Advertisement

Theory and Computation of Molecular Properties

  • B. T. Pickup
Chapter

Abstract

The subject of molecular properties embraces all measurable quantities associated with a single isolated molecule, a small assemblage of molecules, or a bulk assembly such as a fluid or a solid. For the purposes of discussion, three overlapping types of property are identified as follows:
  1. 1.

    external properties;

     
  2. 2.

    internal properties and fine structure; and

     
  3. 3.

    energy properties.

     

Keywords

Molecular Property Random Phase Approximation Quadratic Response Operator Manifold Polarization Propagator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Buckingham, Adv. Chem. Phys. 12, 107–142 (1967).Google Scholar
  2. 2.
    P. W. Fowler, Ann. Rept. Chem. Soc. Sect. C 84, 3–42 (1987).Google Scholar
  3. 3.
    J. Oddershede, Adv. Chem. Phys. 69, 201–239 (1987).Google Scholar
  4. 4.
    C. E. Dykstra, S-Y. Liu, and D. J. Malik, Adv. Chem. Phys. 75, 37–111 (1989).Google Scholar
  5. 5.
    A. Hinchliffe, Ab Initio Determination of Molecular Properties, Adam Hilger, Bristol (1987).Google Scholar
  6. 6.
    A. Messiah, Quantum Mechanics, North-Holland, Amsterdam (1967).Google Scholar
  7. 7.
    D. M. Bishop, Rev. Mod. Phys. 62, 343–374 (1990).Google Scholar
  8. 8.
    R. McWeeny, Nature 243, 196–198 (1973).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory), Volume 3, 3rd Ed., Pergamon, Oxford (1977), p. 142.Google Scholar
  10. 10.
    D. S. Chemla and J. Zyss (eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2, Academic, New York (1987).Google Scholar
  11. 11.
    P. Pulay, Adv. Chem. Phys. 69, 241–286 (1987).Google Scholar
  12. 12.
    S. F. Boys, Proc. Roy. Soc. (London) A 200, 542 (1950).Google Scholar
  13. 13.
    V. R. Saunders, in Computational Techniques in Quantum Chemistry and Molecular Physics, G. H. F. Diercksen, B. T. Sutcliffe, and A. Veillard (eds.), Reidel, Dordrecht (1974), pp. 347–424.Google Scholar
  14. 14.
    R. D. Amos, Adv. Chem. Phys. 67, 99–153 (1987).Google Scholar
  15. 15.
    J. F. Gaw and N. C. Handy, Ann. Rept. Chem. Soc. Sect. C 81, 291 (1984).Google Scholar
  16. 16.
    J. F. Gaw and N. C. Handy, Chem. Phys. Lett. 121, 321 (1985).Google Scholar
  17. 17.
    T. Helgaker and P. Jørgensen, Adv. Quant. Chem. 19, 183–245 (1988).Google Scholar
  18. 18.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quant. Chem. S13, 225 (1979).Google Scholar
  19. 19.
    D. N. Zubarev, Usp. Fiz. Nauk. 71, 71–116 (1960)Google Scholar
  20. 19a.
    D. N. Zubarev, Eng. trans., Sov. Fiz. Usp. 3, 320–324 (1960).Google Scholar
  21. 20.
    D. N. Zubarev, Nonequilibrium Statistical Mechanics, Plenum, New York (1974).Google Scholar
  22. 21.
    K. Husimi, Proc. Phys. Math. Soc. Jpn, Ser. 3 22, 264 (1940).Google Scholar
  23. 22.
    R. P. Feynman, Rev. Mod. Phys. 20, 367–387 (1948).Google Scholar
  24. 23.
    A. Isihara, Statistical Physics, Academic, New York (1971).Google Scholar
  25. 24.
    R. D. Mattuck, A Guide to Feynman Diagrams in Many-Body Physics, 2nd Ed. McGraw-Hill, New York (1976).Google Scholar
  26. 25.
    N. Fukuda, Nucl. Phys. 44, 553 (1963).Google Scholar
  27. 26.
    G. Y. Csanak, H. S. Taylor, and R. Yaris, Adv. Atom. Molec. Phys. 7, 287–361 (1971).Google Scholar
  28. 27.
    R. McWeeny and B. T. Pickup, Repts. Prog. Phys. 43, 1065–1144 (1980).Google Scholar
  29. 28.
    P. A. M. Dirac, Proc. Roy. Soc. (London) A 114, 243 (1927).Google Scholar
  30. 29.
    P. Jordan, Zeits. Phys. 45, 766 (1927)Google Scholar
  31. 29a.
    P. Jordan and E. Wigner, Zeits. Phys. 47, (1928).Google Scholar
  32. 30.
    V. Fock, Zeits. Phys. 75, 622 (1928).Google Scholar
  33. 31.
    P. Roman, Advanced Quantum Theory, Addison-Wesley, Reading, MA (1965).Google Scholar
  34. 32.
    J. Hinze (ed.), Unitary Group for the Evaluation of Energy Matrix Elements, Springer-Verlag, Berlin (1981).Google Scholar
  35. 33.
    R. McWeeny, Proc. Roy. Soc. (London) A 223, 63 (1954).Google Scholar
  36. 34.
    E. R. Davidson, Reduced Density Matrices in Quantum Chemistry, Academic, New York (1976).Google Scholar
  37. 35.
    S. T. Epstein, The Variational Method in Quantum Chemistry, Academic, New York (1974).Google Scholar
  38. 36.
    J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).Google Scholar
  39. 37.
    E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930).Google Scholar
  40. 38.
    J. Frenkel, Wave Mechanics: Advanced General Theory, Clarendon, Oxford (1934).Google Scholar
  41. 39.
    P. O. Löwdin and P. K. Mukherjee, Chem. Phys. Lett. 14, 1 (1972).Google Scholar
  42. 40.
    P. W. Langhoff, S. T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602 (1972).Google Scholar
  43. 41.
    R. Moccia, Int. J. Quant. Chem. 7, 779 (1973).Google Scholar
  44. 42.
    E. Dalgaard and P. Jørgensen, J. Chem. Phys. 69, 3833 (1978).Google Scholar
  45. 43.
    E. Dalgaard, Int. J. Quant. Chem. 15, 197 (1979)Google Scholar
  46. 43a.
    E. Dalgaard, Chem. Phys. Lett. 65, 559 (1979).Google Scholar
  47. 44.
    E. Dalgaard, J. Chem. Phys. 72, 816 (1980).Google Scholar
  48. 45.
    P. Jørgensen and J. Simons, Second Quantization-Based Methods in Quantum Chemistry, Academic, New York (1981).Google Scholar
  49. 46.
    R. Zwanzig, in Lectures in Theoretical Physics, Vol. 3, W. E. Brittin (ed.), Interscience, New York (1961).Google Scholar
  50. 46a.
    C. N. Banwell and H. Primas, Molec. Phys. 6, 225 (1963).Google Scholar
  51. 47.
    J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235–3264 (1985).Google Scholar
  52. 48.
    R. McWeeny, Methods of Molecular Quantum Mechanics, Academic, London (1989).Google Scholar
  53. 49.
    J. Olsen, D. Yeager, and P. Jorgensen, Adv. Chem. Phys. 54, I (1983).Google Scholar
  54. 50.
    O. Goscinski and B. Lukman, Chem. Phys. Lett. 7, 573–576 (1970).Google Scholar
  55. 51.
    B. T. Pickup and O. Goscinski, Mol. Phys. 26, 1013–1035 (1973).Google Scholar
  56. 52.
    L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205–344 (1977).Google Scholar
  57. 53.
    J. Linderberg and Y. Öhrn, Propagators in Quantum Chemistry, Academic, New York (1973).Google Scholar
  58. 54.
    P. Jørgensen, Ann. Rev. Phys. Chem. 26, 359–380 (1975).Google Scholar
  59. 55.
    J. Oddershede, Adv. Quant. Chem. 11, 275–352 (1978).Google Scholar
  60. 56.
    D. H. Kobe, Ann. Phys. (NY) 19, 448–457 (1962).Google Scholar
  61. 57.
    S. Raimes, Many-Electron Theory, North-Holland, Amsterdam (1972).Google Scholar
  62. 58.
    D. J. Thouless, Quantum Mechanics of Many-Body Systems, Academic, New York (1961)Google Scholar
  63. 58a.
    D. J. Thouless, Nucl. Phys. 21, 225 (1960);Google Scholar
  64. 58b.
    D. J. Thouless, Nucl. Phys. 22, 78 (1961).Google Scholar
  65. 59.
    P. Lazzeretti, Adv. Chem. Phys. 75, 507 (1989).Google Scholar
  66. 60.
    A. Hinchliffe and R. W. Munn, Molecular Electromagnetism, Wiley, New York (1985).Google Scholar
  67. 61.
    D. Frankl, Electromagnetic Theory, Prentice-Hall, Englewood Cliffs, NJ (1986), p. 37.Google Scholar
  68. 62.
    M. Göeppert-Mayer, Ann. Phys. (Leipzig) 9, 273–294 (1931).Google Scholar
  69. 63.
    P. I. Richards, Phys. Rev. 73, 254 (1948);Google Scholar
  70. 63a.
    J. Fiutak, Can. J. Phys. 41, 12–20 (1963).Google Scholar
  71. 64.
    F. Bloch, in W. Heisenberg und die Physik unserer Zeit, Friedr. Vieweg & Sohn, Braunschweig (1961), p. 93;Google Scholar
  72. 64a.
    L. D. Barron and C. G. Gray, J. Phys. A 6, 59–61 (1973);Google Scholar
  73. 64b.
    R. G. Woolley, J. Phys. B 6, L97–99 (1973).Google Scholar
  74. 65.
    R. E. Raab, Molec. Phys. 29, 1323–1331 (1975).Google Scholar
  75. 66.
    A. Nisbet, Proc. Roy. Soc. (London) A 231, 250 (1955);Google Scholar
  76. 66a.
    W. McCrea Proc. Roy. Soc. (London) A 240, 447 (1957).Google Scholar
  77. 67.
    P. Lazzeretti and R. D. Amos, J. Phys. Chem. 94, 1811 (1989).Google Scholar
  78. 68.
    J. Gerratt and I. M. Mills, J. Chem. Phys. 49, 1719 (1968).Google Scholar
  79. 69.
    P. Pulay, J. Chem. Phys. 78, 5043 (1983).Google Scholar
  80. 70.
    P. Jørgensen and J. Simons, J. Chem. Phys. 79, 334 (1983).Google Scholar
  81. 71.
    T. U. Helgaker and J. Almlof, Int. J. Quant. Chem. 26, 275 (1984).Google Scholar
  82. 72.
    J. F. Biarge, J. Herranz, and J. Mordilo, An. R. Soc. Esp. Fis. Quim. Ser. A 57, 81–92 (1962).Google Scholar
  83. 73.
    W. B. Person and J. H. Newton, J. Chem. Phys. 61, 1040–1049 (1974).Google Scholar
  84. 74.
    B. S. Averbukh, J. Mol. Spect. 117, 179–183 (1986).Google Scholar
  85. 75.
    J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quant. Chem. S11, 149 (1977).Google Scholar
  86. 76.
    R. L. Swafford and A. C. A. Uricht, Ann. Rev. Phys. Chem. 29, 421 (1978).Google Scholar
  87. 77.
    R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb, J. Chem. Phys. 38, 550 (1963).Google Scholar
  88. 78.
    D. P. Craig and T. Thirunamachandran, Adv. Quant. Chem. 16, 98 (1982).Google Scholar
  89. 79.
    D. P. Craig and T. Thirunamachandran, Modem Quantum Electrodynamics, Academic, New York (1984).Google Scholar
  90. 80.
    W. A. Parkinson, P. W. Sengeløv, and J. Oddershede, Int. J. Quant. Chem. Symp. 24, 487–499 (1990).Google Scholar
  91. 81.
    T. R. Gilson and P. J. Hendra, Laser Raman Spectroscopy, Wiley-Interscience, London (1970).Google Scholar
  92. 82.
    S. B. Piepho and P. N. Schatz, Group Theory in Spectroscopy, Wiley-Interscience, New York (1983).Google Scholar
  93. 83.
    D. J. Caldwell and H. Eyring, The Theory of Optical Activity, Wiley-Interscience, New York (1971).Google Scholar
  94. 84.
    M. Packer and W. T. Raynes, Molec. Phys. 69, 391–400 (1990).Google Scholar
  95. 85.
    E. Dalgaard, Phys. Rev. A26, 42 (1982).Google Scholar
  96. 86.
    N. Bloembergen, Nonlinear Optics, Benjamin, Reading, MA (1965).Google Scholar
  97. 87.
    P-O. Löwdin, Phys. Rev. 139, A357–372 (1965);Google Scholar
  98. 87a.
    P-O. Löwdin, and P. Lindner, Int. J. Quant. Chem. Symp. 2, 161–173 (1968).Google Scholar
  99. 88.
    R. Manne, Int. J. Quant. Chem. S11, 175–192 (1977);Google Scholar
  100. 88a.
    R. Manner, Chem. Phys. Lett. 45, 470–472 (1977).Google Scholar
  101. 89.
    E. Dalgaard, Int. J. Quant. Chem. 15, 169–180 (1979).Google Scholar
  102. 90.
    A. Banerjee, R. Shepard, and J. Simons, Int. J. Quant. Chem. S12, 389 (1978).Google Scholar
  103. 91.
    D. L. Yeager and P. Jørgensen, Chem. Phys. Lett. 65, 77 (1979).Google Scholar
  104. 92.
    P. Albertsen, P. Jørgensen, and D. L. Yeager, Mol. Phys 41, 409 (1980).Google Scholar
  105. 93.
    A. D. McClachlan and M. A. Ball, Rev. Mod. Phys. 36, 884 (1964);Google Scholar
  106. 93a.
    A. D. McClachlan and M. A. Ball, Mol. Phys. 7, 501 (1964).Google Scholar
  107. 94.
    D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).Google Scholar
  108. 95.
    T. Shibuya and V. McKoy, Phys. Rev. A2, 2208 (1970).Google Scholar
  109. 96.
    J. Linderberg and M. Ratner, Chem. Phys. Lett. 6, 37 (1970).Google Scholar
  110. 97.
    P. Jørgensen and J. Oddershede, J. Chem. Phys. 57, 277 (1972).Google Scholar
  111. 98.
    P. Jørgensen, J. Oddershede, and M. Ratner, Chem. Phys. Lett. 32, 111 (1975).Google Scholar
  112. 99.
    J. B. Rose, T. Shibuya, and V. McKoy, J. Chem. Phys. 58, 74 (1973).Google Scholar
  113. 100.
    T. N. Rescigno, C. F. Bender, and V. McKoy, Chem. Phys. Lett. 45, 307 (1977).Google Scholar
  114. 101.
    J. Oddershede, P. Jørgensen, and N. H. F. Beebe, J. Chem. Phys. 63, 2996 (1975).Google Scholar
  115. 102.
    J. Oddershede and P. Jørgensen, J. Chem. Phys. 66, 1541 (1977).Google Scholar
  116. 103.
    R. L. Graham, D. L. Yeager, J. Olsen, P. Jørgensen, R. Harrison, S. Zarrabian, and R. Bartlett, J. Chem. Phys. 85, 6544 (1986).Google Scholar
  117. 104.
    A. Kormonicki and J. W. Mclver, J. Chem. Phys. 70, 2014 (1979);Google Scholar
  118. 104a.
    A. Kormonicki and R. L. Jaffe, J. Chem. Phys. 71, 2150 (1979).Google Scholar
  119. 105.
    G. H. F. Diercksen and R. McWeeny, J. Chem. Phys. 44, 3554 (1966);Google Scholar
  120. 105a.
    R. McWeeny and G. H. F. Diercksen, J. Chem. Phys. 49, 4852 (1968).Google Scholar
  121. 106.
    J. L. Dodds, R. McWeeny, and A. J. Sadlej, Molec. Phys. 34, 1779–1791 (1977).Google Scholar
  122. 107.
    P. Lazzeretti and R. Zanasi, J. Chem. Phys. 72, 6768 (1980).Google Scholar
  123. 108.
    P. Lazzeretti and R. Zanasi, Int. J. Quant. Chem. 15, 645 (1979).Google Scholar
  124. 109.
    P. W. Fowler, P. Lazzeretti, and R. Zanasi, Chem. Phys. Lett. 165, 79–86 (1990).Google Scholar
  125. 110.
    A. J. Grant and B. T. Pickup, Chem. Phys. Lett. 174, 523–530 (1990).Google Scholar
  126. 111.
    A. J. Stone, Molec. Phys. 56, 1065 (1985).Google Scholar
  127. 112.
    A. J. Stone, Chem. Phys. Lett. 83, 233 (1981);Google Scholar
  128. 112a.
    A. J. Stone and M. Alderton, Molec. Phys. 57, 1047 (1986).Google Scholar
  129. 113.
    H. A. Kurtz, J. J. P. Stewart, and K. Dieter, J. Comput. Chem. 11, 82 (1990);Google Scholar
  130. 113a.
    H. A. Kurtz, Int. J. Quant. Chem. 24, 791–798 (1990).Google Scholar
  131. 114.
    A. J. Sadlej, Molec. Phys. 36, 1701 (1978).Google Scholar
  132. 115.
    G. H. F. Diercksen and A. J. Sadlej, Chem. Phys. 61, 293 (1981);Google Scholar
  133. 115a.
    G. H. F. Diercksen and A. J. Sadlej, Phys. Rev. A 27, 2795 (1983);Google Scholar
  134. 115b.
    G. H. F. Diercksen and A. J. Sadlej, Chem. Phys. Lett. 114, 187 (1985);Google Scholar
  135. 115c.
    G. H. F. Diercksen and A. J. Sadlej, Mol. Phys. 57, 509 (1986).Google Scholar
  136. 116.
    J-M. André, J. Delhalle, and J-L. Brédas, Quantum Chemistry Aided Design of Organic Polymers for Molecular Electronics, Vol. 2, Lecture and Course Notes in Chemistry, World Scientific, London (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • B. T. Pickup
    • 1
  1. 1.Department of ChemistryThe UniversitySheffieldEngland

Personalised recommendations