Merritt JH, Wallace JE, Owen R, Hahn JW, Geller I: l-DOPA: effect of ethanol narcosis and brain biogenic amines in mice. Nature 242:407–409, 1973.

    Article  PubMed  CAS  Google Scholar 

  257. Oades RD: The role of norepinephrine in tuning and dopamine in switching between signals in the CNS. Neurosci Biobehav Rev 9:261–282, 1985.

    Article  PubMed  CAS  Google Scholar 

  258. Kellog C, Wennerstrom G: An ontogenic study on the effect of catecholamine receptor stimulating agents on the turnover of noradrenaline and dopamine in the brain. Brain Res 79:451–464, 1974.

    Article  Google Scholar 

  259. Geyer MA, Segal DS: Opposite effects of intraventricularly infused dopamine and norepinephrine. Behav Biol 10:99–104, 1974.

    Article  PubMed  CAS  Google Scholar 

  260. Pycock CJ, Donaldson IM, Marsden CD: Circling behavior produced by unilateral lesions in the region of the locus coeruleus in rats. Brain Res 97:317–329, 1975.

    Article  PubMed  CAS  Google Scholar 

  261. Antelman SM, Rowland NE, Fisher AS: Stress-related recovery from lateral hypothalamic aphasia. Brain Res 102:346–350, 1976.

    Article  PubMed  CAS  Google Scholar 

  262. Mason ST, Corcoran ME, Fibiger HC: Noradrenergic processes involved in the locomotor effects of ethanol. Eur J Pharmacol 54:383–387, 1979.

    Article  PubMed  CAS  Google Scholar 

  263. Matchett JA, Erickson CK: Alteration of ethanol-induced changes in locomotor activity by adrenergic blockers in mice. Psychopharmacologia 52:201–206, 1977.

    Article  CAS  Google Scholar 

  264. Durcan MJ, Wozniak KM, Lister RG, Linnoila M: Attenuation of hypothermic effects of ethanol by alpha-2 adrenoceptor blockers. Eur J Pharmacol 166:381–386, 1989.

    Article  PubMed  CAS  Google Scholar 

  265. Lake N, Yarborough GG, Phyllis JW: Effects of ethanol on cerebral cortical neurons: interactions with some putative transmitters. J Pharm Pharmacol 25:582–584, 1973.

    Article  PubMed  CAS  Google Scholar 

  266. Hoffman PL, Tabakoff B: Alterations in dopamine receptor sensitivity by chronic ethanol treatment. Nature 268:551–553, 1977.

    Article  PubMed  CAS  Google Scholar 

  267. Engel J, Liljequist S: The effect of long term ethanol treatment on the sensitivity of the dopamine receptors in the nucleus accumbens. Psycho-pharmacology 49:253–257, 1976.

    Article  CAS  Google Scholar 

  268. Liljequist S: Changes in the sensitivity of dopamine receptors in the nucleus accumbens and in the striatum induced by chronic ethanol administration. Acta Pharmacol Toxicol 43:19–28, 1978.

    Article  CAS  Google Scholar 

  269. Lai H, Carino MA, Horita A: Effects of ethanol on central dopamine functions. Life Sci 27:299–304, 1980.

    Article  PubMed  CAS  Google Scholar 

  270. Rogers J, Siggins GR, Schulman JA, Bloom FE: Physiological correlates of ethanol intoxication, tolerance and dependence in rat cerebellar purkinje Cells. Brain Res 196:183–198, 1980.

    Article  PubMed  CAS  Google Scholar 

  271. Koob GF, Weiss F: Pharmacology of drug self-administration. Alcohol 7:193–197, 1990.

    Article  PubMed  CAS  Google Scholar 

  272. Dackis CA, Gold MS: Bromocriptine as treatment of cocaine abuse. Lancet 1:1151–1152, 1985.

    Article  PubMed  CAS  Google Scholar 

  273. Dackis CA, Gold MS, Sweeney DR, et al.: Single dose bromocriptine reverses cocaine craving. Psychiatry Res 20:261–264, 1987.

    Article  PubMed  CAS  Google Scholar 

  274. Moolten M, Kornetsky C: Oral self-administration of ethanol and not experimenter-administered ethanol facilitates rewarding electrical brain stimulation. Alcohol 7:221–225, 1990.

    Article  PubMed  CAS  Google Scholar 

  275. McBride WJ, Murphy JM, Lumeng L, Li T-K: Serotonin, Dopamine and GABA involvement in alcohol drinking of selectively bred rats. Alcohol 7:199–205, 1990.

    Article  PubMed  CAS  Google Scholar 

  276. Pohorecky LA, Brick J, Sun JY: Serotonergic involvement in the effect of ethanol on body temperature in rats. J Pharm Pharmacol 28:157–159, 1976.

    Article  PubMed  CAS  Google Scholar 

  277. Holman RB, Elliott GR, Kramer AM, Seagraves E, Barchas JD: Stereotype and hyperactivity in rats receiving ethanol and a monoamine oxidase inhibitor. Psychopharmacology 54:237–239, 1977.

    Article  PubMed  CAS  Google Scholar 

  278. Jarowski CI, Ward CO: Effect of tryptophan on toxicity and depressant effects of barbiturates and ethanol in rats. Toxicol Appl Pharmacol 18:603–607, 1971.

    Article  PubMed  CAS  Google Scholar 

  279. Veale WL, Myers RD: Decrease in ethanol intake in rats following administration of p-chlorophenylalanine. Neuropharmacology 9:317–326, 1970.

    Article  PubMed  CAS  Google Scholar 

  280. Zabik JE, Liao SS, Jeffreys M, Maickel RP: The effects of DLr5-hydroxytrptophan on ethanol consumption by rats. Res Commun Chem Pathol 20:69–78, 1978.

    CAS  Google Scholar 

  281. Lawrin MO, Naranjo CA, Sellers EM: Identification and testing of new drugs for modulating alcohol consumption. Psychopharmacol Bull 22:1020–1025, 1986.

    CAS  Google Scholar 

  282. Carter CJ, Pycock CJ: The effects of 5,7-dihydroxytryptamine lesions of extrapyramidal and mesolimbic sites on spontaneous motor activity and amphetamine-induced stereotypy. Naunym Schmied Arch Pharmacol 208:51–54, 1979.

    Article  Google Scholar 

  283. Barnes JM, Barnes NM, Costall BK, Ironside JW, Naylor RJ: Identification and characterization of 5-hydroxytrptamine 3 recognition sites in human brain tissue. J Neurochem 53:1787–1789, 1989.

    Article  PubMed  CAS  Google Scholar 

  284. Grant KA, Lovinger DM, White G, Barrett J: Blockade of the discriminative stimulus properties of ethanol by 5-HT3 receptor antagonists. FASEB J 14:A989, 1990.

    Google Scholar 

  285. Carboni E, Acquas R, Frau R, Di Chiara G: Differential inhibitory effects of a 5-HT3 antagonist on drug-induced stimulation of dopamine release. Eur J Pharmacol 164:515–519, 1989.

    Article  PubMed  CAS  Google Scholar 

  286. Wozniak KM, Pert A, Linnoila M: Antagonism of 5-HT3 receptors attenuates the effects of ethanol on extracellular dopamine. Eur J Pharmacol 187:287–289, 1990.

    Article  PubMed  CAS  Google Scholar 

  287. Johanson CE: Assessment of the dependence potential of cocaine in animals, in Grabowski J (ed): Cocaine: Pharmacology, Effects, and Treatment of Abuse. NIDA Research monograph 50, DHHS pub. no (ADM) 84-1326. Washington, DC, Government Printing Office, 1984, pp 54–71.

    Google Scholar 

  288. Roberts DCS, Corcoran ME, Fibiger HC: On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620, 1977.

    Article  PubMed  CAS  Google Scholar 

  289. Sayers AC, Handley SL: A study of the role of catecholamines in the response to various central stimulants. Eur J Pharmacol 23:419–426, 1973.

    Article  Google Scholar 

  290. Creese I, Iversen SD: The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res 83:419–436, 1975.

    Article  PubMed  CAS  Google Scholar 

  291. Pettit HO, Ettenberg A, Bloom FE, Koob GF: Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173, 1984.

    Article  PubMed  CAS  Google Scholar 

  292. Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF: The neural substrates for the motor activating properties of psychostimulants: a review of recent findings. Pharmacol Biochem Behav 25:233–248, 1986.

    Article  PubMed  CAS  Google Scholar 

  293. Kalivas PW, Duffy P: Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58, 1990.

    Article  PubMed  CAS  Google Scholar 

  294. Swann AC, Heninger GR, Roth RH, Maas JW: Differential effects of short and long term lithium on tryptophan uptake and seronergic function in cat brain. Life Sci 28:347–354, 1987.

    Article  Google Scholar 

  295. Gawin FH: Neuroleptic reduction of cocaine-induced paranoia but not.euphoria? Psychopharmacology 90:142–143, 1986.

    Article  PubMed  CAS  Google Scholar 

  296. Aston-Jones S, Aston-Jones G, Koob GF: Cocaine antagonizes anxiolytic effects of ethanol. Psychopharmacology 84:28–31, 1984.

    Article  PubMed  CAS  Google Scholar 

  297. Antelman SM, Caggiulia AR: Norepinephrine-dopamine interactions and behavior. Science 195:646–653, 1977.

    Article  PubMed  CAS  Google Scholar 

  298. Goeders NE, Kuhar MJ: Chronic cocaine induces opposite changes in dopamine receptors in the striatum and nucleus accumbens. Alcohol Drug Res 7:207–216, 1987.

    PubMed  CAS  Google Scholar 

  299. Goeders and Smith JE: Reinforcing properties of cocaine in the medial prefrontal cortex: primary action on the presynaptic dopaminergic terminals. Pharmacol Biochem Behav 25:191–199, 1986.

    Article  PubMed  CAS  Google Scholar 

  300. Woolverton WL, Virus RM: The effects of D1 and D2 dopamine antagonists on behavior maintained by cocaine and food. Pharmacol Biochem Behav 32:691–697, 1989.

    Article  PubMed  CAS  Google Scholar 

  301. Woolverton WL, Kleven MS: Multiple dopamine receptors and the behavioral effects of cocaine, in Clouet D, Ashgar K, Brown R (eds): Mechanisms of Cocaine Abuse and Toxicity. NIDA research Monograph 88, DHHS pub, no 88-1585. Washington, DC, Government Printing Office, 1988, pp 160–184.

    Google Scholar 

  302. Dworkin SI, Smith JE: Neurobiological aspects of drug seeking behavior, in Dews PB, Thompson T, Barrett J (eds): Neurobiobehavioral Pharmacology: Advances in Behavioral Pharmacology, Vol 6. Hillsdale, NJ, Lawrence Erlbaum, 1986, pp 1–43.

    Google Scholar 

  303. Ellinwood EH, Sudilovsky A, Nelson LM: Evolving behavior in the clinical and experimental amphetamine (model) psychosis. Am J Psychiatry 130:1088–1093, 1973.

    PubMed  Google Scholar 

  304. Kilbey MM, Ellinwood EH Jr, Easier ME: The effects of chronic cocaine pretreatment on kindled seizures and behavioral stereotypes. Exp Neurol 64:306–314, 1979.

    Article  PubMed  CAS  Google Scholar 

  305. Kalivas PW, Duffy P, DuMars LA, Skinner C: Behavioral and neurochemical effects of acute and daily cocaine administration in rats. J Pharmacol Exp Ther 245:485–492, 1988.

    PubMed  CAS  Google Scholar 

  306. Olds J, Milner PM: Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427, 1954.

    Article  PubMed  CAS  Google Scholar 

  307. Wise RA, Rompre, PP: Brain dopamine and reward. Annu Rev Psychol 40:191–225, 1989.

    Article  PubMed  CAS  Google Scholar 

  308. Wise RA, Bozarth MA: Brain substrates for reinforcement and drug self-administration. Prog Neuropsychopharmacol 5:467–474, 1981.

    Article  PubMed  CAS  Google Scholar 

  309. Jonsson LE, Anggard E, Gunne LM: Blockade of intravenous amphetamine euphoria in man. Clin Pharmacol Ther 12:889–896, 1971.

    PubMed  CAS  Google Scholar 

  310. Crow TJ: Enhancement by cocaine of intra-cranial self-stimulation in the rat. Life Sci 9:375–381, 1970.

    Article  PubMed  CAS  Google Scholar 

  311. Kornetsky C: Brain-stimulation reward: a model for the neuronal bases for drug-induced euphoria, in Brown et al. (eds): Neuroscience Methods in Drug Abuse Research. NIDA research monograph, no 62. Washington, DC, Government Printing Office, 1985, pp 30–50.

    Google Scholar 

  312. Bain GT, Kornetsky C: Ethanol oral self-administration and rewarding brain stimulation. Alcohol 6:499–503, 1989.

    Article  PubMed  CAS  Google Scholar 

  313. Goeders NE, Smith JE: Cortical dopaminergic involvement in cocaine reinforcement. Science 221:773–775, 1983.

    Article  PubMed  CAS  Google Scholar 

  314. Goeders NE, Lane JD, Smith JE: Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem Behav 20:451–455, 1984.

    Article  PubMed  CAS  Google Scholar 

  315. Smith JE, Lane JD: Brain neurotransmitter turnover correlated with morphine self-administration, in Smith JE, Lane JD (eds): The Neurobiology of Opiate Reward Process. New York, Elsevier, 1983, p 361.

    Google Scholar 

  316. Vaccarino FJ, Bloom FE, Koob GF: Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat. Psychopharmacology 86:37, 1985.

    Article  PubMed  CAS  Google Scholar 

  317. Wise RA: Brain neuronal systems mediating reward processes, in Smith JE, Lane JD (eds): The Neurobiology of Opiate Reward Process. New York, Elsevier, 1983, p 405.

    Google Scholar 

  318. Wise RA, Bozarth MA: Brain reward circuitry: four circuit elements “wired” in apparent series. Brain Res Bull 12:203–208, 1984.

    Article  PubMed  CAS  Google Scholar 

  319. Kornetsky C, Eposito RU, McLean S, Jacobsen JO: Intracranial self-stimulation thresholds. Arch Gen Psychiatry 36:289–292, 1979.

    Article  PubMed  CAS  Google Scholar 

  320. Quarfordt SD, Kalmus GW, Myers RD: Ethanol drinking following 6-OHDA lesions of nucleus accumbens and tuberculum olfactorium of the rat. Alcohol 8:211–217, 1991.

    Article  PubMed  CAS  Google Scholar 

  321. Brown ZW, Amit Z: The effects of selective catecholamine depletions by 6-hydroxydopamine on ethanol preference in rats. Neurosci Lett 5:333–336, 1977.

    Article  PubMed  CAS  Google Scholar 

  322. Richardson JS, Novakowski DM: Brain monoamines and free choice ethanol consumption in rats. Drug Alcohol Depend 3:253–264, 1984.

    Article  Google Scholar 

  323. Myers RD, Privette TH: A neuroanatomical substrate for alcohol drinking: identification of tetrahydropapaveroline (THP) reactive sites in the rat brain. Brain Res Bull 22:899–911, 1989.

    Article  PubMed  CAS  Google Scholar 

  324. Risner ME, Jones BE: Role of noradrenenergic and dopaminergic processes in amphetamine self-administration. Pharmacol Biochem Behav 5:477–482, 1976.

    Article  PubMed  CAS  Google Scholar 

  325. Risner ME, Jones BE: Intravenous administration of cocaine and norcocaine by dogs. Psychopharmacology 71:83–89, 1980.

    Article  PubMed  CAS  Google Scholar 

  326. De wit H, Wise RA: Blockade of dopamine reinforcement with the dopamine receptor blocker pimozide but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can J Psychol 31:195–203, 1977.

    Article  PubMed  Google Scholar 

  327. Yokel RA, Wise RA: Amphetamine-type reinforcement by dopamine agonists in the rat. Psychopharmacology 58:289–296, 1978.

    Article  PubMed  CAS  Google Scholar 

  328. Anden NE, Dahlstrom A, Larsson K, Olson L, Ungerstedt U: Ascending monoamine neurones to the telencephalon and diencephalon. Acta Physiol Scand 67:313–326, 1966.

    Article  CAS  Google Scholar 

  329. Ungerstedt U: Stereotaxic mapping of the monamine pathways in the rat brain. Acta Physiol Scand 367(Suppl):1–48, 1971.

    CAS  Google Scholar 

  330. Thierry AM, LeBlanc G, Sobel A, Stinus L, Glwinski J: Dopaminergic terminals in the rat cortex. Science 182:499–501, 1973.

    Article  PubMed  CAS  Google Scholar 

  331. Hokfelt T, Ljungdahl A, Fuxe K, Johannson O: Dopamine nerve terminals in the limbic cortex: aspects of the dopamine hypothesis of schizophrenia. Science 184:177–179, 1974.

    Article  PubMed  CAS  Google Scholar 

  332. Lindvall O, Bjorkland A, Moore RY, Stenevi U: Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81:325–331, 1974.

    Article  PubMed  CAS  Google Scholar 

  333. Roberts DCS, Koob GF: Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol Biochem Behav 17:901–904, 1982.

    Article  PubMed  CAS  Google Scholar 

  334. Wise RA: Actions of drugs of abuse on brain reward systems. Pharmacol Biochem Behav 13(Suppl 1):213–223, 1980.

    Article  PubMed  Google Scholar 

  335. Martin-Iversen MX, Szostak C, Fibiger HC: 6-Hydroxydopamine lesions of the medial prefrontal cortex fail to influence intravenous self-administration of cocaine. Psychopharmacology 88:310–314, 1986.

    Google Scholar 

  336. Zito KA, Vickers G, Roberts DCS: Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol Biochem Behav 23:1029–1036, 1985.

    Article  PubMed  CAS  Google Scholar 

  337. Hunt WA: Alcohol and biological membranes, in Bland H, Goodwin D (eds): The Guilford Alcohol Study Series. New York, Guilford Press, 1985.

    Google Scholar 

  338. Palmer MR: Neurophysiological mechanisms in the genetics of ethanol sensitivity. Soc Biol 32:241–284, 1985.

    PubMed  CAS  Google Scholar 

  339. Sorensen S, Dunwiddie T, McClearn G, Freedman R, Hoffer B: Ethanol-induced depressions in cerebellar and hippocampal neurons of mice selectively bred for differences in ethanol sensitivity: an electrophysiological study. Pharmacol Biochem Behav 14:227–234, 1981.

    Article  PubMed  CAS  Google Scholar 

  340. Sinclair JG, Lo GF, Tien AF: The effects of ethanol on cerebellar Purkinje cells in naive and alcohol-dependent rats. Can J Physiol Pharmacol 58:429–432, 1980.

    Article  PubMed  CAS  Google Scholar 

  341. Basile A, Hoffer B, Dunwiddie T: Differential sensitivity of cerebellar Purkinje neurons to ethanol in selectively outbred lines of mice: maintenance in vivo independent of synaptic transmission. Brain Res 264:69–78, 1983.

    Article  PubMed  CAS  Google Scholar 

  342. George F, Chin HS: Effects of ethanol on Purkinje cells recorded from cerebellar slices. Alcohol 1:353–358, 1984.

    Article  PubMed  CAS  Google Scholar 

  343. Bloom FE, Siggins GR: Electrophysiological action of ethanol at the cellular level. Alcohol 4:331–337, 1987.

    Article  PubMed  CAS  Google Scholar 

  344. Strahlendorf HK, Strahlendorf JC: Ethanol suppression of locus coeruleus neurons: relevancy to fetal alcohol syndrome. Neurobehav Toxicol Teratol 5:221–224, 1983.

    PubMed  CAS  Google Scholar 

  345. Pohorecky LA, Brick J: Activity of neurons in the locus coeruleus of the rat: inhibition by ethanol. Brain Res 134:174–179, 1977.

    Article  Google Scholar 

  346. Shefner SA, Proctor WR, Brodie MS, Dunwiddie TV: Locus coeruleus neurons from shortsleep and long-sleep mice differ in their responses to ethanol in vitro. Soc Neurosci Abstr 12:281, 1986.

    Google Scholar 

  347. Wise RA, Bozarth MA: A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492, 1987.

    Article  PubMed  CAS  Google Scholar 

  348. Gessa GL, Muntoni F, Collu M, Vargiu L, Mereu G: Low doses of ethanol activate dopaminergic neurones in the ventral tegmental area. Brain Res 348:201–203, 1985.

    Article  PubMed  CAS  Google Scholar 

  349. Mereu G, Gessa GL: Low doses of ethanol inhibit firing of neurones in the substantia nigra, pars reticulata: a GABA-ergic effect. Brain Res 360:325–330, 1985.

    Article  PubMed  CAS  Google Scholar 

  350. Mereu G, Fadda F, Gessa GL: Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res 292:63–69, 1984.

    Article  PubMed  CAS  Google Scholar 

  351. Brodie MS, Shefner SA, Dunwiddie TV: Ethanol increases the firing rate of dopamine neurons of the ventral tegmental area in vitro. Alcohol Clin Exp Res 12:116, 1988.

    Article  Google Scholar 

  352. Chu NS, Keenan L: Responses of midbrain dorsal raphe neurons to ethanol studied in brainstem slices. Alcohol 4:373–374, 1987.

    Article  PubMed  CAS  Google Scholar 

  353. Khatib SA, Murphy JM, McBride WJ: Biochemical evidence for activation of specific monoamine pathways by ethanol. Alcohol 5:295–299, 1988.

    Article  PubMed  CAS  Google Scholar 

  354. Murphy JM, McBride WJ, Gatto GJ, Lumeng L, Li T-K: Effects of acute ethanol administration on monoamine and metabolite content in forebrain regions of ethanol tolerant and non-tolerant alcohol-preferring (P) rats. Pharmacol Biochem Behav 29:169–174, 1988.

    Article  PubMed  CAS  Google Scholar 

  355. Chu NS: Responses of midbrain raphe neurons to ethanol. Brain Res 311:348–352, 1984.

    Article  PubMed  CAS  Google Scholar 

  356. Yasuda RP, Zahniser NR, Dunwiddie TV: Electrophysiological effects of cocaine in the rat hippocampus in vitro. Neurosci Lett 45:199–204, 1984.

    Article  PubMed  CAS  Google Scholar 

  357. Pitts DK, Marwah J: Electrophysiological effects of cocaine on noradrenergic neurones in rat locus coeruleus. J Pharmacol Exp Ther 240:345–351, 1987.

    PubMed  CAS  Google Scholar 

  358. Pitts DK, Marwah J: Effects of cocaine on the electrical activity of single noradrenergic neurones from locus coeruleus. Life Sci 38:1229–1234, 1986.

    Article  PubMed  CAS  Google Scholar 

  359. Pitts DK, Marwah J: Neuropharmacology of cocaine: role of monoaminergic systems, in Marwah J (ed): Monographs in Neural Sciences. Vol 13. Neurobiology of Drug Abuse. Basel, Karger, 1987, pp 34–54.

    Google Scholar 

  360. Cunningham KA, Lakoski JM: Electrophysiological effects of cocaine and procaine on dorsal raphe serotonin neurons. Eur J Pharmacol 148:457–462, 1988.

    Article  PubMed  CAS  Google Scholar 

  361. Black EW, Lakoski JM: In vitro electrophysiology of dorsal raphe serotonergic neurons in subchronic cocaine-treated rats: development of tolerance to acute cocaine administration. Mol Cell Neurosci 1:84–91,1990.

    Article  PubMed  CAS  Google Scholar 

  362. Barabaran JM, Wang RY, Aghajanian GK: Reserpine suppression of dorsal raphe neuronal firing: mediation by adrenergic system. Eur J Pharmacol 52:27–36, 1978.

    Article  Google Scholar 

  363. Svennson TH, Bunney BS, Aghajanian GK: Inhibition of both noradrenergic and serotonergic neurons in rat brain by the alpha-adrenergic agonist clonidine. Brain Res 92:291–306, 1975.

    Article  Google Scholar 

  364. Aghajanian GK: Regulation of serotonergic neuronal activity: autoreceptors and pacemaker potentials, in Ho BT, Schodar JC, Usdin E (eds): Serotonin in Biological Psychiatry. New York, Raven Press, 1982, pp 173–181.

    Google Scholar 

  365. Brodie MS, Dunwiddie TV: Cocaine effects in the ventral tegmental area: evidence for an indirect dopaminergic mechanism of action. Naunyn Schmied Arch Pharmacol 342:660–665, 1990.

    Article  CAS  Google Scholar 

  366. Einhorn LC, Johansen PA, White FJ: Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112, 1988.

    PubMed  CAS  Google Scholar 

  367. Bloom FE, Hoffer BJ, Siggins GR: Studies on norepinephrine containing afferents to Purkinje cells of rat cerebellum 1. Localization of the fibers and their synapses. Brain Res 25:501–521, 1971.

    Article  PubMed  CAS  Google Scholar 

  368. Olson L, Fuxe K: On the projections from the locus coeruleus noradrenaline neurons: the cerebellar intervention. Brain Res 28:165–171, 1971.

    Article  PubMed  CAS  Google Scholar 

  369. Hoffer BJ, Siggins GR, Oliver AP, Bloom FE: Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J Pharmacol Exp Ther 184:553–569, 1973.

    PubMed  CAS  Google Scholar 

  370. Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L: Metabolic mapping of functional activity in the hypathalamo-neurohypophysial system of the rat. Science 205:723–725, 1979.

    Article  PubMed  CAS  Google Scholar 

  371. Sokoloff L: Relationships among local functional activity, energy metabolism and blood flow in the central nervous system. Fed Proc 40:2311–2316, 1981.

    PubMed  CAS  Google Scholar 

  372. Eckardt MJ, Campbell GA, Marietta CA, Majchrowicz E, Weight FF: Acute ethanol administration selectively alters localized cerebral glucose metabolism. Brain Res 444:53–58, 1988.

    Article  PubMed  CAS  Google Scholar 

  373. Eckardt MJ, Campbell GA, Marietta CA, Majchrowicz E, Wixon HN, Weight FF: Cerebral 2-deoxyglucose uptake in rats during ethanol, withdrawal and postwithdrawal. Brain Res 366:1–9, 1986.

    Article  PubMed  CAS  Google Scholar 

  374. London ED, Wilkerson G, Goldberg SR, Risner ME: Effects of 1-cocaine on local cerebral glucose utilization in the rat. Neurosci Lett 68:73–78, 1986.

    Article  PubMed  CAS  Google Scholar 

  375. Porrino LJ, Domer FR, Crane AM, Sokoloff L: Selective alterations in cerebral metabolism within the mesocortical dopaminergic system produced by acute cocaine in rats. Neuropsy-chopharmacology 1:109–118, 1988.

    Article  CAS  Google Scholar 

  376. London ED, Cascella NG, Wonh DF, Phillips RL, Dannals RF, Links JM, Herning R, Grayson R, Jaffe JH, Wagner HN: Cocaine-induced reduction of glucose utilization in human brain. Arch Gen Psychiatry 47:567–574, 1990.

    Article  PubMed  CAS  Google Scholar 

  377. Barrett JE: Behavioral history as a determinant of the effects of D-amphetamine on punished behavior. Science 198:67–69, 1977.

    Article  PubMed  CAS  Google Scholar 

  378. Barrett JE, Witkin JM: The role of behavioral and pharmacological history in determining the effects of abused drugs, in Goldberg SR, Stolerman IP (eds): Behavioral Analysis of Drug Dependence, Orlando, FL, Academic Press, 1986, pp 195–223.

    Google Scholar 

  379. Farre M, Llorente M, Ugena B, Lamas X, Cami J: Interaction of cocaine with ethanol: a pilot study in humans, in Harris LS (ed): Problems of Drug Dependence. NIDA Research Monographs Series, Washington, DC, 1991, pp 570-571.

    Google Scholar 

  380. Hearn WL, Flynn DD, Hime GW, Rose S, Confino JC, Mantero-Atienza E, Wetli CV, Mash DC: Cocaethylene: a unique cocaine metabolite displays high affinity for the dopamine transporter. J Neurochem 56:698–701, 1991.

    Article  PubMed  CAS  Google Scholar 

  381. Jatlow P, Elsworth JD, Bradberry CW, Winger G, Taylor JR, Russell R, Roth RH: Cocaethylene: a neuropharmacologically active metabolite associated with concurrent cocaine-ethanol ingestion. Life Sci 48:1787–1794, 1991.

    Article  PubMed  CAS  Google Scholar 

  382. Miller NS, Dackis CA, Gold MS: The relationship of addiction, tolerance and dependence: a neurochemical approach. J Subst Abuse Treat 4:197–207, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wozniak, K.M., Linnoila, M. (1992). Recent Advances in Pharmacological Research on Alcohol. In: Galanter, M. (eds) Recent Developments in Alcoholism. Recent Developments in Alcoholism, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1648-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1648-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1650-1

  • Online ISBN: 978-1-4899-1648-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics