Advertisement

Electron Correlation Effects on Atomic Properties

  • Karol Jankowski
Chapter
  • 65 Downloads

Abstract

The last several decades have witnessed enormous effort invested in developing methods for a reliable quantum-mechanical description of many-electron systems. The difficulty has been caused by the extremely complex structure of the equations that accurately describe atoms and molecules including more than one or two electrons. The present stage of methodological development is to a large extent the result of the revolution in computer technology. The availability of powerful computational equipment has stimulated the design of new, more sophisticated, and computationally demanding approaches, and it has permitted verification of the reliability of the existing methods by applying them both to larger systems and to more complicated types of states (e.g., quasi-degenerate or excited ones).

Keywords

Oscillator Strength Correlation Effect Dipole Polarizability Atomic Property Electron Correlation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Swanstrøm and F. Hegelund, in Computational Techniques in Quantum Chemistry and Molecular Physics (G. H. F. Diercksen, B. T. Sutcliffe, and A. Veillard, eds.), Reidel, Dordrecht (1975), pp. 299–345.Google Scholar
  2. 2.
    C. F. Froese-Fischer, The Hartree-Fock Method for Atoms, Wiley-Interscience, New York (1976).Google Scholar
  3. 3.
    O. Sinanoglu and K. A. Brueckner, Three Approaches to Electron Correlation in Atoms, Yale University Press, New Haven (1970).Google Scholar
  4. 4.
    A. Hibbert, Developments in atomic structure calculations, Rep. Prog. Phys. 38, 1217–1338 (1975).Google Scholar
  5. 5.
    N. H. March, Self-Consistent Fields in Atoms, Pergamon, Oxford (1975).Google Scholar
  6. 6.
    P. O. Löwdin, Correlation problem in many-electron quantum mechanics, Adv. Chem. Phys. 2, 207–322 (1959).Google Scholar
  7. 7.
    C. S. Sarma, Correlation energies in atoms, Phys. Rep. C 26, 1–67 (1976).Google Scholar
  8. 8.
    J. I. Musher, in MPT International Review of Science Theoretical Chemistry Volume (W. Byers-Brown, ed.), Butterworth, London (1972), pp. 1–40.Google Scholar
  9. 9.
    I. Lindgren and J. Morrison, Atomic Many-Body Theory, Springer, Berlin (1982).Google Scholar
  10. 10.
    K. Jankowski, in Methods in Computational Chemistry (S. Wilson, ed.), Vol. 1: Electron Correlation in Atoms and Molecules, Plenum, New York (1987), pp. 1–116.Google Scholar
  11. 11.
    A. Dalgarno, Atomic polarizabilities and shielding factors, Adv. Phys. 11, 281–315 (1962).Google Scholar
  12. 12.
    G. H. F. Diercksen, B. O. Roos, and A. J. Sadlej, Electron correlation and properties of many-electron systems, Int. J. Quant. Symp. 17, 265–288 (1983).Google Scholar
  13. 13.
    P. Jørgensen and J. Simons (eds.), Geometrical Derivatives of Energy Surface and Molecular Properties, Reidel, Dordrecht (1986).Google Scholar
  14. 14.
    S. T. Epstein, The Variational Method in Quantum Chemistry, Academic, New York (1974).Google Scholar
  15. 15.
    E. Clementi and C. Roetti, Tables of atomic functions, At. Data Nucl. Data Tables 14, 177–478 (1974).Google Scholar
  16. 16.
    S. Wilson, Electron Correlation in Molecules, Clarendon, Oxford (1984).Google Scholar
  17. 17.
    M. Urban, I. Černušák, V. Kellö, and J. Noga, in Methods in Computational Chemistry (S. Wilson, ed.), Vol. 1, Electron Correlation in Atoms and Molecules, Plenum, New York (1987), pp. 117–250.Google Scholar
  18. 18.
    U. Fano and G. Racah, Irreducible Tensor Sets, Academic, New York (1959).Google Scholar
  19. 19.
    A. P. Jucys and A. A. Bandzatis, The Theory of Angular Momentum in Quantum Mechanics, Academy of Science of the Lithuanian SSR, Vilnius (1977).Google Scholar
  20. 20.
    A. M. Mårtensson, An iterative, numeric procedure to obtain pair functions applied to two-electron systems, J. Phys. B 12, 3995–4012 (1979).Google Scholar
  21. 21.
    R. J. Bartlett, Many-body perturbation theory and coupled-cluster theory for electron correlation in molecules, Ann. Rev. Phys. Chem. 32, 359–401 (1981).Google Scholar
  22. 22.
    H. Primas, in Modern Quantum Chemistry (O. Sinanoglu, ed.), Vol. 2, Academic, New York (1965), pp. 45–74.Google Scholar
  23. 23.
    H. Hellmann, Einführung in die Quantenchemie, Franz Deuticke, Leipzig (1939).Google Scholar
  24. 24.
    R. P. Feynman, Forces in molecules, Phys. Rev. 56, 340–345 (1939).Google Scholar
  25. 25.
    R. E. Stanton, Hellmann-Feynman theorem and correlation energies, J. Chem. Phys. 36, 1298–1300 (1962).Google Scholar
  26. 26.
    D. F. Tuan, Hellmann-Feynman theorem for multiconfiguration self-consistent field theory and correlation energy, J. Chem. Phys. 51, 607–611 (1969).Google Scholar
  27. 27.
    A. C. Hurley, The electrostatic calculation of molecular energies. II. Approximate wave functions and the electrostatic method, Proc. Roy. Soc. (London) A 226, 179–192 (1954).Google Scholar
  28. 28.
    A. D. Buckingham, Permanent and induced molecular moments and long-range inter-molecular forces, Adv. Chem. Phys. 12, 107–142 (1967).Google Scholar
  29. 29.
    I. Černušák, G. H. F. Diercksen, and A. J. Sadlej, Fourth-order many-body perturbation theory study of the electron-correlation contribution to polarizabilities of Ne, Phys. Rev. A 33, 814–823 (1986).Google Scholar
  30. 30.
    A. Dalgarno, Perturbation theory for atomic systems, Proc. Roy. Soc. (London) A 251, 282–290 (1959).Google Scholar
  31. 31.
    J. O. Hirschfelder, W. Byers-Brown, and S. T. Epstein, Recent developments in perturbation theory, Adv. Quant. Chem. 1, 255–274 (1964).Google Scholar
  32. 32.
    A. J. Sadlej, Perturbation theory of the electron correlation effects for atomic and molecular properties, J. Chem. Phys. 75, 320–331 (1981).Google Scholar
  33. 33.
    R. M. Stevens, R. M. Pitzer, and W. N. Limpscomb, Perturbed Hartree-Fock calculations. I. Magnetic susceptibility and shielding in the LiH molecule, J. Chem. Phys. 38, 550–560 (1963).Google Scholar
  34. 34.
    J. Gerratt and I. M. Mills, Force constant and dipole moment derivatives of molecules from perturbed Hartree-Fock calculations, J. Chem. Phys. 49, 1719–1729 (1968).Google Scholar
  35. 35.
    A. Dalgarno and A. L. Steward, A perturbation calculation of properties of the helium isoelectronic sequence, Proc. Roy. Soc. (London) A 247, 245–259 (1958).Google Scholar
  36. 36.
    C. Möller and M. S. Plesset, Note on the approximate treatment for many-electron systems, Phys. Rev. 46, 618–622 (1934).Google Scholar
  37. 37.
    T. C. Caves and M. Karplus, Perturbed Hartree-Fock theory. I. Diagrammatic double-perturbation analysis, J. Chem. Phys. 50, 3649–3661 (1969).Google Scholar
  38. 38.
    J. Goldstone, Derivation of the Brueckner many-body theory, Proc. R. Soc. (London) A 239, 267–279 (1957).Google Scholar
  39. 39.
    H. D. Cohen and C. C. J. Roothaan, Electric dipole polarizability of atoms by the Hartree-Fock method. I. Theory for closed-shell systems, J. Chem. Phys. 43, S34–S38 (1965).Google Scholar
  40. 40.
    G. T. Daborn, W. I. Ferguson, and N. C. Handy, The calculation of second-order molecular properties at the configuration inaction level of accuracy, Chem. Phys. 50, 255–263 (1980).Google Scholar
  41. 41.
    E. A. Salter, G. W. Trucks, and R. J. Bartlett, Analytic energy derivatives in many-body methods. I. First derivatives, J. Chem. Phys. 90, 1752–1766 (1989).Google Scholar
  42. 42.
    E. A. Salter, H. Sekino, and R. J. Bartlett, Property evaluation and orbital relaxation in coupled-cluster methods, J. Chem. Phys. 87, 502–509 (1987).Google Scholar
  43. 43.
    R. Ahlrichs, Many-body perturbation calculations and coupled electron pair models, Comp. Phys. Commun. 17, 31–45 (1979).Google Scholar
  44. 44.
    R. Ahlrichs, P. Scharf, and C. Ehrhardt, The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional, J. Chem. Phys. 82, 890–898 (1985).Google Scholar
  45. 45.
    A. J. Sadlej, Molecular electric polarizabilities. Electric-field-variant(EFV) Gaussian basis sets for polarizability calculations, Chem. Phys. Lett. 47, 50–54 (1977).Google Scholar
  46. 46.
    H. Monkhorst, Calculation of properties with the coupled-cluster method, Int. J. Quant. Chem. Symp. 11, 421–432 (1977).Google Scholar
  47. 47.
    P. Jørgensen and J. Simons, Ab initio analytical molecular gradients and Hessians, J. Chem. Phys. 79, 334–357 (1983).Google Scholar
  48. 48.
    R. J. Bartlett, in Geometrical Derivatives of Energy Surface and Molecular Properties (P. Jørgensen and J. Simons, eds.) Reidel, Dordrecht (1986), pp. 35–61.Google Scholar
  49. 49.
    E. A. Salter, G. W. Trucks, and R. J. Bartlett, Theory and application of MBPT(3) gradients: the density approach, Chem. Phys. Lett. 141, 61–70 (1987).Google Scholar
  50. 50.
    E. A. Salter and R. J. Bartlett, Analytic energy derivatives in many-body methods. II. Second derivatives, J. Chem. Phys. 90, 1767–1773 (1989).Google Scholar
  51. 51.
    N. C. Handy and H. F. Schaefer III, On the evaluation of analytic energy derivatives for correlated wave functions, J. Chem. Phys. 81, 5031–5033 (1981).Google Scholar
  52. 52.
    J. Arponen, Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems, Ann. Phys. (NY) 151, 311–382 (1983).Google Scholar
  53. 53.
    S. Pal, Bivariational coupled-cluster approach for the study of static electronic properties, Phys. Rev. A 34, 2682–2686 (1986).Google Scholar
  54. 54.
    S. Pal, Linearized bivariational coupled-cluster approach : General scheme for derivation of static properties, Phys. Rev. A 39, 2712–2714 (1989).Google Scholar
  55. 55.
    R. J. Bartlett and J. Noga, The expectation value coupled-cluster method and analytical energy derivatives, Chem. Phys. Lett. 150, 29–36 (1988).Google Scholar
  56. 56.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Derivative studies in Hartree-Fock and Møller-Plesset theories, Int. J. Quant. Chem. Symp. 13, 251–241 (1979).Google Scholar
  57. 57.
    E. A. Salter, G. W. Trucks, G. Fitzgerald, and R. J. Bartlett, Theory and application of MBPT (3) gradients: the density approach, Chem. Phys. Lett. 141, 61–70 (1987).Google Scholar
  58. 58.
    G. W. Trucks, E. A. Salter, J. Noga, and R. J. Bartlett, Analytic many-body perturbation theory MBPT(4) response properties, Chem. Phys. Lett. 150, 37–44 (1988).Google Scholar
  59. 59.
    E. A. McCullough, Jr., Basis set errors in quadrupole moment calculations, Mol. Phys. 42, 943–950 (1981).Google Scholar
  60. 60.
    H. J. Werner and W. Meyer, PNO-CI and PNO-CEPA studies of electron correlation effects. V. Static dipole polarizabilities of small molecules, Mol Phys. 31, 855–872 (1976).Google Scholar
  61. 61.
    G. D. Zeiss, W. R. Scott, N. Suzuki, D. P. Chong, and S.R. Langhoff, Finite-field calculations of molecular polarizabilities using field-induced polarization functions: second- and third-order perturbation correlation corrections to the coupled Hartree-Fock polariz-ability of H2O, Mol Phys. 37, 1543–1572 (1979).Google Scholar
  62. 62.
    S. Wilson and W. J. Sadlej, Finite-field many-body perturbation theory calculations of the dipole polarizability of the fluoride ion using electric-field-variant Gaussian-type orbitals, Theor. Chim. Acta 60, 19–39 (1981).Google Scholar
  63. 63.
    G. H. F. Diercksen and A. J. Sadlej, Finite-field many-body perturbation theory. IV. Basis set optimization in MBPT calculations of molecular properties; molecular quadrupole moments, Theor. Chim. Acta 63, 69–89 (1983).Google Scholar
  64. 64.
    L. Adamowicz and R. J. Bartlett, Optimized virtual orbital space for high-level correlated calculations, J. Chem. Phys. 86, 6314–6324 (1987).Google Scholar
  65. 65.
    L. Adamowicz, R. J. Bartlett, and A. J. Sadlej, Optimized virtual orbital space for high-level correlated calculations. II. Electric properties, J. Chem. Phys. 88, 5749–5758 (1988).Google Scholar
  66. 66.
    M. Karplus and H. J. Kolker, Magnetic susceptibilities of diatomic molecules, J. Chem. Phys. 38, 1263–1275 (1963).Google Scholar
  67. 67.
    E. A. Hylleraas, Neue Berechnung der Energie des Heliums in Grundzustande, sowie des tiefsten Terms von Ortho-Helium, Z. Phys. 54, 347–366 (1929).Google Scholar
  68. 68.
    J. M. Schulman and F. L. Tobin, Polarizabilities and shielding constants of two electron ions, J. Chem. Phys. 53, 3662–3664 (1970).Google Scholar
  69. 69.
    P. Sitz, Polarizability of the two-electron ions, J. Chem. Phys. 55, 1481–1482 (1971).Google Scholar
  70. 70.
    W. E. Donath, Atomic calculations. II. Polarizabilities and London force constant for F-, Ne, and Na+, J. Chem. Phys. 39, 2685–2693 (1963).Google Scholar
  71. 71.
    H. J. Kolker and H. H. Michels, Variational approach to perturbation theory. I. Application to the calculation of atomic polarizabilities, J. Chem. Phys. 43, 1027–1035 (1965).Google Scholar
  72. 72.
    R. J. Cave and E. R. Davidson, Quasi-degenerate variational perturbation theory and the calculation of first-order properties from variational-perturbation theory wave functions, J. Chem. Phys. 89, 6798–6814 (1988).Google Scholar
  73. 73.
    H. P. Kelly, Correlation effects in atoms, Phys. Rev. 131, 684–699 (1963);Google Scholar
  74. 73a.
    H. P. Kelly Many-body perturbation theory applied to atoms, Phys. Rev. 144, 39–55 (1966).Google Scholar
  75. 74.
    H. P. Kelly, Many-body perturbation theory applied to atoms, Phys. Rev. 136, B896–B912 (1964);Google Scholar
  76. 74a.
    H. P. Kelly, Application of many-body diagram techniques in atomic physics, Adv. Chem. Phys. 14, 129–190 (1969).Google Scholar
  77. 75.
    J. H. Miller and H. P. Kelly, Dipole polarizability of neutral carbon atom and dipole-dipole interaction between carbon atoms, Phys. Rev. A 5, 516–520 (1972).Google Scholar
  78. 76.
    A. Dalgarno and H. A. McIntyre, The polarizabilities and shielding factors of the beryllium sequence, Proc. Phys. Soc. 85, 47–50 (1965).Google Scholar
  79. 77.
    E. S. Chang and R. T. Pu, T. P. Das, Many-body approach to the hyperfine problem. I. Lithium atom ground state. Phys. Rev. 174, 1–15 (1968);Google Scholar
  80. 77a.
    E. S. Chang and R. T. Pu, T. P. Das, Many-body calculation of atomic polarizabilities: relation to Hartree-Fock theory, Phys. Rev. 174, 16–23 (1968).Google Scholar
  81. 78.
    L. Adamowicz and A. J. Sadlej, Second-order correlation correction to the coupled Hartree-Fock polarizability of Be, Chem. Phys. Lett. 53, 377–381 (1978).Google Scholar
  82. 79.
    A. J. Sadlej, Static dipole polarizability of the fluorine ion, J. Phys. Chem. 83, 1653–1657 (1979).Google Scholar
  83. 80.
    R. J. Bartlett and G. D. Purvis III, Molecular hyperpolarizabilities. I. Theoretical calculations including correlation, Phys. Rev. A 20, 1313–1322 (1979).Google Scholar
  84. 81.
    J. Paldus and J. Čižek, Time-independent diagrammatic approach to perturbation theory of fermion systems, Adv. Quant. Chem. 9, 105–197 (1975).Google Scholar
  85. 82.
    G. H. F. Diercksen and A. J. Sadlej, Configuration interaction and perturbation study of the electron correlation contribution to the dipole polarizability of beryllium, Chem. Phys. 65, 407–415 (1982);Google Scholar
  86. 82a.
    G. H. F. Diercksen and A. J. Sadlej, II. SD-MBPT study of the nuclear charge dependence of the electron correlation contribution to the dipole polarizability of 10-electron systems, Theor. Chim. Acta 61, 485–504. (1982).Google Scholar
  87. 83.
    G. H. F. Diercksen and A. J. Sadlej, Finite-field many-body perturbation theory: quadrupole polarizability of Be, Chem. Phys. Lett. 89, 423–429 (1982);Google Scholar
  88. 83a.
    G. H. F. Diercksen and A. J. Sadlej, Perturbation theory of the electron correlation effects for atomic and molecular properties. V. Quadrupole polarizability of Ne, Phys. Rev. A 27, 2795–2803 (1983).Google Scholar
  89. 84.
    G. H. F. Diercksen and A. J. Sadlej, Perturbation theory of the electron correlation effects for atomic and molecular properties. IV. Dipole polarizability of the fluorine ion, Mol. Phys. 47, 33–53 (1982);Google Scholar
  90. 84a.
    G. H. F. Diercksen and A. J. Sadlej, Electric properties of negative ions: dipole polarizability of the chloride ion, Chem. Phys. Lett. 84, 390–396 (1981).Google Scholar
  91. 85.
    G. H. F. Diercksen and A. J. Sadlej, Finite-field many-body perturbation theory. VI. Multipole polarizabilities of beryllium: a comparative study, Chem. Phys. 77, 429–434 (1983).Google Scholar
  92. 86.
    G. Maroulis and A. J. Thakkar, Static hyperpolarizabilities and polarizabilities for Be : a fourth-order Møller-Plesset perturbation theory calculation, J. Phys. B: At. Mol. Opt. Phys. 21, 3819–3831 (1988).Google Scholar
  93. 87.
    C. W. Bauschlicher and P. R. Taylor, Full CI benchmark calculations for molecular properties, Theor. Chim. Acta 71, 263–276 (1987).Google Scholar
  94. 88.
    P. O. Nerbrant, B. O. Roos, and A. J. Sadlej, First-order properties and Hellmann-Feynman theorem in the case of a limited CI wave function, Int. J. Quant. Chem. 15, 135 – 145 (1979).Google Scholar
  95. 89.
    A. J. Sadlej, Correlation effects in externally perturbed many-electron systems, Int. J. Quant. Chem. 23, 147–167 (1983).Google Scholar
  96. 90.
    E. R. Davidson, in The World of Quantum Chemistry, (R. Daudel and B. Pullman, eds.), Reidel, Dordrecht (1974), pp. 17–30.Google Scholar
  97. 91.
    F. P. Billingsley and M. Krauss, Coupled multiconfigurational self-consistent-field method for atomic dipole polarizabilities. I. Theory and applications to carbon, Phys. Rev. A 6, 855–865 (1972).Google Scholar
  98. 92.
    W. J. Stevens and F. P. Billingsley II, Coupled multiconfigurational self-consistent-field method for atomic dipole polarizabilities. II. Applications to first-row atoms, lithium through neon, Phys. Rev. A 8, 2236–2245 (1973).Google Scholar
  99. 93.
    H. J. Werner and W. Meyer, Finite perturbation calculations for the static dipole polarizabilities of the first-row atoms, Phys. Rev. A 13, 13–16 (1976).Google Scholar
  100. 94.
    E. A. Reinsch and W. Meyer, Finite perturbation calculation for the static quadrupole and mixed dipole-octupole polarizabilities for the ground states of first-row atoms, Phys. Rev. A 18, 1793–1796 (1978).Google Scholar
  101. 95.
    W. Meyer, PNO-CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals and application to the ground state and ionized states of methan, J. Chem. Phys. 58, 1017–1035 (1973).Google Scholar
  102. 96.
    B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, A complete active-space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chem. Phys. 48, 157–173 (1980).Google Scholar
  103. 97.
    C. Nelin, B. O. Roos, and A. J. Sadlej, Complete active space (CAS) SCF and externally contracted multireference CI studies of atomic and molecular properties: static dipole polarizabilities of F, F-, and Ne, J. Chem. Phys. 77, 3607–3614 (1982).Google Scholar
  104. 98.
    G. H. F. Diercksen and A. J. Sadlej, Electric properties of negative ions : dipole hyperpolarizability of the fluorine ion, J. Chem. Phys. 76, 4294–4294 (1982).Google Scholar
  105. 99.
    L. Z. Stolarczyk and H. J. Monkhorst, Coupled-cluster method in Fock space. IV. Calculations of expectation values and transition moments, Phys. Rev. A 37, 1926–1933 (1988).Google Scholar
  106. 100.
    J. Noga and M. Urban, On expectation value calculations of one-electron properties using the coupled-cluster wave functions, Theor. Chim. Acta 73, 291–306 (1988).Google Scholar
  107. 101.
    M. Urban, G. H. F. Diercksen, A. J. Sadlej, and J. Noga, Direct evaluation of one-electron properties in coupled-cluster methods, Theor. Chim. Acta 77, 29–37 (1990).Google Scholar
  108. 102.
    P. R. Taylor, T. J. Lee, J. E. Rice, and J. Almlöf, The polarizabilities of neon, Chem. Phys, Lett. 163, 359–365 (1989).Google Scholar
  109. 103.
    W. Rijks and P. E. S. Wormer, Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2, J. Chem. Phys. 88, 5704–5714 (1988).Google Scholar
  110. 104.
    G. Maroulis and A. J. Thakkar, Hyperpolarizabilities and polarizabilities of neon : discrepancy between theory and experiment, Chem. Phys. Lett. 156, 87–90; Coupled-cluster calculations of hyperpolarizabilities and polarizabilities for Be, Phys. Rev. A 40, 1130–1132(1989).Google Scholar
  111. 105.
    D. L. Yeager, in Many-Body Methods in Quantum Chemistry (U. Kaldor, ed.), Springer, Berlin (1989), pp. 275–291.Google Scholar
  112. 106.
    J. Oddershede, Polarization propagator calculations, Adv. Quant. Chem. 11, 275–352 (1978).Google Scholar
  113. 107.
    S. Canuto, W. Duch, J. Geertsen, F. Muller-Plathe, J. Oddershede, and G. E. Scuseria, Chem. Phys. Lett. 147, 435–442 (1988).Google Scholar
  114. 108.
    M. Jaszunski, Magnetic susceptibility of the BH molecule, Theor. Chim. Acta 48, 323–329 (1978).Google Scholar
  115. 109.
    M. Iwai and A. Sakai, Electron correlation effects on magnetic properties of molecules, J. Chem. Phys. 77, 1951–1982 (1982);Google Scholar
  116. 109a.
    M. Iwai and A. Sakai, Electron correlation effects on magnetic properties of BH, Int. J. Quant. Chem. 24, 623–626 (1983).Google Scholar
  117. 110.
    M. Schindler, Magnetic properties in terms of localized quantities. XII. Normal- and hypervalent sulfur compounds, J. Chem. Phys. 88, 7638–7649 (1988).Google Scholar
  118. 111.
    J. Geertsen, A solution to the gauge origin problem for magnetic susceptibility, J. Chem. Phys. 90, 4892–4894 (1989).Google Scholar
  119. 112.
    F. W. King, Calculations on the 2 S ground states of some members of the Lil/el isoelectronic series, Phys. Rev. A 40, 1735–1747 (1989).Google Scholar
  120. 113.
    M. Karplus and H. J. Kolker, A variational-perturbation approach to the interaction of radiation with atoms and molecules, J. Chem. Phys. 39, 1493–1506 (1963).Google Scholar
  121. 114.
    A. Dalgarno, in Perturbation Theory and Its Applications in Quantum Mechanics (C. H. Wilcox, ed.), Wiley, New York (1966), pp. 145–183.Google Scholar
  122. 115.
    P. W. Langhoff, S. T. Epstein, and M. Karplus, Aspects of time-dependent perturbation theory, Rev. Mod. Phys. 44, 602–644 (1972).Google Scholar
  123. 116.
    F. Weinhold, Electric polarizabilities of two-electron atoms by a lower-bound procedure, Proc. Roy. Soc. (London) A 327, 209–227 (1972).Google Scholar
  124. 117.
    J. S. Sims and J. R. Rumble, Jr., Upper and lower bounds to atomic and molecular properties. II. Electric polarizabilities of four-electron atoms by a lower-bound procedure, Phys. Rev. A 8, 2231–2245 (1973).Google Scholar
  125. 118.
    J. S. Sims, S. A. Hagstrøm, and J. R. Rumble, Jr., Upper and lower bounds to atomic and molecular properties. IV. Electric polarizabilities of three-electron atoms by a lower-bound procedure, Phys. Rev. A 14, 576–578 (1976).Google Scholar
  126. 119.
    P. A. M. Dirac, Exchange phenomena in the Thomas atom, Proc. Cambridge Phil. Soc. 26, 376–385 (1930).Google Scholar
  127. 120.
    D. J. Thouless, Quantum Mechanics of Many-Body Systems, Academic, New York (1961).Google Scholar
  128. 121.
    A. Dalgarno and G. A. Victor, Time-dependent coupled Hartree-Fock approximation, Proc. Roy. Soc. (London) A 291, 291–295 (1966).Google Scholar
  129. 122.
    J. Frenkel, Wave Mechanics: Advanced General Theory, Clarendon, Oxford (1934).Google Scholar
  130. 123.
    A. D. McLachlan and M. A. Ball, Time-dependent Hartree-Fock theory for molecules, Rev. Mod. Phys. 36, 844–855 (1964).Google Scholar
  131. 124.
    R. McWeeny, Some remarks on multiconfigurational time-dependent Hartree-Fock theory, Int. J. Quant. Chem. 23, 405–416 (1983).Google Scholar
  132. 125.
    D. L. Yeager and Jørgensen, A multiconfigurational time-dependent Hartree-Fock approach, Chem. Phys. Lett. 65, 77–80 (1979).Google Scholar
  133. 126.
    H. P. Kelly, Frequency-dependent polarizability of atomic oxygen calculated by many-body theory, Phys. Rev. 182, 84–89 (1969).Google Scholar
  134. 127.
    N. C. Dutta, T. Ishihara, C. Matsubara, and T. P. Das, Many-body theory for time-dependent perturbations in atomic systems, Phys. Rev. Lett. 22, 8–12 (1969);Google Scholar
  135. 127a.
    N. C. Dutta, T. Ishihara, C. Matsubara, and T. P. Das, Many-body approach to the properties of interacting atoms, Int. J. Quant. Chem. 3, 367–380 (1970).Google Scholar
  136. 128.
    C. Matsubara, N. C. Dutta, T. I. Ishihara, and T. P. Das, Brueckner-Goldstone many-body theory for dynamic polarizabilities : application to Ne, Phys. Rev. A 1, 561–571 (1970).Google Scholar
  137. 129.
    M. B. Doran, The multipole long-range (Van der Waals) interaction coefficients for neon, argon, krypton, and xenon, J. Phys. B: Atom. Mol. Phys. 7, 558–569 (1974).Google Scholar
  138. 130.
    F. Visser, P. E. S. Wormer, and W. P. J. H. Jacobs, The non-empirical calculation of second-order molecular properties by means of effective states. III. Correlated dynamic polarizabilities and dispersion coefficients for He, Ne, H2, N2, and O2, J. Chem. Phys. 82, 3753–3764 (1985).Google Scholar
  139. 131.
    P. E. S. Wormer and W. Rijks, Analysis of correlation effects in molecular second-order time-dependent properties : application to the dynamic polarizabilities of the neon atom and dispersion coefficients of N2 dimer, Phys. Rev. A 33, 2928–2939 (1986).Google Scholar
  140. 132.
    D. C. Allison, P. G. Burke, and W. D. Robb, R-matrix theory of atomic polarizabilities, J. Phys. B: At. Mol. Phys. 5, 55–65 (1972).Google Scholar
  141. 133.
    P. G. Burke, Potential Scattering in Atomic Physics, Plenum, New York (1977).Google Scholar
  142. 134.
    W. D. Robb, Calculation of the dynamic dipole polarizabilities and Van der Waals coefficients of beryllium and carbon atoms in the ground state, J. Phys. B: At. Mol. Phys. 6, 945–953 (1973);Google Scholar
  143. 134a.
    W. D. Robb, The frequency-dependent polarizability of atomic nitrogen, J. Phys. B: At. Mol. Phys. 7, L369–L372 (1974).Google Scholar
  144. 135.
    R. H. Young, W. J. Deal, and N. R. Kestner, Quasi-periodic states of an oscillatory Hamiltonian, Mol. Phys. 17, 369–376 (1969).Google Scholar
  145. 136.
    H. Sambe, Steady states and quasi degeneracies of a quantum-mechanical system in an oscillating field, Phys. Rev. A 7, 2203–2213 (1973).Google Scholar
  146. 136.
    Y. Y. Dmitriev and B. O. Roos, Theory and computational methods for studies of nonlinear phenomena in laser spectroscopy. I. General formalism, Int. J. Quantum Chem. 26, 35–50 (1984).Google Scholar
  147. 138.
    B. O. Roos, Y. Y. Dmitriev, and M. Hotokka, Theory and computational methods for studies of nonlinear phenomena in laser spectroscopy. II. Calculations of steady-state wave functions, Int. J. Quant. Chem. 26, 51–68 (1984).Google Scholar
  148. 139.
    M. Jaszunski and B. O. Roos, An ab initio study of the nonlinear optical properties of the He atom and the H2 molecule, Mol. Phys. 52, 1209–1224 (1984).Google Scholar
  149. 140.
    K. F. Freed, M. H. Herman and D. L. Yeager, Critical comparison between equation of motion-Green’s function methods and configuration interaction methods: analysis of methods and applications, Phys. Scr. 21, 242–250 (1980).Google Scholar
  150. 141.
    D. J. Rowe, Equation-of-motion method and the extended shell model, Rev. Mod. Phys. 40, 153–166 (1968).Google Scholar
  151. 142.
    T. I. Shibuya and V. McKoy, Higher random-phase approximation as an approximation to the equations of motion, Phys. Rev. A 2, 2208–2218 (1970).Google Scholar
  152. 143.
    M. McCurdy, T. N. Rescigno, D. L. Yeager, and V. McKoy, in Methods of Electronic Structure Theory (H. F. Schaefer III, ed.), Plenum, New York (1977), pp. 339–386.Google Scholar
  153. 144.
    J. Oddershede, Polarization propagator calculations, Adv. Quant. Chem. 11, 275–352 (1978).Google Scholar
  154. 145.
    M. F. Herman, K. F. Freed, D. L. Yeager, and B. Liu, Critical test of equation of motion-Green’s function method. II. Comparison with configuration interaction results, J. Chem. Phys. 72, 611–620(1980).Google Scholar
  155. 146.
    A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York (1971).Google Scholar
  156. 147.
    M. J. Jamieson, Time-dependent Hartree-Fock theory for atoms, Int. J. Quant. Chem. 4S, 103–115(1971).Google Scholar
  157. 148.
    D. L. Yeager and K. F. Freed, Analysis of third-order contribution to equation of motion-Green’s function excitation energies: application to N2, Chem. Phys. 22, 415–433 (1977).Google Scholar
  158. 149.
    E. Dalgaard, Time-dependent multiconfigurational Hartree-Fock theory, J. Chem. Phys. 72, 816–823 (1980).Google Scholar
  159. 150.
    E. Dalgaard and H. J. Monkhorst, Some aspects of the time-dependent coupled-cluster approach to dynamic response functions, Phys. Rev. A 28, 1217–1222 (1983).Google Scholar
  160. 151.
    J. Olsen, H. Jørgen, A. Jensen, and P. Jørgensen, Solution of the large matrix equations which occur in response theory, J. Comput. Phys. 74, 265–287 (1987).Google Scholar
  161. 152.
    P. Albertsen, P. Jørgensen, and D. L. Yeager, Frequency-dependent polarizabilities in a multiconfigurational time-dependent Hartree-Fock approximation, Mol. Phys. 41, 409–420 (1980).Google Scholar
  162. 153.
    M. Jaszuński and R. McWeeny, Calculations of frequency-dependent properties by multiconfiguration time-dependent Hartree-Fock theory, Mol. Phys. 46, 863–873 (1982).Google Scholar
  163. 154.
    M. Jaszuński and D. L. Yeager, Hyperpolarizability of the neon atom, Phys. Rev. A 40, 1651–1652 (1989).Google Scholar
  164. 155.
    M. Jaszuński, A mixed numerical-analytical approach to the calculation of nonlinear electric properties, Chem. Phys. Lett. 140, 130–132 (1987).Google Scholar
  165. 156.
    D. L. Yeager, in Many-Body Methods in Quantum Chemistry (U. Kaldor, ed.), Springer, Berlin (1989), pp. 275–291.Google Scholar
  166. 157.
    R. J. S. Crossley, in Advances in Atomic and Molecular Physics, Vol. 5 (D. R. Bates and I. Estermann, eds.), Academic, New York (1969), pp. 237–296.Google Scholar
  167. 158.
    S. Chandrasekhar, On the continuous absorption coefficient of the negative hydrogen ion, Astrophys. J. 102, 223–231 (1945).Google Scholar
  168. 159.
    M. Cohen and R. P. McEachran, Length and velocity formulae in approximate oscillator strength calculations, Chem. Phys. Lett. 14, 201–204 (1972).Google Scholar
  169. 160.
    A. F. Starace, Comment on “Length and velocity formulas in approximate oscillator-strength calculations”, Phys. Rev. A 8, 1141–1142 (1973).Google Scholar
  170. 161.
    O. Sinanoglu, On the agreement between dipole length and dipole velocity calculated oscillator strength, Int. J. Quant. Chem. Symp. 7, 65–67 (1973).Google Scholar
  171. 162.
    M. T. Anderson and F. Weinhold, Relative accuracy of length and velocity forms in oscillator-strength calculations, Phys. Rev. A 10, 1457–1463 (1974).Google Scholar
  172. 163.
    C. A. Nicolaides and D. R. Beck, On the length, velocity, and acceleration expressions for the calculation of accurate oscillator strength in many-electron systems, Chem. Phys. Lett. 35, 202–209 (1975).Google Scholar
  173. 164.
    D. L. Lin, Velocity and length form of oscillator strength and unitary transformations of quantum electrodynamics, Phys. Rev. A 17, 1939–1943 (1978).Google Scholar
  174. 165.
    A. J. Sadlej, Time dependence of wave functions and the calculation of transition intensities, Int. J. Quant. Chem. 35, 409–423 (1989).Google Scholar
  175. 166.
    O. Goscinski, G. Howatt, and T. Åberg, On transition energies and probabilities by a transition operator method, J. Phys. B: At. Mol. Phys. 8, 11–19 (1975).Google Scholar
  176. 167.
    M. Godefroid, J. J. Berger, and G. Verhaegen, A prori calculation of atomic oscillator strengths using correlated transition states, J. Phys. B: At. Mol. Phys. 9, 2181–2193 (1976).Google Scholar
  177. 168.
    I. Öksüz and O. Sinanoglu, Theory of atomic structure including electron correlation. I. Three kinds of correlation in ground and excited configurations, Phys. Rev. 181, 42–53 (1969);Google Scholar
  178. 168a.
    I. Öksüz and O. Sinanoglu, Theory of atomic structure including electron correlation, Phys. Rev. 181, 54–65 (1969).Google Scholar
  179. 169.
    P. Westhaus and O. Sinanoglu, Theory of atomic structure including electron correlation. III. Calculation of multiplet oscillator strengths and comparisons with experiments for C II, N I, N II, O II, O III, O IV, F II, Ne II, and Na III, Phys. Rev. 183, 56–67 (1969)Google Scholar
  180. 170.
    E. Trefftz, Wave functions and transition probabilities for the electrons of the MgI-atom. II. Z. Astrophysik 26, 240–263 (1949);Google Scholar
  181. 170a.
    E. Trefftz, Wave functions and transition probabilities for the Mgl atom. III. The influence of polarization, Z. Astrophysik 28, 67–78 (1950).Google Scholar
  182. 171.
    B. Schiff and C. L. Pekeris, f values for transitions between the 11 S, 21 S, and 23 S, and the 21 P, 23 P, 31 P, and 33 P states in helium, Phys. Rev. A 134, 638–640 (1964).Google Scholar
  183. 172.
    C. L. Pekeris, Ground state of two-electron atoms, Phys. Rev. 112, 1649–1658 (1958).Google Scholar
  184. 173.
    B. Schiff, C. L. Pekeris, and Y. Accad, f values for transitions between the low-lying S and P states of the helium isoelectronic sequence up to Z = 10, Phys. Rev. A 4, 885–893 (1971).Google Scholar
  185. 174.
    A. W. Weiss, Oscillator strength for the helium isoelectronic sequence, J. Res. Natural Bureau Standards A 71, 163–167 (1967).Google Scholar
  186. 175.
    A. Kono and S. Hattori, Accurate nonrelativistic oscillator strengths for P-D transitions in the helium isoelectronic sequence, Phys. Rev. A 30, 2093–2096 (1984).Google Scholar
  187. 176.
    A. B. Bolotin and A. P. Jucys, Application of the many-configuration approximation for determining the dipole force in beryllium-type and boron-type atoms, J. Eksperim. i Teor. Fiz. 24, 537–544 (1953);Google Scholar
  188. 176a.
    A. B. Bolotin, I. B. Levinson, L. I. Levin, Two-configura-tional approximation for carbonlike atoms, J. Eksperim. i Teor. Fiz. 29, 449–453 (1955).Google Scholar
  189. 177.
    L. C. Green, N. C. Johnson, and E. K. Kolchin, Oscillator strengths for singlet and triplet series in neutral helium, Astrophys. J. 144, 369–375 (1966).Google Scholar
  190. 178.
    A. W. Weiss, Wave functions and oscillator strengths for the lithium isoelectronic sequence, Astrophys. J. 138, 1262–1276 (1963);Google Scholar
  191. 178a.
    A. W. Weiss, Superposition of configurations and atomic oscillator strength: carbon I and II, Phys. Rev. 162, 71–80 (1967).Google Scholar
  192. 179.
    A. W. Weiss, Theoretical multiplet strengths for Mg I, Al II and Si III, J. Chem. Phys. 47, 3573–3578 (1967).Google Scholar
  193. 180.
    R. W. Zare, Correlation effects in complex spectra. II. Transition probabilities for the magnesium isoelectronic sequence, J. Chem. Phys. 47, 3561–3572 (1967).Google Scholar
  194. 181.
    A. W. Weiss, Calculations of the 2sns 1 S and 2p3p 3,1P levels of Be I, Phys. Rev. A 6, 1261–1266 (1972).Google Scholar
  195. 182.
    A. Hibbert, Oscillator strengths of transitions in the beryllium sequence, J. Phys. B: At. Mol. Phys. 7, 1417–1434 (1974).Google Scholar
  196. 183.
    C. F. Bunge and A. V. Bunge, Configuration-interaction studies of transition energies and oscillator strengths for the lowest-quartet states of neutral lithium, Phys. Rev. A 17, 822–828 (1978).Google Scholar
  197. 184.
    C. Froese-Fischer and H. P. Saha, MCHF-BP results for electric dipole transitions in the oxygen isoelectronic sequence, J. Phys. B: At. Mol. Phys. 17, 943–952 (1984).Google Scholar
  198. 185.
    R. Glass, Evaluation of the resonance oscillator strengths for calcium, J. Phys. B: At. Mol. Phys. 18, 4047–4053 (1985).Google Scholar
  199. 186.
    C. Froese-Fischer, A general multiconfiguration Hartree-Fock program, Comput. Phys. Comm. 14, 145–153 (1976).Google Scholar
  200. 187.
    C. Froese-Fischer, Correlation effects important for accurate oscillator strengths, J. Phys. B: At. Mol. Phys. 7, L91–L96 (1974).Google Scholar
  201. 188.
    E. Biemont, Correlation in two-electron spectra: MCHF calculations along the helium isoelectronic sequence, Nucl. Instrum. Meth. 202, 283–288 (1982).Google Scholar
  202. 189.
    C. Froese-Fischer, Oscillator strengths for 2 S 2 P transitions in the copper sequence, J. Phys. B:At. Mol. Phys. 10, 1241–1251 (1977).Google Scholar
  203. 190.
    C. Froese-Fischer and R. Glass, The effect of correlation in the 3d n core on the resonance transition in Cu II, Phys. Scr. 21, 525–526 (1980).Google Scholar
  204. 191.
    C. Froese-Fischer and J. E. Hansen, Theoretical oscillator strengths for the resonance transitions in the Zn I isoelectronic sequence, Phys. Rev. A 17, 1956–1965 (1978).Google Scholar
  205. 192.
    E. Biemont, Outer correlation MCHF wave functions and oscillator strengths along the zinc isoelectronic sequence, Phys. Scr. 22, 231–239 (1980).Google Scholar
  206. 193.
    C. Froese-Fischer and J. E. Hansen, MCHF calculations for 1 S and 1 P Rydberg states in Ca I, J. Phys. B: At. Mol. Phys. 18, 4031–4046 (1985).Google Scholar
  207. 194.
    C. M. Moser, R. K. Nesbet, and M. N. Gupta, Variational Bethe-Goldstone calculations of atomic oscillator strengths: Be sequence, Phys. Rev. A 13, 17–22 (1976).Google Scholar
  208. 195.
    C. M. Moser and R. K. Nesbet, Atomic Bethe-Goldstone calculations of term splittings, ionization potentials, and electron affinities for B, C, N, O, F, and Ne. II. Configurational excitations, Phys. Rev. A 6, 1710–1714 (1972).Google Scholar
  209. 196.
    J. C. Weisheit and A. Dalgarno, Spin-orbit and core-polarization effects in potassium, Phys. Rev. Lett. 27, 701–703 (1971).Google Scholar
  210. 197.
    C. Laughlin, Core polarization corrections to multipole operators for valence-electron wave functions, J. Phys. B: At. Mol. Opt. Phys. 28, L21–L25 (1989).Google Scholar
  211. 198.
    G. A. Victor, Oscillator strengths in the Mg-isoelectronic sequence, Astrophys. J. (Suppl.) 31, 237–247 (1976);Google Scholar
  212. 198a.
    G. A. Victor, Oscillator strengths and wavelengths for the copper and zinc isoelectronic sequence; Z=29 to 42, At. Data Nucl Data Tables 28, 107–214 (1983).Google Scholar
  213. 199.
    C. Laughlin, E. R. Constantinides, and G. A. Victor, Two-valence-electron model-potential studies of the Be I-isoelectronic sequence, J. Phys. B: At. Mol. Phys. 11, 2243–2256 (1978).Google Scholar
  214. 200.
    T.N. Chang and Y. S. Kim, Theoretical study of the two-electron interaction in alkaline-earth atoms, Phys. Rev. A 34, 2609–2613 (1986).Google Scholar
  215. 201.
    T. N. Chang, Effect of the configuration interaction on the theoretical oscillator strengths of the magnesium atom, Phys. Rev. A 36, 447–455 (1987);Google Scholar
  216. 201a.
    T. N. Chang, Energy levels and oscillator strengths of the Be atom determined by a configuration-interaction calculation with finite basis set from B splines, Phys. Rev. A 39, 4946–4955 (1989).Google Scholar
  217. 202.
    A. Hibbert, The use of model potentials in oscillator strength calculations, Phys. Scr. 39, 574–580 (1989).Google Scholar
  218. 203.
    J. S. Sims and R. C. Whitten, Upper and lower bounds to atomic and molecular properties. I. Be-sequence oscillator strengths (dipole-length formulation) for the 1s 22s 1 S-1s 22s2p 1 P transition, Phys. Rev. A 8, 2220–2230 (1973);Google Scholar
  219. 203a.
    J. S. Sims, S. A. Hagstrom, and J. R. Rumble Jr., Upper and lower bounds to atomic and molecular properties. III. Lithium oscillator strengths for various 2 S- 2 P transitions, Phys. Rev. A 13, 242–250 (1976).Google Scholar
  220. 204.
    F. Weinhold, Calculation of upper and lower bounds to oscillator strengths, J. Chem. Phys. 54, 1874–1881 (1971).Google Scholar
  221. 205.
    D. R. Beck and C. A. Nicolaides, The effect of electron correlation on atomic properties, Int. J. Quant. Symp. 8, 17–28 (1974).Google Scholar
  222. 206.
    D. R. Beck and C. A. Nicolaides, in Excited States in Quantum Chemistry (C. A. Nicolaides and D. R. Beck, eds.), Reidel, Dordrecht (1979), pp. 105–142.Google Scholar
  223. 207.
    O. Sinanoglu and B. Skutnik, Electron correlation in excited states and term splittings in the carbon-I isoelectronic sequence, J. Chem. Phys. 61, 3670–3675 (1974).Google Scholar
  224. 208.
    W. L. Luken and O. Sinanoglu, Non-closed-shell many-electron-theory atomic charge wave functions, At. Data Nucl. Data Tables 18, 525–585 (1976).Google Scholar
  225. 209.
    O. Sinanoglu, in Topics in Current Physics (S. Bashkin, ed.), Vol. 1, Springer-Verlag, Berlin (1976), pp. 111–146.Google Scholar
  226. 210.
    M. Cohen and A. Dalgarno, An expansion method for calculating atomic properties. IV. Transition probabilities, Proc. Roy. Soc. (London) A 280, 258–270 (1964).Google Scholar
  227. 211.
    A. Dalgarno and E. M. Parkinson, Properties of the lithium sequence, Phys. Rev. 176, 73–79 (1968).Google Scholar
  228. 212.
    M. A. Ali and L. J. Schaad, Absolute multiplet strengths for 4L–4L′ transitions in the helium sequence, Mol. Phys. 17, 441–448 (1969).Google Scholar
  229. 213.
    C. Laughlin, M. N. Lewis, and Z. J. Horak, Transition probabilities in the lithium isoelectronic sequence, J. Phys. B: At. Mol. Phys. 6, 1953–1966 (1973).Google Scholar
  230. 214.
    C. Laughlin and A. Dalgarno, Nuclear-charge-expansion method for (2s a2p b -2s a-1 2p b+1) transition, Phys. Rev. A 8, 39–46 (1973);Google Scholar
  231. 214a.
    C. Laughlin and A. Dalgarno, Z-expansion of 1s 22s 22p 2–2s 22s2p 3 transitions in the carbon sequence, J. Chem. Phys. 60, 1688–1899 (1974).Google Scholar
  232. 215.
    A. Dalgarno, The Z-dependence of oscillator strengths, Nucl. Instr. Meth. 110, 183–188 (1973).Google Scholar
  233. 216.
    F. C. Sanders and R. E. Knight, Oscillator strengths for S-P and P-D transitions for singly excited states of two-electron ions via Z-dependent perturbation theory, Phys. Rev. A 39, 4387–4399 (1989).Google Scholar
  234. 217.
    H. A. Bethe, Intermediate Quantum Mechanics, Benjamin, New York (1964).Google Scholar
  235. 218.
    H. P. Kelly, in Proceedings of the Menzel Symposium on Solar Physics, Atomic Spectra and Gaseous Nebulae, Cambridge, Mass. 8–9 April 1971, National Bureau of Standards, Washington (1971), pp. 37–46.Google Scholar
  236. 219.
    S. M. Younger, Theoretical line strengths for the 4d 10 1 S-4d 94f l11 P resonance transitions in the palladium isoelectronic sequence, Phys. Rev. A 22, 2682–2689 (1980).Google Scholar
  237. 220.
    H. P. Kelly, in Atomic Inner-Shell Processes (B. Crasemann, ed.), Academic, New York (1975), pp. 331–352.Google Scholar
  238. 221.
    H. P. Kelly and S. L. Carter, Many-body perturbation calculations of the interaction of atoms with electromagnetic radiation, Phys. Scr. 21, 448–456 (1980).Google Scholar
  239. 222.
    P. Jørgensen and J. Simon, Second Quantization-Based Methods in Quantum Chemistry, Academic, New York (1981).Google Scholar
  240. 223.
    P. L. Altick and A. E. Glassgold, Correlation effects in atomic structure using the random-phase approximation, Phys. Rev. A 133, 632–646 (1964).Google Scholar
  241. 224.
    R. F. Stewart, D. K. Watson, and A. Dalgarno, Variational time-dependent Hartree-Fock calculations. I. Applications to four-electron atomic and molecular systems, J. Chem. Phys. 63, 3222–3227 (1975).Google Scholar
  242. 225.
    R. F. Stewart, Time-dependent Hartree-Fock theory for three- and four-electron atomic systems, J. Phys. B: At. Mol. Phys. 8, 1–10 (1975).Google Scholar
  243. 226.
    R. F. Stewart, A time-dependent Hartree-Fock study of the neon isoelectronic sequence, Mol. Phys. 29, 1577–1583 (1975).Google Scholar
  244. 227.
    M. J. Jamieson and R. S. Watts, Transitions between excited states of two-electron systems in time-dependent Hartree-Fock theory, Chem. Phys. Lett. 76, 287–290 (1980).Google Scholar
  245. 228.
    M. Ya. Amusia, N. A. Cherepkov, Dj. Zivanovi, and V. Radojevi, Photoabsorption for helium, lithium, and beryllium atoms in the random-phase approximation with exchange, Phys. Rev. A 13, 1466–1474 (1976).Google Scholar
  246. 229.
    D. L. Yeager and P. Jørgensen, a multiconfigurational time-dependent Hartree-Fock approach, Chem. Phys. Lett. 65, 77–80 (1979).Google Scholar
  247. 230.
    P. Albertsen, P. Jørgensen, and D. L. Yeager, Multiconfigurational time-dependent Hartree-Fock calculation of vertical excitation energies and transition moments of O2, Int. J. Quant. Chem. Symp. 14, 249–260 (1980).Google Scholar
  248. 231.
    R. L. Graham, D. L. Yeager, J. Olsen, P. Jörgensen, R. Harrison, S. Zarrabian, and R. J. Bartlett, Excitation energies in Be: a comparison of multiconfigurational linear response and full-configuration interaction calculations, J. Chem. Phys. 85, 6544–6549 (1986);Google Scholar
  249. 231a.
    R. L. Graham and D. L. Yeager, Excitation energies, oscillator strengths, and frequency-dependent polarizabilities of Be: comparison of TDHF, EOM (second order), and MCTDHF, Int. J. Quant. Chem. 31, 99–112 (1987).Google Scholar
  250. 232.
    J. Geertsen, J. Oddershede, and G. E. Scuseria, Calculation of spectra and spin-spin coupling constants using a coupled-cluster polarization propagator method, Int. J. Quant. Chem. Symp. 21, 475–485 (1987).Google Scholar
  251. 233.
    J. Geertsen and J. Oddershede, A coupled-cluster polarization propagator method applied to CH+, J. Chem. Phys. 85, 2112–2118 (1986).Google Scholar
  252. 234.
    G. W. F. Drake and A. Dalgarno, Intercombination oscillator strengths in the helium sequence, Astrophys. J. 157, 459–462 (1969).Google Scholar
  253. 235.
    H. Nussbaumer, Spectral lines of the Be I isoelectronic sequence, Astron. Astrophys. 16, 77–80 (1972).Google Scholar
  254. 236.
    A. Hibbert, The 2s2p 3 P 1–2s 2 l S 0 intercombination line in the beryllium sequence, J. Phys. B:At. Mol. Phys. 12, L661 (1979).Google Scholar
  255. 237.
    C. A. Nicolaides, Theoretical lifetimes of the metastable (Math) states in atomic carbon and oxygen, Chem. Phys. Lett. 17, 436–438 (1972).Google Scholar
  256. 238.
    D. G. Ellis, Configuration 1s 22s3p in the sequence Ne VII-Fe XXIII : level energies and lifetimes, Phys. Rev. A 28, 1223–1227 (1983).Google Scholar
  257. 239.
    C. Froese-Fischer, Multiconfiguration Hartree-Fock Breit-Pauli results for 2 P 1/2– 2 P 3/2 transitions in the boron sequence, J. Phys. B: At. Mol. Phys. 16, 157–165 (1983).Google Scholar
  258. 240.
    M. Godefroid and C. Froese-Fischer, Relativistic and correlation effects on the lifetimes of 3s4p (Math) levels in Mg-like sulphur and chlorine, Phys. Scr. 31, 237–245 (1985).Google Scholar
  259. 241.
    K. Aashamar, T. M. Luke, and J. D. Talman, Oscillator strengths for transition from 3s4s and 3s4p levels calculated in the magnesium sequence, MgI-MgXIV using the multiconfiguration optimized potential model, Phys. Scr. 37, 13–26 (1988).Google Scholar
  260. 242.
    D. G. Ellis, Problems in the calculations of intercombination line strengths, Phys. Scr. 40, 12–16 (1989).Google Scholar
  261. 243.
    H. Nussbaumer, Forbidden transitions in the CI sequence, Astrophys. J. 166, 411–422 (1971).Google Scholar
  262. 244.
    N. Grevesse, H. Nussbaumer, and J. P. Swings, [Fel] lines : their transition probabilities and occurrence in sunspots, Mon. Not. R. Astron. Soc. 151, 239–252 (1971).Google Scholar
  263. 245.
    R. Glass, Electric quadrupole transitions in the beryllium isoelectronic sequence, Astrophys. Space Science 92, 307–316 (1983).Google Scholar
  264. 246.
    C. Nicolaides, O. Sinanoglu, and P. Westhaus, Theory of atomic structure including electron correlation. IV. Method for forbidden-transition probabilities with results for [O I], [O II], [O III], [N I], [N II], and [C I], Phys. Rev. A 4, 1400–1410 (1971).Google Scholar
  265. 247.
    D. R. Beck, Many-electron effects in and operator forms for electron quadrupole transition probabilities, Phys. Rev. A 23, 159–171 (1981).Google Scholar
  266. 248.
    C. Froese-Fischer and H. P. Saha, Multiconfiguration Hartree-Fock results with Breit-Pauli corrections for forbidden transitions in the 2p 4 configuration, Phys. Rev. A 28, 3169–3178 (1983).Google Scholar
  267. 249.
    R. Glass, Magnetic dipole transitions in the beryllium isoelectronic sequence, Astrophys. Space Science 91, 417–426 (1983).Google Scholar
  268. 250.
    G. W. F. Drake, The n 3 P 2–11 S 0 magnetic-quadrupole transitions of the helium sequence, Astrophys. J. 158, 1199–1203 (1969).Google Scholar
  269. 251.
    C. Laughlin, 1s 22s 2 2 S 1/2–1s2s2p 4 P 5/2 and 1s 22s 2 1 S 0–1s 22s 2 3 P 2 magnetic quadrupole transitions, J. Phys. B: At. Mol. Phys. 8, 842–851 (1975).Google Scholar
  270. 252.
    V. L. Jacobs, Magnetic-quadrupole decay of the low-lying n 3 P 2 states of heliumlike ions, J. Phys. B: At. Mol. Phys. 5, 213–217 (1972).Google Scholar
  271. 253.
    R. Glass, Magnetic quadrupole transitions in the beryllium isoelectronic sequence, Astrophys. Space Science 87, 41–50 (1982).Google Scholar
  272. 254.
    I. Lindgren, Effective operators in the atomic hyperfine interaction, Rep. Progr. Phys. 47, 345–398 (1984).Google Scholar
  273. 255.
    S. Larsson, Calculations on the 2 S ground state of the lithium atom using wave functions of Hylleraas type, Phys. Rev. 169, 49–54 (1968).Google Scholar
  274. 256.
    L. S. Cederbaum, F. E. P. Matschke, and W. von Niessen, Green’s-function approach to the hyperfine problem in atoms and molecules, Phys. Rev. A 12, 6–16 (1975).Google Scholar
  275. 257.
    R. Glass and A. Hibbert, The hyperfine structure of the ground states of first-row atoms, J. Phys. B: At. Mol. Phys. 11, 2257–2265 (1978).Google Scholar
  276. 258.
    D. Feller and E. R. Davidson, A multireference CI determination of the isotropic hyperfine constants for first-row atoms B-F, J. Chem. Phys. 88, 7580–7587 (1988).Google Scholar
  277. 259.
    B. Engels and S. D. Peyerimhoff, Study of orbital transformations in configuration interaction coupling in nitrogen and CH molecule, Z. Phys. D 13, 335–343 (1989).Google Scholar
  278. 260.
    C. W. Bauschlicher, Theoretical study of the nitrogen-atom hyperfine coupling constant, J. Chem. Phys. 92, 518–522 (1990).Google Scholar
  279. 261.
    H. P. Kelly, Hyperfine contact interactions in oxygen calculated by many-body theory, Phys. Rev. 173, 142–150 (1968).Google Scholar
  280. 262.
    L. Veseth, Many-body calculations of spectroscopic properties of the 3s3p 3 P and 3s3d 3 D states in Mg, J. Phys. B: At. Mol. Phys. 20, 235–250 (1987).Google Scholar
  281. 263.
    I. Lindgren, The Rayleigh-Schrödinger perturbation and linked-diagram theorem for a multiconfigurational model space, J. Phys. B 7, 2441–2470 (1974).Google Scholar
  282. 264.
    I. Lindgren, J. Lindgren, and A.-M. Mårtensson, Many-body calculations of the hyperfine interaction of some excited states of alkali atoms, using approximate Brueckner or natural orbitals, Z. Phys. A 279, 113–125 (1976).Google Scholar
  283. 265.
    A.-M. Mårtensson-Pendrill and S. Salomonson, Hyperfine structure of the 4s, 4p, and 3d states in Ca+ evaluated by many-body perturbation theory, Phys. Rev. A 30, 712–721 (1984).Google Scholar
  284. 266.
    S. Salomonson, Ab initio calculations of pair correlation effects on the hyperfine structure of the 4s4p and 4s3d configurations of Ca, Z. Phys. A 316, 135–148 (1984).Google Scholar
  285. 267.
    I. Lindgren, Accurate many-body calculations on the lowest 2 S and 2 P states of the lithium atom, Phys. Rev. A 31, 1273–1286 (1985).Google Scholar
  286. 268.
    B. Engels, S. D. Peyerimhoff, and E. R. Davidson, Calculation of hyperfine coupling constants. An ab initio MRD-CI study for nitrogen to analyze the effects of basis set and CI parameters, Mol. Phys. 62, 109–127 (1987).Google Scholar
  287. 269.
    D.M. Chipman, Spin densities of first-row atoms calculated from polarization wave functions with accurate numerical methods, Phys. Rev. A 39, 475–480 (1989).Google Scholar
  288. 270.
    C. Froese-Fischer and J. S. Carley, The effect of electron correlation on the charge density at the iron nucleus, J. Phys. B: At. Mol. Phys. 9, 29–35 (1976).Google Scholar
  289. 271.
    J. Bausche and R. J. Champeau, Recent progress in the theory of atomic isotope shift, Adv. At. Mol. Phys. 12, 39–86 (1976).Google Scholar
  290. 272.
    A. -M. Mårtensson and S. Salomonson, Specific mass shifts in Li and K calculated using many-body perturbation theory, J. Phys. B: At. Mol. Phys. 15, 2115–2130 (1982).Google Scholar
  291. 273.
    E. Lindroth, A. -M. Mårtensson-Pendrill, and S. Salomonson, Specific mass shift of the (4s4p) 1,3 P states in calcium studied with many-body perturbation theory, Phys. Rev. A 31, 58–66 (1985).Google Scholar
  292. 274.
    L. Veseth, Many-body calculations of atomic isotope shifts, J. Phys. B: At. Mol. Phys. 18, 3463–3480 (1985).Google Scholar
  293. 275.
    G. E. Scuseria and H. F. Schaefer III, The nuclear quadrupole moment of 14N: a theoretical prediction from full valence shell and full configuration interaction wave functions, J. Chem. Phys. 87, 4020–4024 (1987).Google Scholar
  294. 276.
    B. P. Das, J. Andriessen, M. Vajed-Samil, S. N. Ray, and T. P. Das, First-principle analysis of strength of parity nonconserving in atomic thallium by relativistic many-body theory, Phys. Rev. Lett. 49, 32–35 (1982).Google Scholar
  295. 277.
    A. -M. Mårtensson-Pendrill, Calculation of a P- and T-nonconserving weak interaction in Xe and Hg with many-body perturbation theory, Phys. Rev. Lett. 54, 1153–1155 (1985).Google Scholar
  296. 278.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Calculation of parity nonconservation in thallium, J. Phys. B: At. Mol. Phys. 20, 3297–3311 (1987).Google Scholar
  297. 279.
    W. R. Johnson, S. A. Blundell, Z. W. Liu, and J. Sapirstein, Correlation effects in the parity-nonconserving 6s→7s transition in cesium, Phys. Rev. A 37, 1395–1400 (1988).Google Scholar
  298. 280.
    R. M. Glover and F. Weinhold, Dynamic polanzabilities of two-electron atoms, with rigorous upper and lower bounds, J. Chem. Phys. 65, 4913–4928 (1976).Google Scholar
  299. 281.
    J. Muszynska, D. Papierowska, J. Pipin, and W. Woznicki, Bounds to atomic properties: electric polarizabilities of lithium isoelectronic sequence ions, Int. J. Quant. Chem. 22, 1153–1175(1982).Google Scholar
  300. 282.
    F. M. Fernández and E. Z. Castro, Hypervirial Theorems, Springer, Berlin (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Karol Jankowski
    • 1
  1. 1.Institute of PhysicsNicholas Copernicus UniversityToruńPoland

Personalised recommendations