Skip to main content

Nonenzymatic Proteins Mediating Intracellular Lipid Transport and Metabolism

Current Status and Emerging Trends

  • Chapter
Book cover Subcellular Biochemistry

Part of the book series: Subcellular Biochemistry ((SCBI,volume 16))

Abstract

Lipids fascinate cell biologists and biochemists because they can have profound effects on cell function. Encoded in these simple molecules is the ability to form macroscopic, two-dimensional membrane systems spontaneously. In addition to functioning as physical and chemical barriers separating aqueous compartments, membranes are involved in many regulatory processes such as secretion, transport, endocytosis, and signal transduction. The interaction between lipids and proteins is essential to such membrane activities. Broadly speaking, the metabolic turnover of membrane lipids and proteins encompasses synthesis, sorting, and degradation. Lipids serve as one of the major sources of energy, both directly and also potentially when stored in adipose tissues. They also act as thermal insulators in the subcutaneous tissues and around certain organs, and membrane lipids along myelinated nerves serve as electrical insulators, allowing rapid propagation of waves of depolarization. Some lipids act as biological modulators and signal transducers (e.g., pheromones, prostaglandins, thromboxanes, leukotriens, steroids, platelet-activating factor, and phosphatidylinositol and derivatives) and as the vehicles for carrying fat-soluble vitamins. Some other lipids, which are particularly enriched when present in certain microorganisms and in the spermatozoa and brain of higher animals, exhibit antibacterial, antifungal, and antitumor activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SCP:

sterol carrier protein

CoA:

coenzyme A

ACTH:

adrenocor-ticotropic hormone

PLTP:

phospholipid transfer protein

PC:

phosphatidylcholine

PE:

phos-phatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

PG:

phosphatidylglycerol

LTP:

lipid transfer protein

nsLTP:

nonspecific lipid transfer protein

GLTP:

glycolipid transfer protein

FABP:

fatty acid-binding protein

ACBP:

acyl-CoA-binding protein

DBI:

diazepam-binding inhibitor

GABA:

γ-aminobutyric acid

RBP:

retinol-binding protein

CRABP:

cellular retinoic acid-binding protein.

References

  • Abe, A., and sasaki, T., 1985, Purification and some properties of the glyvolipid transfer protein from pig brain, J. Biol. 260:1123–11239.

    Google Scholar 

  • Andersson, M., Appelkvist, E., Kristensson, K., and Dallner, G., 1987, Distribution of dolichol and dolichyl phosphate in human brain, J. Neurochem. 49: 685–691.

    Article  PubMed  CAS  Google Scholar 

  • Backer, J. A., and Dawidowicz, E. A., 1987, Reconstitution of a phospholipid flippase from rat liver microsomes, Nature 327: 341–343.

    Article  PubMed  Google Scholar 

  • Bass, N. M., 1988, The cellular fatty acid binding proteins: Aspects of structure, regulation and function, Int. Rev. Cytol. 111: 143–184.

    Article  PubMed  CAS  Google Scholar 

  • Behrens, N., and Leloir, L., 1970, Dolichol monophosphate glucose: An intermediate in glucose transfer, Proc. Natl. Acad. Sci. U.S.A. 66: 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Bloj, B., and Zilversmit, D. B., 1977, Rat liver proteins capable of transferring phosphatidylethanolamine. Purification and transfer activity for other phospholipids and cholesterol, J. Biol. Chem. 252: 1613–1619.

    PubMed  CAS  Google Scholar 

  • Blomhoff, R., Helgerud, P., Rasmussen, M., Berg, T., and Norman, K. R., 1982, In vitro uptake of chylomicron [3H]retinyl esters by rat liver: Evidence for retinol transfer from parenchymal to nonparenchymal cells, Proc. Natl. Acad. Sci. U.S.A. 79: 7326–7330.

    CAS  Google Scholar 

  • Börchers, T., Unterberg, C., Rudel, H., Robenek, H., and Spener, F., 1989, Subcellular distribution of cardiac fatty acid binding protein in bovine heart muscle and quantitation with an enzyme linked immunosorbent assay, Biochim. Biophys. Acta 1002: 54–61.

    Article  PubMed  Google Scholar 

  • Bordewick, U., Heese, M., Börchers, T., Robenek, H., and Spener, F., 1989, Compartmentation of hepatic fatty acid binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis, Biol. Chem. Hoppe-Seyler 370: 229–238.

    Article  PubMed  CAS  Google Scholar 

  • Bozzato, R. P., and Tinker, D. 0., 1987, Purification and properties of two phospholipid transfer proteins from yeast, Biochem. Cell Biol. 65: 195–202.

    CAS  Google Scholar 

  • Chan, L., Wei, C.-F., Li, W.-H., Yang, C.-Y., Ratner, P., Pownall, H., Gotto, A. M., Jr., and Smith, L. C., 1985, Human liver fatty acid binding protein cDNA and amino acid sequence, J. Biol. Chem. 260: 2629–2632.

    PubMed  CAS  Google Scholar 

  • Chanderbhan, R., Noland, B. J., Scallen, T. J., and Vahouny, G. V., 1982, Sterol carrier protein 2, delivery of cholesterol from adrenal lipid droplets to mitrochondria for pregnenolone synthesis, J. Biol. Chem. 257: 8928–8934.

    PubMed  CAS  Google Scholar 

  • Chavant, L., and Kader, J.-C., 1982, The presence of phospholipid transfer proteins in filamentous fungi, in Biochemistry and Metabolism of Plant Lipids ( J. F. G. M. Wintermans and P. J. C. Kuiper, eds.), pp. 125–128, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Cistola, D. P., Sacchettini, J. C., Banaszak, L. J., Walsh, M. T., and Gordon, J. I., 1989, Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli, J. Biol. Chem. 264: 2700–2710.

    PubMed  CAS  Google Scholar 

  • Conzelmann, E., Burg, J., Stephan, G., and Sandhoff, K., 1982, Complexing of glycolipids and their transfer between membranes by the activator protein for degradation of lysosomal ganglioside GM2, Eur. J. Biochem. 123: 455–464.

    Article  PubMed  CAS  Google Scholar 

  • Crain, R. C., and Zilversmit, D. B., 1980, Net transfer of phospolipid by the nonspecific phospholipid exchange proteins from beef liver, Biochim. Biophys. Acta 620: 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Das, T., Sa, G., and Mukherjea, M., 1989, Human fetal liver fatty acid binding proteins. Role on glucose-6-phosphate dehydrogenase activity, Biochim. Biophys. Acta 1002: 164–172.

    Article  PubMed  CAS  Google Scholar 

  • Daum, G., and Paltauf, F., 1984, Phospholipid transfer in yeast. Isolation and partial characterization of a phospholipid transfer protein from yeast cytosol, Biochim. Biophys. Acta 794: 385391.

    Google Scholar 

  • Demmer, L. A., Birkenmeier, E. H., Sweetser, D. A., Levin, M. S., Zollman, S., Sparkes, R. S., Mohandas, T., Lusis, A. J., and Gordon, J. I., 1987, The cellular retinol binding protein II gene, J. Biol. Chem. 262: 2458–2467.

    PubMed  CAS  Google Scholar 

  • Dower, S., Miller-Podraza, H., and Fischman, P. H., 1982, Translocation of newly synthesized gangliosides to the cell surface, Biochemistry 21: 3265–3270.

    Article  Google Scholar 

  • Farquhar, M. G., 1985, Progress in unraveling pathways of Golgi traffic, Annu. Rev. Cell Biol. 1: 447–488.

    Article  PubMed  CAS  Google Scholar 

  • Gavey, K. L., Noland, B. J., and Scallen, T. J., 1981, The participation of sterol camer protein 2 in the conversion of cholesterol to cholesterol ester by rat liver microsomes, J. Biol. Chem. 256: 2993–2999.

    PubMed  CAS  Google Scholar 

  • Godovac-Zimmermann, J., 1988, The structural motif of 3-lactoglobulin and retinol-binding protein: A basic framework for binding and transport of small hydrophobic molecules? Trends Biochem. Sci. 13: 64–66.

    Article  PubMed  CAS  Google Scholar 

  • Guidotti, A., Forchetti, C. M., Corda, M. C., Konkel, D., Bennet, C. D., and Costa, E., 1983, Isolation, characterization and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors, Proc. Natl. Acad. Sci. U.S.A. 80: 3531–3535.

    Article  PubMed  CAS  Google Scholar 

  • Helmkamp, G. M., Jr., 1985, Phosphatidylinositol transfer proteins: Structure, catalytic activity, and physiological functions, Chem. Phys. Lipids 38: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Helmkamp, G. M., Jr., 1986, Phospholipid transfer proteins: Mechanisms of action, J. Bioenerget. Biomembr. 18: 71–91.

    Article  CAS  Google Scholar 

  • Heuckeroth, R. O., Birkenmeier, E. H., Levin, M. S., and Gordon, J. I., 1987, Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein, J. Biol. Chem. 262: 9709–9717.

    PubMed  CAS  Google Scholar 

  • Kader, J.-C., 1985, Lipid-binding proteins in plants, Chem. Phys. Lipids 38: 51–62.

    Article  CAS  Google Scholar 

  • Kamp, H. H., Wirtz, K. W. A., Baer, P. R., Slotboom, A. J., Rosenthal, A. F., Paltauf, F., and Van

    Google Scholar 

  • Deenen, L. L. M., 1977, Specificity of the phosphatidylcholine exchange protein from bovine liver, Biochemistry 16: 1310–1316.

    Article  Google Scholar 

  • Kawashima, Y., and Bell, R. M., 1987, Assembly of the endoplasmic reticulum phospholipid bilayer: Transporters for phosphatidylcholine and metabolites, J. Biol. Chem. 262: 1649516502.

    Google Scholar 

  • Keller, G. A., Scallen, T. J., Clarke, D., Maher, P. A., Krisans, S. K., and Singer, S. J., 1989, Sub-cellular localization of sterol camer protein2 in rat hepatocyte: its primary localization to peroxisomes, Cell Biol. 105: 1353–1361.

    Article  Google Scholar 

  • Knudsen, J., 1990, Acyl-CoA-binding protein (ACBP) and its relation to fatty acid-binding protein (FABP): An overview, Mol. Cell. Biochem. in press.

    Google Scholar 

  • Li, E., Demmer, L. A., Sweetser, D. A., Ong, D. E., and Gordon, J. I., 1986, Rat cellular retinolbinding protein II: Use of a cloned cDNA to define its primary structure, tissue specific expression and developmental regulation, Proc. Natl. Acad. Sci. U.S.A. 83: 5779–5783.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J. B., Strauss, A. W., and Gordon, J. I., 1984, Expression of a mammalian fatty acid-binding protein in Escherichia coli, J. Biol. Chem. 259: 12696–12704.

    PubMed  CAS  Google Scholar 

  • Lowe, J. B., Sacchettini, J. C., Laposata, M., McQuillan, J. J., and Gordon, J. I., 1987, Expression of rat intestinal fatty acid-binding protein in Escherichia coli, J. Biol. Chem. 262: 5931–5937.

    PubMed  CAS  Google Scholar 

  • MacDonald, P. N., and Ong, D. E., 1987, Binding specificities of cellular retinol-binding protein and cellular retinol-binding protein, type II, J. Biol. Chem. 262: 10550–10556.

    PubMed  CAS  Google Scholar 

  • Middelkoop, E., Lubin, B. H., Beevers, E. M., Op den Kamp, J. A. F., Comfurius, P., Chin, D. T.-Y., Zwaal, R. F. A., Van Deenen, L. L. M., and Roelofsen, B., 1988, Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins, Biochim. Biophys. Acta 937: 281–288.

    Article  PubMed  CAS  Google Scholar 

  • Miguel, M., Block, M. A., Joyard, J., Dome, A. J., Dubacq, J. P., Kader, J.-C., and Douce, R., 1987, Protein mediated transfer of phosphatidylcholine from liposomes to spinach chloroplast envelope membranes, Biochim. Biophys. Acta 937: 219–228.

    Google Scholar 

  • Mogensen, I. B., Schulenberg-Schell, H., Hansen, H. O., Spener, F., and Knudsen, J., 1987, A novel acyl-CoA binding protein from bovine liver. Effect on fatty acid synthesis, Biochem. J. 241: 189–192.

    PubMed  CAS  Google Scholar 

  • Moncecchi, D., Keightley, J. A., Simmons, P. C., and Scallen, T. J., 1987, Isolation and nucleotide sequence of mouse liver sterol camer protein2 cDNA, Fed. Proc. 46: 2188.

    Google Scholar 

  • Moms, H. R., Larsen, B. S., and Billheimer, J. T., 1988, A mass spectrometric study of the structure of sterol carrier protein SCP2 from rat liver, Biochem. Biophys. Res. Commun. 154: 476–482.

    Article  Google Scholar 

  • Nishida, I., and Yamada, M., 1986, Semisynthesis of spin-labeled monogalactosyldiacylglycerol and its application in the assay for galactolipid transfer activity in spinach leaves, Biochim. Biophys. Acta 813: 298–306.

    Google Scholar 

  • Noland, B. J., Arebalo, R. E., Hansbury, E., and Scallen, T. J., 1980, Purification and properties of sterol carrier protein, J. Biol. Chem. 255: 4282–4289.

    PubMed  CAS  Google Scholar 

  • Ong, D. E., Kakkad, B., and MacDonald, P. N., 1987, Acyl-CoA-independent esterification of retinol bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine, J. Biol. Chem. 262: 2729–2736.

    PubMed  CAS  Google Scholar 

  • Ono, T., and Bloch, K., 1975, Solubilization and partial characterization of rat liver squalene epoxidase, J. Biol. Chem. 250: 1571–1579.

    PubMed  CAS  Google Scholar 

  • Op den Kamp, J. A. F., Roelofsen, B., and Van Deenen, L. L. M., 1985, Structural and dynamic aspects of phosphatidylcholine in the human erythrocyte membrane, Trends Biochem. Sci. 10: 320–323.

    Article  Google Scholar 

  • Oudenampsen, E., Kupsch, E.-M., Wissel, T., Spener, F., and Lezius, A., 1990, Expression of fatty acid binding protein from bovine heart in Escherichia coli, Mol. Cell. Biochem.,in press. Petkovich, M., Brand, N. J., Krust, A., and Chambon, P., 1987, A human retinoic acid receptor which belongs to the family of nuclear receptors, Nature 330: 444–450.

    Google Scholar 

  • Rasmussen, J. T., Börchers, T., and Knudsen, J., 1989, Comparison of binding affinities of acylCoA-binding protein (ACBP) and fatty acid binding protein (FABP) for long-chain acyl-CoA esters, Biochem. J.,in press.

    Google Scholar 

  • Read, R. J., and Funkhouser, J. D., 1984, Acyl-chain specificity and membrane fluidity. Factors which influence the activity of a purified phospholipid-tratsfer protein from lung, Biochim. Biophys. Acta 794: 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Rickers, J., Spener, F., and Kader, J.-C., 1985, A phospholipid transfer protein that binds long-chain fatty acids, FEBS Lett. 180: 29–32.

    Article  CAS  Google Scholar 

  • Rip, J., Rupar, C., Ravi, K., and Carroll, K., 1985, Distribution, metabolism and function of dolichol and polyprenols, Prog. Lipid Res. 24: 269–309.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, J. E., and Kennedy, E. P., 1977, Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly, Proc. Natl. Acad. Sci. U.S.A. 74: 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  • Ruenwongsa, P., Singh, H., and Jungalwala, F. B., 1979, Protein-catalyzed exchange of phos- phatidylinositol between rat brain microsomes and myelin, J. Biol. Chem. 254: 9358–9363.

    Google Scholar 

  • Sacchettini, J. C., Gordon, J. I., and Banaszak, L. J., 1988, The structure of crystalline Escherichia coli-derived rat intestinal fatty acid-binding protein at 2.5-A resolution, J. Biol. Chem. 263: 5815–5819.

    PubMed  CAS  Google Scholar 

  • Sarzani, R., Claffey, K. P., Chobanian, A. V., and Brecher, P., 1988, Hypertension induces tissue-specific gene suppression of a fatty acid binding protein in rat aorta, Proc. Natl. Acad. Sci. U.S.A. 85: 7777–7781.

    Article  PubMed  CAS  Google Scholar 

  • Schulenberg-Schell, H., Schäfer, P., Keuper, H. J. K., Stanislawski, B., Hoffmann, E., Rüterjans, H., and Spener, F., 1988, Interactions of oleic acid with neutral fatty-acid-binding protein from bovine liver, Eur. J. Biochem. 170: 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Scow, O. R., and Blanchette-Mackie, E. J., 1985, Why fatty acids flow in cell membranes, Prog. Lipid Res. 24: 197–241.

    Article  PubMed  CAS  Google Scholar 

  • Sleight, R. G., 1987, Intracellular lipid transport in eukaryotes, Annu. Rev. Physiol. 49: 193–208.

    Article  PubMed  CAS  Google Scholar 

  • Spener, F., Börchers, T., and Mukherjea, M., 1989, On the role of fatty acid binding proteins in fatty acid transport and metabolism, FEBS Lett. 244: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Spener, F., Börchers, T., Unterberg, C., and Grosse, R., 1990, Characteristics of fatty acid binding proteins and their relation to mammary derived growth inhibitor, Mol. Cell. Biochem.,in press.

    Google Scholar 

  • Steen, L., Van Dessel, G., De Wolf, M., Lagrou, A., Hilderson, H. J., De Keukeleire, D., Pinkse, F., Fokkens, R., and Dierick, W., 1984, Identification and characterization of dolichol-dolichoate, a novel isoprenoic derivative in bovine thyroid, Biochim. Biophys. Acta 796: 294–303.

    Article  PubMed  CAS  Google Scholar 

  • Sundelin, J., Anundi, H., Trägärdh, L., Eriksson, U., Lind, P., Ronne, H., Peterson, P. A., and Rask, L., 1985a, The primary structure of rat liver cellular retinol-binding protein, J. Biol. Chem. 260: 6488–6493.

    PubMed  CAS  Google Scholar 

  • Sundelin, J., Das, S., Eriksson, U., Rask, L., and Peterson, P. A., 1985b, The primary structure of bovine cellular retinoic acid-binding protein, J. Biol. Chem. 260: 6494–6499.

    PubMed  CAS  Google Scholar 

  • Sweetser, D. A., Lowe, J. B., and Gordon, J. I., 1986, The nucleotide sequence of the rat liver fatty acid-binding protein gene. J. Biol. Chem. 261: 5553–5561.

    PubMed  CAS  Google Scholar 

  • Sweetser, D. A., Heuckeroth, R. O., and Gordon, J. I., 1987a, The metabolic significance of mammalian fatty-acid-binding proteins: Abundant proteins in search of a function. Annu. Rev. Nutr. 7: 337–359.

    Article  PubMed  CAS  Google Scholar 

  • Sweetser, D. A., Birkenmeier, E. H., Klisak, I. J., Zollman, S., Sparkes, R. S., Mohandas, T., Lusis, A. J., and Gordon, J. I., 1987b, The human and rodent intestinal fatty acid binding protein genes, J. Biol. Chem. 262: 16060–16071.

    PubMed  CAS  Google Scholar 

  • Tai, S.-P., and Kaplan, S., 1984, Purification and properties of a phospholipid transfer protein from Rhodopseudomonas sphaeroides, J. Biol. Chem. 259: 12178–12183.

    PubMed  CAS  Google Scholar 

  • Taylor, F. R., and Kandutsch, A. A., 1985, Oxysterol binding protein, Chem. Phys. Lipids 38: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Tchang, F., This, P., Stiefel, V., Arondel, V., Morch, M.-D., Pages, M., Puigdomenech, P., Grellet, F., Delseny, M., Bouillon, P., Huet, J.-C., Guerbette, F., Beauvais-Cante, F., Duran-ton, H., Pernollet, J.-C., and Kader, J.-C., 1988, Phospholipid transfer protein: Full-length cDNA and amino acid sequence in maize, J. Biol. Chem. 263: 16849–16855.

    PubMed  CAS  Google Scholar 

  • Teerlink, T., Van der Krift, T. P., Post, M., and Wirtz, K. W. A., 1982, Tissue distribution and sub-cellular localization of phosphatidylcholine transfer protein in rats as determined by radio-immunoassay, Biochim. Biophys. Acta 713: 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Thaller, C., and Eichele, G., 1987, Identification and spatial distribution of retinoids in the developing chick limb bud, Nature 327: 625–626.

    Article  PubMed  CAS  Google Scholar 

  • Tollbom, O., and Daliner, G., 1986, Dolichol and dolichyl phosphate in human tissues, Br. J. Exp. Pathol. 67: 757–764.

    PubMed  CAS  Google Scholar 

  • Trzeciak, W. H., Simpson, E. R., Scallen, T. J., Vahouny, G. V., and Waterman, M. R., 1987, Studies on the synthesis of sterol carrier protein2 in rat adrenocortical cells in monolayer culture, J. Biol. Chem. 262: 3713–3717.

    PubMed  CAS  Google Scholar 

  • Tsuneoka, M., Yamamoto, A., Fujiki, Y., and Tashiro, Y., 1988, Nonspecific lipid transfer protein (sterol camer protein2) is located in rat liver peroxisomes, J. Biochem. 104: 560–564.

    PubMed  CAS  Google Scholar 

  • Amerongen, A., Van Noort, M., Van Beckhoven, J. R. C. M., Rommerts, F. F. G., Orly, T., and Wirtz, K. W. A., 1989, The subcellular distribution of the nonspecific lipid transfer protein (sterol carrier protein2) in rat liver and adrenal gland, Biochim. Biophys. Acta 1001: 243–248.

    Article  PubMed  Google Scholar 

  • Dessel, G., De Wolf, M., Lagrou, A., Hilderson, H. J., and Dierick, W., 1989, Intra-and extracellular transport of dolichol. Abstract P11, Academy Workshop on Intracellular and Intravascular Lipid Transport, Amsterdam.

    Google Scholar 

  • Meer, G., Simons, K., Op den Kamp, J. A. F., and Van Deenen, L. L. M., 1981, Phospholipid asymmetry in Semliki forest virus grown on baby hamster kidney (BHK-21) cells, Biochemistry 20: 1974–1981.

    Article  PubMed  Google Scholar 

  • Noort, M., Rommerts, F. F. G., Van Amerongen, A., and Wirtz, K. W. A., 1988, Intracellular redistribution of SCP2 in Leydig cells after hormonal stimulation may contribute to increased pregnenolone production, Biochem. Biophys. Res. Commun. 154: 60–65.

    Article  PubMed  Google Scholar 

  • Voelker, D. R., 1985, Disruption of phosphatidylserine translocation to the mitochondria in baby hamster kidney cells, J. Biol. Chem. 260: 14671–14676.

    PubMed  CAS  Google Scholar 

  • Walz, D. A., Wider, M. D., Snow, J. W., Dass, C., and Desiderio, D. M., 1988, The complete amino acid sequence of porcine gastrotropin, an ideal protein which stimulates gastric acid and pepsinogen secretion, J. Biol. Chem. 263: 14189–14195.

    PubMed  CAS  Google Scholar 

  • Watanabe, S., and Yamada, M., 1986, Purification and characterization of a non-specific lipid transfer protein from geminated castor bean endosperms which transfer phospholipids and galactolipids, Biochim. Biophys. Acta 876: 116–123.

    Article  CAS  Google Scholar 

  • Wetterau, J. R., and Zilversmit, D. B., 1984, Quantitation of lipid transfer activity, Methods Biochem. Anal. 30: 119–226.

    Google Scholar 

  • Wetterau, J. R., and Zilversmit, D. B., 1986, Localization of intracellular triacylglycerol and cholesteryl ester transfer activity in rat tissues, Biochim. Biophys. Acta 875: 610–617.

    Article  PubMed  CAS  Google Scholar 

  • Wirtz, K. W. A., and Zilversmit, D. B., 1968, Exchange of phospholipids between liver mitochon-dria and microsomes in vitro, J. Biol. Chem. 243: 3596–3602.

    PubMed  CAS  Google Scholar 

  • Yaffe, M. P., and Kennedy, E. P., 1983, Intracellular phospholipid movement and the role of phospholipid transfer proteins in animal cells, Biochemistry 22: 1497–1507.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spener, F., Mukherjea, M. (1990). Nonenzymatic Proteins Mediating Intracellular Lipid Transport and Metabolism. In: Hilderson, H.J. (eds) Subcellular Biochemistry. Subcellular Biochemistry, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1621-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1621-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1623-5

  • Online ISBN: 978-1-4899-1621-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics