Skip to main content

A New Suspension Viscosity Model and Its Application to Asphaltene Association Thermodynamics and Structures

  • Chapter
Structures and Dynamics of Asphaltenes

Abstract

Asphalt cement has been used over a century for roadway construction in United States. Historically, one of the most extensively studied physical properties has been the viscosity of the asphalt binder, in particular, how the viscosity of the asphalt binder changes during a pavement’s lifetime. Many attempts have been made to relate the viscosity of the binder to its chemical composition and molecular structure. One complicating factor to understanding the exact relationship between viscosity and chemical composition arises from the extremely complex chemical composition (an asphalt may contain thousands of individual components). Another complicating factor arises from the ever changing chemical composition of the binder throughout the pavement’s lifetime as a result of low temperature oxidation. As a result, most attempts to correlate a binder’s viscosity to the binder’s chemical composition have been in terms of only a few pseudo-components. The components found to have the greatest influence on the viscosity are referred to collectively as the asphaltenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASTM, Standard Test Methods for Separation of Asphalt into Four Fractions, ASTM D 4124-91 (1994).

    Google Scholar 

  • Altgelt, K.H. and O.L. Harle, “The Effect of Asphaltenes on Asphalt Viscosity,” Ind. Eng. Chem. Prod. Res. Dev., 14, 240(1975).

    Article  CAS  Google Scholar 

  • Andersen, S.I. and K.S. Birdi, “Aggregation of Asphaltenes as Determined by Calorimetry,” Journal of Colloid and Interface Science, 142, 497 (1991).

    Article  CAS  Google Scholar 

  • Brodnyan, J.G., “The Concentration Dependence of the Newtonian Viscosity of Prolate Ellipsoids,” Trans. Soc. Rheol., 3, 61 (1959).

    Article  CAS  Google Scholar 

  • Burr, B.L., R.R. Davison, C.J. Glover, and J.A. Bullin, “Solvent Removal from Asphalt,” Trans. Res. Rec, 1269, 1 (1990).

    Google Scholar 

  • Burr, B.L., R.R. Davison, C.J. Glover, and J.A. Bullin, “Softening of Asphalts in Dilute Solutions at Primary Distillation Conditions,” Trans. Res. Rec, 1436, 47 (1994).

    Google Scholar 

  • Dabak, T. and O. Yucel, “Modeling of the Concentration and Particle Size Distribution Effects on the Rheology of Highly Concentrated Suspensions,” Powder Technology, 52, 193 (1987).

    Article  CAS  Google Scholar 

  • Davison, R.R., C.J. Glover, B.L. Burr, and J.A. Bullin, “Size Exclusion Chromatography of Asphalts”, Handbook of Size Exclusion Chromatography, Wu, Chi-San (ed.), 211 (1995).

    Google Scholar 

  • Dickie, J.P. and T.F. Yen, “Macrostructures of the Asphaltic Fractions by Various Instrumental Methods,” Analytical Chemistry, 39, 1847 (1967).

    Article  CAS  Google Scholar 

  • Dwiggins, C.W., Jr, “A Small Angle X-Ray Scattering Study of the Colloidal Nature of Petroleum,” Journal of Physical Chemistry, 69, 3500 (1965).

    Article  CAS  Google Scholar 

  • Eilers, H.J., “The Colloidal Structure of Asphalt,” J. Phys. Colloid Chem., 53, 1195 (1948).

    Google Scholar 

  • Einstein, A., “Eine Neue Bestimmung der Moleküldimensionen” Ann. Phys., 19, 289 (1906).

    Article  CAS  Google Scholar 

  • Farris, R.J., “Prediction of the Viscosity of Multimodal Suspensions form Unimodal Viscosity Data,” Trans. Soc. Rheol., 12, 281 (1968).

    Article  Google Scholar 

  • Ferry, J.D., Viscoelastic Properties of Polymers. 3rd Edition, John Wiley and Sons, New York, NY (1980).

    Google Scholar 

  • Frankel, N.A. and A. Acrivos, “On the Viscosity of a Concentrated Suspension of Solid System,” Chem. Eng. Sci., 22, 847(1967).

    Article  Google Scholar 

  • Fumas, C.C., “Grading Aggregates,” Industrial and Engineering Chemistry, 23, 1052 (1931).

    Article  Google Scholar 

  • Grimson, M.J. and G.C. Barker, “Interaction Corrections to the Viscosity of Concentrated Colloidal Dispersions,” Europhysica Letters, 3, 511 (1987).

    Article  CAS  Google Scholar 

  • Heukelom, W. and P.W.O. Wijga, “Viscosity of Dispersions as Governed by Concentration and Rate of Shear,” Proceeding of A APT, 40, 418 (1971).

    CAS  Google Scholar 

  • Hinch, E.J. and L.G. Leal, “Rheological Properties of A Suspension,” J. Fluid Mech., 52 683 (1972).

    Article  Google Scholar 

  • Hunter, R.J., Foundations of Colloid Science I, Oxford University Press, New York, NY (1986).

    Google Scholar 

  • Kuhn, W. and H. Kuhn, “Die Abhängigkeit der Viskosität vom Strömungsgefalle Beihochverdǔnnten Suspensionen und Lösungen,” Helv. Chim. Acta., 28, 97 (1945).

    Article  CAS  Google Scholar 

  • Kuhn, W., H. Huhn, and P. Buchner, “Hydrodynamisches Verhalten von Makromolekǔlen in Lösung,” Ergeb. Exakt. Naturw., 25, 1 (1951).

    Article  Google Scholar 

  • Kim, H.G. and R.B. Long, “Characterization of Heavy Residuum by a Small Angle X-Ray Scattering Technique,” Ind. Eng. Chem. Fundam., 18, 60 (1979).

    Article  CAS  Google Scholar 

  • Krieger I.M. and T.J. Dougherty, “A Mechanism of Non-Newtonian Flow in Suspensions of Rigid Spheres,” Trans. Soc. Rheol., 3, 137. (1959).

    Article  CAS  Google Scholar 

  • Lee, D.I., “Packing of Spheres and Its Effect on the Viscosity of Suspensions,” Journal of Paint Technology, 42, 579(1970).

    CAS  Google Scholar 

  • Lian, H., J.R. Lin, and T.F. Yen, “Peptization Studies of Asphaltene and Solubility Parameter Spectra,” Fuel, 73, 423(1994).

    Article  CAS  Google Scholar 

  • Lin, M.S., K.M. Lunsford, C.J. Glover, R.R. Davison, and J.A. Bullin, “The Effects of Asphaltenes on the Chemical and Physical Characteristics of Asphalts,” In Asphaltenes: Fundamentals and Applications. Ed. E.Y. Sheu and O.C. Mullins, Plenum Press, New York, NY, 155–176 (1995a).

    Google Scholar 

  • Lin, M.S., C.J. Glover, R.R. Davison, and J.A. Bullin. 1995. The Effects of Asphaltenes on Asphalt Recycling and Aging,” Trans. Res. Rec, 1507, 86–95 (1995b).

    Google Scholar 

  • Lin, M.S., J.M. Chaffin, M. Liu, C.J. Glover, R.R. Davison, and J.A. Bullin, “The Effect of Asphalt Composition on the Formation of Asphaltenes and Their Contribution to Asphalt Viscosity,” Fuel Sci. and Technol. Int’l, 14(1&2), 139–162(1996).

    Article  CAS  Google Scholar 

  • Mandelbrot, B.M., The Fractal Geometry of Nature, W. H. Freeman, San Francisco (1982).

    Google Scholar 

  • McGeary, R.K., “Mechanical Packing of Spherical Particles,” Journal of the American Ceramic Society, 44, 513 (1961).

    Article  CAS  Google Scholar 

  • Mercer, H.N., A.H. Boyer, and M.C. Deviney, “3-D Carbon Black Primary Structure Characterization Via a New Electron Microscopy-Photogeommetry Technique,” Ruber Chem. Technol., 57, 377 (1979).

    Article  Google Scholar 

  • Milton, J.C. and J.C. Arnold, Introduction to Probability and Statistics, 2nd Edition, McGraw Hill, Inc., New York, NY (1990).

    Google Scholar 

  • Mooney, M., “The Viscosity of A Concentrated Suspension of Spherical Particles,” Journal of Colloid Science, 6, 162(1951).

    Article  CAS  Google Scholar 

  • Oono, R., “Distribution of Carbon Black in SBR,” Ruber Chem. Technol., 51, 278 (1978).

    Article  Google Scholar 

  • Ouchiyama, N., “Porosity Estimation for Random Packings of Spherical Particles,” Ind. Eng. Chem. Fundam., 23, 490(1984).

    Article  CAS  Google Scholar 

  • Overfield, R.E., E.Y. Sheu, and K.S. Liang, “SANS Study of Asphaltene Aggregation,” Fuel Science and Technology International, 7, 611 (1989).

    Article  CAS  Google Scholar 

  • Pal R. and E. Rhodes, “Viscosity/Concentration Relationships for Emulsions,” J. Rheology, 33, 1021–1045 (1989).

    Article  CAS  Google Scholar 

  • Pearson, CD., G.S. Huff, and S.G. Gharfeh, “Technique for the Determination of Asphaltenes in Crude Oil Residues,” Analytical Chemistry, 58, 3266 (1986).

    Article  Google Scholar 

  • Petersen, J.C, “A Thermodynamic Study by Infrared Spectroscopy of the Association of 2-Quinolones, Some Carboxylic Acid, and the Corresponding 2-Quinolone-Acid Mixed Dimers,” Journal of Physical Chemistry, 43, 1491 (1971).

    CAS  Google Scholar 

  • Petersen, J.C., R.V. Barbour, S.M. Dorrence, F.A. Barbour, and R.V. Helm, “Molecular Interaction of Asphalt,” Analytical Chemistry, 75, 1129 (1971).

    CAS  Google Scholar 

  • Peterson G.D., R.R. Davison, G.J. Glover, and J.A. Bullin, “Effect of Composition on Asphalt Recycling Agent Performance,” Trans. Res. Rec, 1436, 38 (1994).

    Google Scholar 

  • Pollack, S.S. and T.F. Yen, “Structural Studies of Asphaltics by X-Ray Small Angle Scattering,” Analytical Chemistry, 42, 623 (1970).

    Article  CAS  Google Scholar 

  • Rao, B.M.L. and J.E. Serrano, “Viscometric Study of Aggregation Interactions in Heavy Oil,” Fuel Science and Technology International, 4, 483 (1986).

    Article  CAS  Google Scholar 

  • Ravey, J.C., G. Ducouret, and D. Espinat, “Asphaltene Macrostructure by Small Angle Neutron Scattering,”. Fuel, 67, 1560(1988).

    Article  CAS  Google Scholar 

  • Reerink, H. and J. Lijzenga, “Molecular Weight Distributions of Kuwati Asphaltenes as Determined by Ultracentrifugation. Relation with Viscosity of Solutions,” J. Inst. Pet., 59, 211 (1973).

    CAS  Google Scholar 

  • Rutgers, I.R., “Relative Viscosity of Suspensions of Rigid Spheres in Newtonian Liquids,” Rheologica Acta, 2, 202 (1962a).

    Article  Google Scholar 

  • Rutgers, I.R., “Relative Viscosity and Concentration,” Rheologica Acta, 2, 305 (1962b).

    Article  CAS  Google Scholar 

  • Sander, L.M., H.B. Shore, and J.H. Rose, “Self-Consistent Bond Structure Theory of the Metal-Insulator Transition,” Physical Review B—Condensed Matter, 24, 4879 (1981).

    Article  CAS  Google Scholar 

  • Senglet, N., C. Williams, D. Faure, T. D. Courières, and R. Guilard, “Microheterogeneity Study of Heavy Crude Petroleum by U.V.-Visible Spectroscopy and Small Angle X-Ray Scattering,” Fuel, 69, 73 (1990).

    Google Scholar 

  • Sheu E.Y, M.M. De Tar, and D.A. Storm, “Rheological Properties of Vacuum Residue Fractions in Organic Solvents,” Fuel, 70, 1151–1156 (1991a).

    Article  CAS  Google Scholar 

  • Sheu E.Y, D.A. Storm, and M.M. De Tar, “Asphaltenes in Polar Solvents,” Journal of Non-Cryst. Solids, 131-133, 341 (1991b).

    Article  CAS  Google Scholar 

  • Storm D.A., E.Y. Sheu, “Rheological Studies of Ratawi Vacuum Residue at 366K,” Fuel, 72, 233–231 (1993).

    Article  CAS  Google Scholar 

  • Sudduth, R.D., “A Generalized Model to Predict the Viscosity of Solutions with Suspended Particles. I,” Journal of Applied Polymer Science, 48, 25(1993a).

    Article  CAS  Google Scholar 

  • Sudduth, R.D., “A New Method to Predict the Maximum Packing Fraction and the Viscosity of Solutions with a Size Distribution of Suspended Particles. II,” Journal of Applied Polymer Science, 48, 37(1993b).

    Article  CAS  Google Scholar 

  • Sudduth, R.D., “A Generalized Model to Predict the Viscosity of Solutions with Suspended Particles. III Effects of Particle Interaction and Particle Size Distribution,” Journal of Applied Polymer Science, 50, 123(1993c).

    Article  CAS  Google Scholar 

  • Tsenoglou, C, “Scaling Concepts in Suspension Rheology,” Journal of Rheology, 34, 15 (1990).

    Article  Google Scholar 

  • Witten, T.A. and L.M. Sander, “Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon,” Phys. Rev. Lett., 47, 1400(1981).

    Article  CAS  Google Scholar 

  • Zimm, H.B., “Apparatus and Methods for Measurement and Interpretation of the Angular Variation of Light Scattering; Preliminary Results on Polystyrene Solutions,” Journal of Chemical Physics, 16, 1099 (1948).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, MS., Chaffin, J.M., Davison, R.R., Glover, C.J., Bullin, J.A. (1998). A New Suspension Viscosity Model and Its Application to Asphaltene Association Thermodynamics and Structures. In: Mullins, O.C., Sheu, E.Y. (eds) Structures and Dynamics of Asphaltenes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1615-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1615-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1617-4

  • Online ISBN: 978-1-4899-1615-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics