Advertisement

Calculation of P- and T-Violating Properties in Atoms and Molecules

  • Ann-Marie Mårtensson-Pendrill
Chapter
  • 76 Downloads

Abstract

Everyday-life gives little evidence for mirror symmetry. The spiral of a sea-shell collected on the beach is very unlikely to be left-handed. The DNA molecules carrying our genetic codes always form right-handed double helices, whereas amino acids form left-handed helices. The asymmetric molecules are optically active—they can, for example, rotate the plane of polarization of light. Yet the fundamental laws of physics, as they were known until 1956, did not distinguish right from left and could never tell a physical event from its mirror image.

Keywords

Electric Dipole Moment Nuclear Magnetic Moment Neutron Electric Dipole Moment Nuclear Wave Function Core Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Purcell and N. F. Ramsey, Phys. Rev. 78, 807 (1950).Google Scholar
  2. 2.
    T. D. Lee and C. N. Yang, Phys. Rev. 104, 254–258 (1956).Google Scholar
  3. 3.
    C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105, 1413–1415 (1957);Google Scholar
  4. 3a.
    R. L. Garwin, L. M. Lederman, and M. Weinrich, Phys. Rev. 105, 1415–1417 (1957);Google Scholar
  5. 3b.
    J. L. Friedman and V. L. Telegdi, Phys. Rev. 105, 1681 (1957).Google Scholar
  6. 4.
    R. T. Cox, C. G. MacIlwraith, and B. Kurrelmeyer, Proc. Nat. Acad. Sci. USA 14, 544 (1928). Discussed by A. Franklin in “The Discovery and Non-Discovery of Parity Non-Conservation,” Stud. Hist. Phil. Sci. 10, 201–257 (1979).Google Scholar
  7. 5.
    S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);Google Scholar
  8. 5a.
    S. Weinberg, Rev. Mod. Phys. 52, 515–523 (1980).Google Scholar
  9. 5b.
    A. Salam, in Elementary Particle Theory, Proc. 8th Nobel Symposium, p. 367, edited by N. Svartholm (Almquist and Wiksell Förlag, Stockholm, 1968), andGoogle Scholar
  10. 5c.
    A. Salam, Rev. Mod. Phys. 52, 525–538 (1980).Google Scholar
  11. 5d.
    A. Salam, Nucl. Phys. 22, 579 (1961);Google Scholar
  12. 5e.
    S. L. Glashow, Rev. Mod. Phys. 52, 539–543 (1980).Google Scholar
  13. 6.
    M. A. Bouchiat and C. Bouchiat, J. Phys. (Paris) 35, 899–927 (1974).Google Scholar
  14. 7.
    M. A. Bouchiat and L. Pottier, Science 234, 1203–1210 (1986).Google Scholar
  15. 8.
    A recent review of these calculations has been given by S. A. Blundell, A. C. Hartley, Z. W. Liu, A. M. Mårtensson-Pendrill, and J. Sapirstein, Theor. Chim. Acta 80, 257–288 (1991).Google Scholar
  16. 9.
    L. Landau, Zh. E.T.F. 32, 405–406 (1957);Google Scholar
  17. 9a.
    L. Landau, Sov. Phys. JETP 5, 336–337 (1957).Google Scholar
  18. 10.
    J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138–140 (1964).Google Scholar
  19. 11.
    N.F. Ramsey, in Atomic Physics, Vol. 7 (D. Kleppner and F. M. Pipkin, eds.), Plenum, New York (1981), pp. 65–82;Google Scholar
  20. 11a.
    N.F. Ramsey, Rep. Prog. Phys. 45, 95–113 (1982);Google Scholar
  21. 11b.
    N.F. Ramsey, Ann. Rev. Nucl. Part. Sci. 40, 1–14 (1990).Google Scholar
  22. 12.
    I. S. Altarev, Yu. V. Borisov, N. V. Borovikova, A. B. Brandin, A. I. Egorov, S. N. Ivanov, E. A. Kolomenskii, M. S. Lasakov, V. M. Lobashev, A. N. Pirozhkov, A. P. Serebrov, Yu. V. Sobolev, R. R. Tal’daev, and B. VShulgina, Piz. Zh. ETF 44, 360–363 (1986);Google Scholar
  23. 12a.
    I. S. Altarev, Yu. V. Borisov, N. V. Borovikova, A. B. Brandin, A. I. Egorov, S. N. Ivanov, E. A. Kolomenskii, M. S. Lasakov, V. M. Lobashev, A. N. Pirozhkov, A. P. Serebrov, Yu. V. Sobolev, R. R. Tal’daev, and B. VShulgina, JETP Lett. 44, 460–465 (1986).Google Scholar
  24. 13.
    K. F. Smith, N. Crampin, J. M. Pendlebury, D. J. Richardson, D. Shiers, K. Green, A. I. Kilvington, J. Moir, H. B. Prosper, D. Thompson, N. F. Ramsey, B. R. Heckel, S. K. Lamoreaux, P. Ageron, W. Mampe, and A. Steyerl, Phys. Lett. B 232, 191–196 (1990).Google Scholar
  25. 14.
    L. I. Schiff, Phys. Rev. 132, 2194–2200(1963).Google Scholar
  26. 15.
    E. E. Salpeter, Phys. Rev. 112, 1642–1648 (1958).Google Scholar
  27. 16.
    P. G. H. Sandars, Phys. Lett. 14, 194–196 (1965).Google Scholar
  28. 17.
    P. G. H. Sandars, Phys. Lett. 22, 290–291 (1966).Google Scholar
  29. 18.
    P. G. H. Sandars, J. Phys. B (Proc. Phys. Soc. Ser 2) 1, 499–510 and 511–520 (1968).Google Scholar
  30. 19.
    E. Lindroth, B. W. Lynn, and P. G. H. Sandars, J. Phys. B 22, 559–576 (1989).Google Scholar
  31. 20.
    W. R. Johnson, D. S. Guo, M. Idrees, and J. Sapirstein, Phys. Rev. A 32, 2093–2099 (1985).Google Scholar
  32. 21.
    W. R. Johnson, D. S. Guo, M. Idrees, and J. Sapirstein, Phys. Rev. A 34, 1043–1057 (1986).Google Scholar
  33. 22.
    A.-M. Mårtensson-Pendrill and P. Öster, Phys. Scripta 36, 444–452 (1987).Google Scholar
  34. 23.
    I. Lindren and A. Rosén, Case Stud. At. Phys. 4, 150–196 (1974).Google Scholar
  35. 24.
    E. Lindroth, A-M. Mårtensson-Pendrill, A. Ynnerman, and P. Öster, J. Phys. B 22, 2447–2464 (1989).Google Scholar
  36. 25.
    P. G. H. Sandars, in Atomic Physics, Vol. 4 (G. zu Putlitz, E. W. Weber, and A. Winnacker, eds.), Plenum, New York (1975), pp. 71–92.Google Scholar
  37. 26.
    V. V. Flambaum and I. B. Khriplovich, Zh. ETFS 9, 1505–1511 (1985);Google Scholar
  38. 26a.
    V. V. Flambaum and I. B. Khriplovich, Sov. Phys. JETP 62, 872–875 (1985).Google Scholar
  39. 27.
    I. B. Khriplovich, private communication (1990).Google Scholar
  40. 28.
    P. G. H. Sandars, Atomic Physics, Vol. 9, (R. S. van Dyck and E. N. Fortson, eds.), World Scientific, Singapore (1984), pp. 225–245.Google Scholar
  41. 29.
    V. K. Ignatovich, Zh. ETF 56, 2019–2027 (1969);Google Scholar
  42. 29a.
    V. K. Ignatovich, Sov. Phys. JETP 29, 1084–1088 (1969).Google Scholar
  43. 30.
    W. C. Haxton and E. M. Henley, Phys. Rev. Lett. 51, 1937–1940 (1983).Google Scholar
  44. 31.
    E. M. Henley, Progr. Part. Nucl. Phys. 13, 403–444 (1985).Google Scholar
  45. 32.
    G. Feinberg, Trans. N.Y Acad. Sci. 38, 26–43 (1977).Google Scholar
  46. 33.
    O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, Zh. ETFS,1 1521–1540 (1984);Google Scholar
  47. 33a.
    O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, Sov. Phys. JETP 60, 873–883 (1984).Google Scholar
  48. 34.
    M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652–657 (1973).Google Scholar
  49. 35.
    P. V. Coveney and P. G. H. Sandars, J. Phys. B 16, 3727–3740 (1983); P. V. Coveney, part II, B. A. Thesis, Oxford (1981).Google Scholar
  50. 36.
    V. A. Dzuba, V. V. Flambaum, and P. G. Silvestrov, Phys. Lett. 154B, 93–95 (1985).Google Scholar
  51. 37.
    V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov, Phys. Lett. 162B, 213–216 (1985).Google Scholar
  52. 38.
    V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov, Nucl. Phys. A 449, 750–760 (1986).Google Scholar
  53. 39.
    E. A. Hinds and P. G. H. Sandars, Phys. Rev. A 21, 421–429 (1980).Google Scholar
  54. 40.
    L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29–36 (1983).Google Scholar
  55. 41.
    I. B. Khriplovich, Zh. ETF 71, 51–60 (1976);Google Scholar
  56. 41a.
    I. B. Khriplovich, Sov. Phys. JETP 44, 25–30 (1976).Google Scholar
  57. 42.
    P. G. H. Sandars, Phys. Scripta 36, 904–910 (1987).Google Scholar
  58. 43.
    F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, NJ (1963).Google Scholar
  59. 44.
    R. M. Sternheimer, Phys. Rev. 80, 102–103 (1950);Google Scholar
  60. 44a.
    R. M. Sternheimer, Phys. Rev. 84, 244–253 (1951);Google Scholar
  61. 44b.
    R. M. Sternheimer, Phys. Rev. 86, 316–324 (1952).Google Scholar
  62. 45.
    I. Lindgren and J. Morrison, Atomic Many-Body Theory, 2nd ed., Springer-Verlag, Berlin (1986).Google Scholar
  63. 46.
    G. E. Brown and D. G. Ravenhall, Proc. Roy. Soc. A 208, 552–559 (1951).Google Scholar
  64. 47.
    J. Sucher, Phys. Rev. A 22, 348–362 (1980);Google Scholar
  65. 47a.
    J. Sucher, Int. J. Quant. Chem. 25, 3–21 (1984).Google Scholar
  66. 48.
    E. Lindroth, Phys. Scripta 36, 485–492 (1987);Google Scholar
  67. 48a.
    E. Lindroth, Thesis, University of Göteborg (1987).Google Scholar
  68. 49.
    E. Lindroth, J-L. Heully, I. Lindgren, and A-M. Mårtensson-Pendrill, J. Phys. B 20, 1679–1696 (1987).Google Scholar
  69. 50.
    H. P. Kelly, Phys. Rev. 131, 684–699 (1963).Google Scholar
  70. 51.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys. B 18, 597–613 (1985).Google Scholar
  71. 52.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys. B 20, 1399–1412, and 3297–3311 (1987); Phys. Scripta 35, 69–70 (1987).Google Scholar
  72. 53.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Phys. Lett. A 141, 147–153 (1989).Google Scholar
  73. 54.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Phys. Lett. A 142, 373–377 (1989).Google Scholar
  74. 55.
    V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Lett. A 140, 493–497 (1989).Google Scholar
  75. 56.
    M. Vajed-Samii, S. N. Ray, T. P. Das, J. Andriessen, Phys. Rev. A 20, 1787–1797 (1979);Google Scholar
  76. 56a.
    M. Vajed-Samii, S. N. Ray, T. P. Das, J. Andriessen, Phys. Rev. A 24, 1204–1214 (1981);Google Scholar
  77. 56b.
    B. P. Das, J. Andriessen, M. Vajed-Samii, S. N. Ray, and T. P. Das, Phys. Rev. Lett. 49, 32–35 (1982).Google Scholar
  78. 57.
    H. M. Quiney, I. P. Grant, and S. Wilson, J. Phys. B 18, 577–587, 2805–2815 (1985);Google Scholar
  79. 57a.
    H. M. Quiney, I. P. Grant, and S. Wilson, J. Phys. B 22, L15–19 (1989);Google Scholar
  80. 57b.
    H. M. Quiney, I. P. Grant, and S. Wilson, J. Phys. B 23, L271–278 (1990).Google Scholar
  81. 58.
    W. R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126–1129 (1986).Google Scholar
  82. 59.
    W. R. Johnson, S. Blundell, and J. Sapirstein, Phys. Rev. A 37, 307–315 (1988).Google Scholar
  83. 60.
    S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A 42, 3751–3762 (1990).Google Scholar
  84. 61.
    S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. Lett. 65, 1411–1414 (1990).Google Scholar
  85. 62.
    A.C. Hartley, E. Lindroth, and A-M. Mårtensson-Pendrill, J. Phys. B 23, 3417–3436 (1990).Google Scholar
  86. 63.
    S. Salomonson and P. Öster, Phys. Rev. A 40, 5559–5567, 5548–5558 (1989).Google Scholar
  87. 64.
    I. P. Grant, Phys. Rev. A 25, 1230–1232 (1982).Google Scholar
  88. 65.
    M. H. Mittlemann, Phys. Rev. A 24, 1167–1175 (1981).Google Scholar
  89. 66.
    W. H. E. Schwarz and H. Wallmeier, Mol. Phys. 46, 1045–1061 (1982).Google Scholar
  90. 67.
    W. Kutzelnigg, Int. J. Quant. Chem. 25, 107–129 (1984).Google Scholar
  91. 68.
    I. P. Grant, in Methods in Computational Chemistry, Vol. 2 (S. Wilson, ed.), Plenum, New York (1988), p. 1.Google Scholar
  92. 69.
    H. M. Quiney, in Methods in Computational Chemistry Vol. 2 (S. Wilson, ed.), Plenum, New York (1988), pp. 227–278.Google Scholar
  93. 70.
    J. L. Heully and A-M. Mårtensson-Pendrill, Phys. Scripta 27, 291–296 (1983).Google Scholar
  94. 71.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, O. P. Sushkov, Phys. Lett. A 118, 177–180 (1986).Google Scholar
  95. 72.
    P. G. H. Sandars, J. Phys. B 10, 2983–2995 (1977).Google Scholar
  96. 73.
    A. Dalgarno, Adv. Phys. 11, 281–315 (1962).Google Scholar
  97. 74.
    M. Ya. Amusia and N. A. Cherepkov, Case Stud. At. Phys. 5, 47–179 (1975).Google Scholar
  98. 75.
    W. R. Johnson, C. D. Lin, K. T. Cheng, and C. M. Lee, Phys. Scripta 21, 409–422 (1980).Google Scholar
  99. 76.
    A. Dalgarno and G. A. Victor, Proc. Roy. Soc. (London) A 291, 291–295 (1966).Google Scholar
  100. 77.
    S. Garpman, I. Lindgren, J. Lindgren, and J. Morrison, Z. Physik. A 276, 167–176 (1976).Google Scholar
  101. 78.
    T. G. Vold, F. J. Raab, B. Heckel, E.N. Fortson, Phys. Rev. Lett. 52, 2229–2232 (1984).Google Scholar
  102. 79.
    S. K. Lamoreaux, J. P. Jacobs, B. R. Heckel, F. J. Raab, and E. N. Fortson, Phys. Rev. Lett. 59, 2275–2278 (1987).Google Scholar
  103. 80.
    A-M. Mårtensson-Pendrill, Phys. Rev. Lett. 54, 1153–1155 (1985).Google Scholar
  104. 81.
    M. A. Bouchiat and C. Bouchiat, J. Phys. (Paris) 35, 899–927 (1974), Eqs. (AII.21) and (30).Google Scholar
  105. 82.
    C. Bouchiat, Phys. Lett. 57B, 284–288 (1975), Eq. (7).Google Scholar
  106. 83.
    I. Lindgren, J. Lindgren, and A-M. Mårtensson, Z. Physik A 279, 113–125 (1976).Google Scholar
  107. 84.
    A. C. Hartley and A-M. Mårtensson-Pendrill, Z. Physik D 15, 309–319 (1990).Google Scholar
  108. 85.
    W. R. Johnson, S. Blundell, and J. Sapirstein, Phys. Rev. A 37, 1395–1400 (1988).Google Scholar
  109. 86.
    Z. W. Liu and H. P. Kelly, Phys. Rev. A 45, R4210–R4213 (1992).Google Scholar
  110. 87.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Phys. Lett. A 131, 461–465 (1988).Google Scholar
  111. 88.
    A-M. Mårtensson, J. Phys. B 12, 3995–4012 (1979).Google Scholar
  112. 89.
    I. Lindgren, Nucl. Inst. Meth. B 31, 102–114 (1988);Google Scholar
  113. 89a.
    I. Lindgren, J. Phys. B 24, 1143–1159 (1991).Google Scholar
  114. 90.
    J. H. Smith, E. M. Purcell, and N. F. Ramsey, Phys. Rev. 108, 120–122 (1957).Google Scholar
  115. 91.
    E. S. Ensberg, Bull. Am. Phys. Soc. 7, 534 (1962).Google Scholar
  116. 92.
    P. G. H. Sandars and E. Lipworth, Phys. Rev. Lett. 13, 718–720 (1964).Google Scholar
  117. 93.
    M. C. Weisskopf, J. P. Carrico, H. Gould, E. Lipworth, and T. S. Stein, Phys. Rev. Lett. 21, 1645–1646 (1968).Google Scholar
  118. 94.
    M. A. Player and P. G. H. Sandars, J. Phys. B 3, 1620–1635 (1970).Google Scholar
  119. 95.
    H. Gould, Phys. Rev. Lett. 24, 1091–1093 (1970).Google Scholar
  120. 96.
    S. A Murthy, D. Krause, Jr., L. Li, and L.R. Hunter, Phys. Rev. Lett. 63, 965–968 (1989).Google Scholar
  121. 97.
    K. Abdullah, C. Carlberg, E. D. Commins, H. Gould, and S. B. Ross, Phys. Rev. Lett. 65, 2347–2350 (1990).Google Scholar
  122. 98.
    L. R. Hunter, Science 252, (no. 5002), pp. 73–79 (5 April 1991).Google Scholar
  123. 98a.
    E. A. Hinds, Atomic Physics, Vol. 11, (S. Haroche, J. C. Gay, and G. Grynberg, eds.), World Scientific, Singapore (1989), pp. 151–157.Google Scholar
  124. 99.
    H. Kopfermann, Nuclear Moments, Academic, New York (1958).Google Scholar
  125. 100.
    A. C. Hartley and P. G. H. Sandars, J. Phys. B 23, 1961–1974 (1990).Google Scholar
  126. 101.
    V. V. Flambaum, Yad. Fiz. (Sov. J Nucl. Phys.) 24, 383–386 (1976).Google Scholar
  127. 102.
    A. Ya. Kraftmakher, J. Phys. B 21, 2803–2813 (1988).Google Scholar
  128. 103.
    P. G. H. Sandars and R. M. Sternheimer, Phys. Rev. A 11, 473–476 (1975).Google Scholar
  129. 104.
    E. Lindroth and A-M. Mårtensson-Pendrill, Europhys. Lett. 15, 155–160 (1991).Google Scholar
  130. 105.
    E. A. Hinds, C. E. Loving, and P. G. H. Sandars, Phys. Lett. 62B, 97–99 (1976).Google Scholar
  131. 106.
    I. B. Khriplovich, Atomic Physics, Vol. 11 (S. Haroche, J. C. Gay, and G. Grynberg, eds.), World Scientific, Singapore (1989), pp. 113–132.Google Scholar
  132. 107.
    G. S. Harrison, P. G. H. Sandars, and S. J. Wright, Phys. Rev. Lett. 22, 1263–1265 (1969).Google Scholar
  133. 108.
    E. A. Hinds and P. G. H. Sandars, Phys. Rev. A 21, 480–487 (1980).Google Scholar
  134. 109.
    D. A. Wilkening, N. F. Ramsey, and D. J. Larson, Phys. Rev. A 29, 425–438 (1984).Google Scholar
  135. 110.
    D. Schropp, D. Cho, T. Vold, and E. A. Hinds, Phys. Rev. Lett. 59, 991–994 (1987).Google Scholar
  136. 111.
    D. Cho, K. Sangster, and E. A Hinds, Phys. Rev. Lett. 63 2559–2562 (1989).Google Scholar
  137. 112.
    P. G. H. Sandars, Phys. Rev. Lett. 19, 1396–1398 (1967).Google Scholar
  138. 113.
    W. G. Richards and P. Scott, private communication, quoted in Ref. 39.Google Scholar
  139. 114.
    V. B. Telitsyn, private communication, quoted in Ref. 41.Google Scholar
  140. 115.
    A. E. S. Green, T. Sawada, and D. S. Saxon, The Nuclear Independent Particle Model, Academic, New York (1968).Google Scholar
  141. 116.
    B. A. Brown, quoted in Ref. 35 as “private communication (1981).”Google Scholar
  142. 117.
    E. P. Shabalin, Usp. Fiz. Nauk 139, 561–585 (1983);Google Scholar
  143. 117a.
    E. P. Shabalin, Sov. Phys. Usp. 26, 297–310 (1983);Google Scholar
  144. 117b.
    X-G. He, B. H. J. McKellar, and S. Pakvasa, Int. J. Mod. Phys. A 4, 5011–5046 (1989).Google Scholar
  145. 118.
    L. Wolfenstein, Ann. Rev. Nucl. Part. Sci. 36, 137–170 (1986);Google Scholar
  146. 118a.
    S. M. Barr and W. J. Marciano, in CP Violation (C. Jarlskog, ed.), World Scientific, Singapore (1989), pp. 455–499.Google Scholar
  147. 119.
    K. Kleinknecht, Ann. Rev. Nucl. Sci. 26, 1 (1976);Google Scholar
  148. 119a.
    J. F. Donoghue, E. Golowich, and B. R. Holstein, Phys. Rep. 131, 319–428 (1986);Google Scholar
  149. 119b.
    J. F. Donoghue, B. R. Holstein, and G. Valencia, Int. J. Mod. Phys. A 2, 319–383 (1987);Google Scholar
  150. 119c.
    J. Cronin, Rev. Mod. Phys. 53, 373–383 (1981).Google Scholar
  151. 120.
    B. Heckel, Atomic Physics, Vol. 9 (R. S. van Dyck and E.N. Fortson, eds.), World Scientific, Singapore (1984), pp. 285–291.Google Scholar
  152. 121.
    I. B. Khriplovich and M. E. Pospelov, “Electric Dipole Moment of the W Boson and the Electron in the Kobayashi-Maskawa Model,” Novosibirsk preprint INP 90–123 (1990).Google Scholar
  153. 122.
    S. Weinberg, Phys. Rev. Lett. 37, 657–661 (1976);Google Scholar
  154. 122a.
    S. Weinberg, Phys. Rev. Lett. 63, 2333–2336 (1989).Google Scholar
  155. 123.
    A. Zee, Phys. Rev. Lett. 55, 2382–2385 (1985).Google Scholar
  156. 124.
    S. M. Barr and A. Zee, Phys. Rev. Lett. 65, 21–24 (1990).Google Scholar
  157. 125.
    I. B. Khriplovich, Nucl. Phys. B 352, 385–401 (1991).Google Scholar
  158. 126.
    V. M. Khatsymovsky, I. B. Khriplovich, and A. S. Yelkhovsky, Ann. of Phys. 186, 1–14 (1988); see also Ref. 105.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ann-Marie Mårtensson-Pendrill
    • 1
  1. 1.Department of PhysicsUniversity of Göteborg and Chalmers University of TechnologyGöteborgSweden

Personalised recommendations