Skip to main content

Colloidal Structural Evolution from Stable to Flocculated State of Asphaltene Solutions and Heavy Crudes

  • Chapter
Structures and Dynamics of Asphaltenes

Abstract

The petroleum industry is often concerned with the production, transportation and refining of heavy crude oils rich in asphaltenes. A successful addressing of the many difficulties encountered in these processes relies on a precise understanding of the chemical properties and colloidal behavior of asphaltenes under various thermodynamic and flow conditions. Whereas asphaltenes are generally considered to be the major factor responsible for these difficulties, the influence of the other constituents of oil, such as resins, must not be overlooked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Briant, Revue de l’Institut Français du Pétrole, 1, (1963).

    Google Scholar 

  2. M. R. Islam, “Role of asphaltenes on oil recovery and mathematical modeling of asphaltene properties,” Asphaltenes and Asphalts 1, 249 (1994).

    Google Scholar 

  3. A. Danesh, D. Krinis, G. D. Henderson and J. M. Peden, Chem. Eng. Res. Des. 66, 339 (1988).

    CAS  Google Scholar 

  4. L. Minssieux, SPE Paper 37250 presented at the SPE International Symposium on Oilfield Chemistry in Houston (Texas), 401 (1997).

    Google Scholar 

  5. A. T. Turta, J. Najman, A. K. Singhal, S. Leggitt and D. Fischer, SPE Paper 37287 presented at the SPE International Symposium on Oilfield Chemistry in Houston (Texas), 703 (1997).

    Google Scholar 

  6. J. S. Buckley, Y. Liu, X. Xie and N. R. Morrow, SPE/DOE 35366 presented at EOR Symposium in Tulsa, 22(1996).

    Google Scholar 

  7. W. K. Stephenson, “Producing Asphaltene Crude Oils: Problems and Solutions,” Petroleum Engineer, 24 (1990).

    Google Scholar 

  8. Chia-Lu Chang and H. S. Fogler, Langmuir 10, 1749 (1994).

    CAS  Google Scholar 

  9. Chia-Lu Chang and H. S. Fogler, Langmuir 10, 1758 (1994).

    CAS  Google Scholar 

  10. P. Groffe, J. L. Volle and A. Ziada, SPE 30128, SPE Europe Formation Damage Conference, The Hague, (1995).

    Google Scholar 

  11. M. N. Bouts, R. J. Wiersma, H. M. Huijs and A. J. Samuel, SPE Paper 28991 presented at the SPE International Symposium on Oilfield Chemistry in San Antonio (Texas), 481 (1995).

    Google Scholar 

  12. M. B. Manek, SPE Paper 28972 presented at the SPE International Symposium on Oilfield Chemistry in San Antonio (Texas), 269 (1995).

    Google Scholar 

  13. S. J. Allenson and A. Marjorie, SPE Paper 37286 presented at the SPE International Symposium on Oilfield Chemistry in Houston (Texas), 699 (1997).

    Google Scholar 

  14. E. Papirer, C. Bourgeois, B. Siffert and H. Balard, Fuel 61, 732 (1982).

    CAS  Google Scholar 

  15. R. C. Little, Fuel 53, 246 (1974).

    CAS  Google Scholar 

  16. C.M. Blair, Chem. Ind. (London), 538 (1960).

    Google Scholar 

  17. S. A. Berridge, M. T. Thew and A. G. Loriston-Clarke, J. Inst. Petrol. 54, 333 (1968).

    CAS  Google Scholar 

  18. G. D. M. Mackay, A. Y. McLean, O. J. Betancourt and B. D. Johnson, J. Inst. Petrol. 59, 164 (1973).

    CAS  Google Scholar 

  19. A. Billon, F. Morel, M. E. Morrison and J. P. Peries, Revue de l’Institut Français du Pétrole 49(5), 495 (1994).

    CAS  Google Scholar 

  20. F. Morel, S. Kressmann, V. Harlé and S. Kasztelan, “Hydrotreatment and hydrocracking of oil fractions,” edited by G.F. Froment, B. Delmon and P. Grange, Elsevier Science, 1 (1997).

    Google Scholar 

  21. J. G. Speight, “Asphaltene Characterization and Use in Understanding Processes” Symposium on the Role of Asphaltenes in Petroleum Exploration, Production and Refining, 207th National Meeting, ACS, San Diego, 200 (1994).

    Google Scholar 

  22. J. P. Pfeiffer and R. N. Saal, Journal of Physical Chemistry 44, 139 (1940).

    CAS  Google Scholar 

  23. D. A. Anderson, D. W. Christensen and H. Bahia, Journal of Association of Asphalt Paving Technologists 60, 437(1991).

    CAS  Google Scholar 

  24. T. F. Yen, American Chemical Society, Division Fuel Chemistry 15(1), 93 (1971).

    CAS  Google Scholar 

  25. C. Giavarini, in “Asphaltene and Asphalts” Developments in Petroleum Science 1, Edited by T. F. Yen and G.V. Chilingarian, Elsevier Science, Amsterdam, 381 (1994).

    Google Scholar 

  26. T. F. Yen, Asphaltenic Materials, Encyclopedia of Polymer Science and Engineering 1–10, Wiley and Sons, New York, (1988).

    Google Scholar 

  27. E. J. Dickinson and H. P. Witt, Trans. Soc. Rheol. 18, 591 (1974).

    Google Scholar 

  28. J.G. Speight, “The chemistry and technology of petroleum” Second Edition, Marcel Dekker, Inc. (1991).

    Google Scholar 

  29. J.W. Bunger, N. C. Li, “Chemistry of asphaltenes” Advances in Chemistry Series 195, American Chemical Society (1981).

    Google Scholar 

  30. E.M. Dickinson, Fuel 59, 290 (1980).

    CAS  Google Scholar 

  31. M. Bouquet and A. Bailleul, Fuel 65, 1240 (1986).

    CAS  Google Scholar 

  32. J. K. Brown, W. R. Ladner and N. Sheppard, Fuel 39, 79 (1960).

    CAS  Google Scholar 

  33. T. W. Mojelsky, T. M. Ignasiak, Z. Frakman, D. D. Mclntyre, E. M. Lown, D. S. Montgomery and O. P. Strausz, Energy and Fuels 6, 83 (1992).

    CAS  Google Scholar 

  34. O. P. Strausz, T. W. Mojelsky and E. M. Mown, Fuel 71, 1355 (1992).

    CAS  Google Scholar 

  35. S.E. Moschopedis and J.G. Speight, Fuel 55, 187 (1976).

    CAS  Google Scholar 

  36. R. G. S. Ritchie, R. S. Roche and W Steedmann, Fuel 58, 523 (1979).

    CAS  Google Scholar 

  37. J. G. Speight and S. E. Moschopedis, Preprints Div. Petrol. Chem., Am. Chem. Soc, 26(4), 907 (1981).

    CAS  Google Scholar 

  38. J. G. Speight and S. E. Moschopedis, Preprints Div. Petrol. Chem., Am. Chem. Soc, 24(4), 1007 (1979).

    Google Scholar 

  39. R. J. Clerc and M. J. O’Neal, Anal. Chem. 33, 380 (1961).

    CAS  Google Scholar 

  40. O. C. Mullins Asphaltenes — Fundamentals and Applications, Edited by E. Y. and O. C. Mullins Plenum Press 53 (1995).

    Google Scholar 

  41. J.G. Speight and R. J. Pancirov, Liquid Fuels Technol. 2, 287 (1984).

    CAS  Google Scholar 

  42. K. D. Rose and M. A. Francisco, J. Am. Chem. Soc. 110, 637 (1988).

    CAS  Google Scholar 

  43. T.F. Yen, Energy Sources 1, 447 (1974).

    CAS  Google Scholar 

  44. T. Ignasiak and O. P. Strausz, Fuel 57, 617 (1978).

    CAS  Google Scholar 

  45. T. Ignasiak, A. V. Kemp-Jones and O. P. Strausz, J. Org. Chem. 42, 312 (1977).

    CAS  Google Scholar 

  46. J. Goulon, A. Retournard, P. Friant, C. Goulon-Ginet, C. Berthe, J.F. Muller, J. L. Poncet, R. Guilard, J. C. Escalier and B. Neff, J. Chem. Soc. Dalton Trans. 1095 (1984).

    Google Scholar 

  47. W. R. Biggs, J. C. Fetzer, R. J. Brown and J. G. Reynolds Liquid Fuels Technology 3(4), 397 (1985).

    CAS  Google Scholar 

  48. W. R. Biggs, J. C. Fetzer, R. J. Brown and J. G. Reynolds Liquid Fuels Technology 3(4), 423 (1985).

    Google Scholar 

  49. R. H. Fish, J. J. Komlenic and Brian K. Wines, Anal. Chem. 56, 2452 (1984).

    CAS  Google Scholar 

  50. J.W. Bunger, Norman C. Li, “Chemistry of asphaltenes” Advances in Chemistry Series 195, American Chemical Society (1981) voir figure 1.

    Google Scholar 

  51. H. H. Kiet, S. L. Malhotra, L. P. Blanchard, “Structure parameter analysis of asphalt fractions by a modified mathematical approach” Analytical Chemistry 50, 1212 (1978).

    Google Scholar 

  52. M. Oka, H. C. Chang, G. R. Gaualas, Fuel 56, 3 (1977).

    CAS  Google Scholar 

  53. I. Kowalewski, M. Vandenbroucke, A. Y. Huc, M. J. Taylor and J. L. Faulon, Energy and Fuels 10, 97 (1996).

    CAS  Google Scholar 

  54. A. Koots and J. G. Speight, Fuel 54, 179 (1975).

    CAS  Google Scholar 

  55. T. Suzuki, M. Itoh, Y. Takegami and Y. Watanabe, Fuel 61, 402 (1982).

    CAS  Google Scholar 

  56. J. G. Erdman and J. P. Dickie, Preprints ACS Div. Petr. Chem. 9,69 (1964).

    Google Scholar 

  57. J. G. Speight, Fuel 49, 134 (1970).

    CAS  Google Scholar 

  58. Y. Miki, S. Yamadaya, M. Oba and Y. Sugimoto, J. of Catal. 83, 371 (1983).

    CAS  Google Scholar 

  59. R. S. Winniford, J. Inst. Petrol. 49(475), 215 (1963).

    CAS  Google Scholar 

  60. P. J. Dickie and T. F. Yen, A.C.S., Div. Petrol. Chem. Preprints 12 Bl 17, 2 (1966).

    Google Scholar 

  61. P. J. Dickie and T. F. Yen, Anal. Chem.39, 1848 (1967).

    Google Scholar 

  62. H. Reerink, A.C.S. Preprints Div. Petrol. Chem. 16 D18, 1 (1971).

    Google Scholar 

  63. T. F. Yen, J. G. Erdman and S.S. Pollack, Anal. Chem. 33(11), 1587 (1961).

    CAS  Google Scholar 

  64. J. G. Speight, Proc. Nat. Sci. Found. Symp. Fund. Org. Chem. Coal, Knoxville TN, 125 (1975).

    Google Scholar 

  65. M. A. Sadeghi, G. V. Chilingarian and T. F. Yen, Energy Sources 8(2/3), 99 (1966).

    Google Scholar 

  66. R. G. S. Ritchie, R. S. Roche and W. Steedman, Fuel 58, 523 (1979).

    CAS  Google Scholar 

  67. R. C. Schucker and C. F. Keweshan, A.C.S. Div. Fuel, Chem. 25(3), 155 (1980).

    Google Scholar 

  68. J. G. Speight and R. J. Pancivarov, A.C.S. Div. Fuel, Chem. 28(5), 1319 (1983).

    CAS  Google Scholar 

  69. S. El-Mohamed, M. A. Archard, F. Hardouin and G. Gasparoux, Fuel 65, 1501 (1986).

    CAS  Google Scholar 

  70. J. G. Speight, D. L. Wernick, K. A. Gould, R. E. Overfield, B. M. L. Rao and D. W. Savage, Revue de l’Institut Français du Pétrole 40(1), 51 (1985).

    CAS  Google Scholar 

  71. B. R. Ray, P. A. Witherspoon and R. E. Gorin, J. Phys. Chem. 61, 1296 (1957).

    CAS  Google Scholar 

  72. H. Reerink and J. Lijzenga, J. Inst. Petrol. 59, 211 (1973).

    CAS  Google Scholar 

  73. J. M. Swanson, Journal of Physical Chemistry 46, 141 (1942).

    CAS  Google Scholar 

  74. S. E. Moschopedis, J. F. Fryer and J. G. Speight, Fuel 55, 227 (1976).

    CAS  Google Scholar 

  75. J. W. Labout, in Properties of Asphaltic Bitumen, Edited by J. P. Pfeiffer, Elsevier, New York, 35 (1950).

    Google Scholar 

  76. J. G. Speight and S. E. Moschopedis, Fuel 56, 344 (1977).

    CAS  Google Scholar 

  77. H. J. Neumann, Erdol und Kohle, 865 (1965).

    Google Scholar 

  78. J. Briant and G. Hotier, Revue de l’Institut Français du Pétrole 38(1), 83 (1983).

    CAS  Google Scholar 

  79. R. L. Griffin, W. C. Simpson and T. K. Miles, Am. Chem. Soc. Div. Petrol. Chem. 133rd Meeting, San Francisco, (1958).

    Google Scholar 

  80. K. H. Altgelt, Preprints A. C. S., Div. Petrol. Chem. 13(3), 37 (1968).

    CAS  Google Scholar 

  81. J. A. Koots and J. G. Speight, Fuel 54, 179 (1975).

    CAS  Google Scholar 

  82. H. Reerink, Ind. Eng. Chem. Prod. Res. Develop. 12(1), 83 (1973).

    Google Scholar 

  83. K. H. Altgelt and O. L. Harle, Ind. Eng. Chem. Prod. Res. Develop. 14(4), 240 (1975).

    CAS  Google Scholar 

  84. I. L. Markhasim, O. D. Svirskaya and L. N. Strads, Kolloid. Z. 31, 299 (1969).

    Google Scholar 

  85. P. G. Gottis and J. R. Lalanne, Fuel 68, 804 (1989).

    CAS  Google Scholar 

  86. E. Y Sheu and D. A. Storm, “Colloidal properties of asphaltenes in organic solvents,” in Asphaltenes — Fundamentals and Applications, Edited by E. Y Sheu and O. C. Mullins, Plenum Press, 1 (1995).

    Google Scholar 

  87. Ch. Bardon, L. Barre, D. Espinat, V. Guille, Min Hui Li, J. Lambard, J. C. Ravey, E. Rosenberg and T. Zemb, Fuel Science and Technology Int’l 14(1–2), 203 (1996).

    CAS  Google Scholar 

  88. C. W. Dwiggins Jr, J. Appl. Cryst. 11, 615 (1978).

    CAS  Google Scholar 

  89. C. W. Dwiggins Jr, The Journal of Physical Chemistry 69(10), 3500 (1965).

    CAS  Google Scholar 

  90. C. W. Dwiggins Jr, J. Appl. Cryst. 13, 572 (1980).

    CAS  Google Scholar 

  91. H. Kim and R. B. Long, Ind. Eng. Chem. Fundam. 18, 60 (1979).

    CAS  Google Scholar 

  92. J. C. Ravey, G. Ducouret and D. Espinat, Fuel 67, 1560 (1988).

    CAS  Google Scholar 

  93. P. Herzog, D. Tchoubar and D. Espinat, Fuel (67), 245 (1988).

    CAS  Google Scholar 

  94. D. Espinat, J. C. Ravey, V. Guille, J. Lambart, T. Zemb and J. P. Cotton, Journal de Physique IV 3, 181 (1993).

    CAS  Google Scholar 

  95. L. Barre, D. Espinat, E. Rosenberg and M. Scarsella, Revue de l’Institut Français du Pétrole 52(2), 161 (1997).

    CAS  Google Scholar 

  96. E. Y. Sheu, K. S. Liang, S. K. Sinha and R. E. Overfield, Journal of Colloid and Interface Science 153(2), 399(1992).

    CAS  Google Scholar 

  97. R. E. Overfield, E. Y. Sheu, S. K. Sinha and K. S. Liang, Fuel Sci. Tech. Int. 7(5-6), 611 (1989).

    CAS  Google Scholar 

  98. D. A. Storm, E. Y. Sheu and M. M. DeTar, Fuel 72(7), 977 (1993).

    CAS  Google Scholar 

  99. N. Senglet, C. Williams, D. Faure, T. Des Courieres and R. Guilard, Fuel 69, 72 (1990).

    CAS  Google Scholar 

  100. Y. Xu, Y. Koga and O.P. Strausz, Fuel 74(7), 960 (1995).

    CAS  Google Scholar 

  101. P. Thiyagarajan, J. E. Hunt, R. E. Winans, K. Anderson and J. T. Miller, Energy and Fuels 9, 829 (1995) (a verifier).

    CAS  Google Scholar 

  102. N. F. Carnahan, L. Quintero, D. M. Pfund, J. L. Fulton, R. D. Smith, M. Capel and K. Leontaritis, Lang-muir 9, 2035(1993).

    CAS  Google Scholar 

  103. M. Y. Lin, E. B. Sirota and H. Gang, A. C. S. National Meeting, Symposium on Asphaltene and Heavy Oils, (1997).

    Google Scholar 

  104. D. Espinat, Revue de l’Institut Français du Pétrole 46(6), 773 (1991).

    Google Scholar 

  105. Y. C. Liu, E. Y. Sheu, S. H. Chen and D. A. Storm, Fuel 74, 1352 (1995).

    CAS  Google Scholar 

  106. H. Rassamdana and M. Sahimi, AIChE Journal 42(12), 3318 (1996).

    CAS  Google Scholar 

  107. S. El Mohamed, F. Hardouin and H. Gasparoux, Journal de Chimie Physique 85(1), 135 (1988).

    Google Scholar 

  108. J.G. Speight, “Fractionation” Chapter 9 in “The chemistry and technology of petroleum” Second Edition, Marcel Dekker, Inc., 309 (1991).

    Google Scholar 

  109. B. Brulé, J. Liq. Chromatogr. 2, 165 (1979).

    Google Scholar 

  110. H. Reerink and J. Lijzenga, Anal. Chem. 47(13), 2160 (1975).

    CAS  Google Scholar 

  111. D. H. Buchanan, L. C. Warfel, S. Baley and D. Lucas, Energy and Fuels 2, 32 (1988).

    CAS  Google Scholar 

  112. G. Ducouret, PhD Thesis, Paris VI University (1987).

    Google Scholar 

  113. K. H. Altgelt and E. Hirsch, Separation Science 5, 855 (1970).

    CAS  Google Scholar 

  114. T. M. Ignasiak, M. Kotlyar, N. Samman, D.S. Montgomery and O.P Strausz, Fuel 62, 363 (1983).

    CAS  Google Scholar 

  115. S. Acevedo, G. Escobar, L. B. Gutierrez and J. D’Aquino, Fuel 71, 1077 (1992).

    CAS  Google Scholar 

  116. G. Hall and S. P. Herron, A. C. S. Div. Petrol. Chem. 9-14 (1979).

    Google Scholar 

  117. S. I. Andersen and J. G. Speight, Fuel 72(9), 1343 (1993).

    CAS  Google Scholar 

  118. S. I. Andersen and K. S. Birdi, Journal of Colloid and Interface Science 142(2), 497 (1991).

    CAS  Google Scholar 

  119. D. A. Storm, R. J. Barresi and E. Y. Sheu, “Evidence for the Micellization of Asphaltenic Molecules in Vacuum Residue,” Symposium on Petroleum Chemistry and Processing, presented before the Division of Petroleum Chemistry, Inc. 210th National Meeting, A.C.S. Chicago, 776 (1995).

    Google Scholar 

  120. E. Y Sheu, M. M. DeTar, D. A. Storm and S. J. DeCanio, Fuel 71, 299 (1992).

    CAS  Google Scholar 

  121. H. P. Maruska and B. M. L. Rao, Fuel Sci. Tech. Int. 5(2), 119 (1987).

    Google Scholar 

  122. E. Y Sheu, M. M. De Tar and D. A. Storm, Fuel 73(1), 45 (1994).

    CAS  Google Scholar 

  123. T. Ignasiak, O.P. Strausz and D. S. Montgomery, Fuel 56, 359 (1977).

    CAS  Google Scholar 

  124. T. Ignasiak, Kemp-Jones, A.V. and Strausz, O.P. ACS Div. Fuel Chem. Prepr. 22 (3), 126 (1977).

    Google Scholar 

  125. K.A. Gould, Fuel 58, 550 (1979).

    CAS  Google Scholar 

  126. R. Cimino, S. Correra, A.D. Bianco and T.P. Lockhart, “Solubility and Phase Behavior of Asphaltenes in Hydrocarbon Media” in Asphaltenes—Fundamentals and Applications, Edited by E. Y Sheu and O. C. Mullins, Plenum Press, 1 (1995).

    Google Scholar 

  127. J. Escobedo and G.A. Mansoori, SPE Production & Facilities, 115 (1995).

    Google Scholar 

  128. G. Hotier and M. Robin, Revue de l’Institut Français du Pétrole 38(1), 101 (1983).

    CAS  Google Scholar 

  129. M. A. Anisimov, I. K. Yudin, V. Nikitin, G. Nikolaenko, A. Chernoustan, H. Toulhoat, D. Frot and Y. Briolant, J. Phys. Chem. 99, 9576 (1995).

    CAS  Google Scholar 

  130. P. Fotland, H. Anfindsen and F.H. Fadnes, Fluid Phase Equilibria 82, 157 (1993).

    CAS  Google Scholar 

  131. H. Toulhoat, C. Prayer and G. Rouquet, Colloids and Surfaces A: Physicochemical and Engineering Aspects 91, 267 (1994).

    CAS  Google Scholar 

  132. V. Szewczyk, F. Behar, E. Behar and M. Scarsella, Revue de l’Institut Français du Pétrole 51(4), 575 (1996).

    CAS  Google Scholar 

  133. A. S. Janardhan and G. A. Mansoori, Journal of Petroleum Science and Engineering 9, 17 (1993).

    CAS  Google Scholar 

  134. B. Dabir, M. Nematy, A. R. Mehrabi, H. Rassamdana and M. Sahimi, Fuel 75(14), 1633 (1996).

    CAS  Google Scholar 

  135. M. Adam and D. Lairez, “Sol-gel Transition” in The Physical Properties of Polymeric Gels, Edited by J.P. Cohen Addad, John Wiley and Sons, 87 (1996).

    Google Scholar 

  136. P. Meakin, “Simulation of Aggregation Processes” in The fractal Approach to Heterogeneous Chemistry, Edited by D. Avnir, John Wiley and Sons, 131 (1989).

    Google Scholar 

  137. M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein and P. Meakin, in Fractals in the Natural Sciences, M. Fleischmann, DJ. Tildesley and R.C. Ball Eds., Princeton Paperbacks, pp. 71-87 (1989).

    Google Scholar 

  138. B. P. Tissot and D. H. Weite, “Petroleum formation and occurrence”, Springer-Verlag (1984).

    Google Scholar 

  139. M. L. Bordenave, “Applied Petroleum Geochemistry,” Editions TECHNIP, (1992).

    Google Scholar 

  140. B. P. Tissot, “Characterization of heavy crude oils and petroleum residues”, International Symposium — Lyon 25-27 juin 1984, Edition TECHNIP, 3-18.

    Google Scholar 

  141. F. Behar and R. Pelet, Journal of Analytical and Applied Pyrolysis 8, 173 (1985).

    CAS  Google Scholar 

  142. D. Vitorovic, “Structure elucidation of kerogen by chemical methods”, in Kerogen, Edited by B. Durand, Editions TECHNIP, 301 (1980).

    Google Scholar 

  143. F. Behar and M. Vandenbroucke, Org. Geochem. 11, 15 (1987).

    CAS  Google Scholar 

  144. K. H. Altgelt and M. M. Boduszynski, “Composition and Analysis of Heavy Petroleum fractions”, Marcel Dekker Inc., 463 (1994).

    Google Scholar 

  145. P. J. Flory, “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New York, (1953).

    Google Scholar 

  146. T. F. Yen, in “Encyclopedia of Polymer Science and Engineering”, Edited by M. Grayson and J. I. Krochwitz, Wiley, Second Edition, 1 (1988).

    Google Scholar 

  147. H. Lian, J.-R. Lin and T. F. Yen, Fuel 73(3), 423 (1994).

    CAS  Google Scholar 

  148. L. Loeber, O. Sutton, J. Morel, J. M. Valleton and G. Muller, Journal of Microscopy 182(1), 32 (1996).

    CAS  Google Scholar 

  149. R. N. J. Saal and J. W A. Labout, J. Phys. Chem. 44, 149 (1940).

    CAS  Google Scholar 

  150. J. M. Dealy, The Canadian Journal of Chemical Engineering 57, 677 (1977).

    Google Scholar 

  151. D.A. Storm and E. Y. Sheu, Fuel 72, 233 (1993).

    CAS  Google Scholar 

  152. A. Cohen, G. Di Bernardo and D. Decroocq, Revue de l’Institut Français du Pétrole 43(2), 281 (1988).

    CAS  Google Scholar 

  153. A. Guinier and G. Fournet, “Small Angle Scattering of X-rays”, Wiley New York, (1955).

    Google Scholar 

  154. D. Espinat, Revue de l’Institut Français du Pétrole 45(6), 775 (1990).

    CAS  Google Scholar 

  155. J. Lambard and Th. Zemb, J. Appl. Cryst. 24, 555 (1991).

    Google Scholar 

  156. J. P. Cotton, “Introduction to scattering experiments”, in Neutron, X-Ray and Light Scattering: Introduction to an Investigate Tool for Colloidal and Polymeric Systems, edited by P. Lindner and Th. Zemb, Elsevier Science Publishers, 3 (1991).

    Google Scholar 

  157. J. Teixeira, J. Appl. Cryst. 21, 781 (1988).

    Google Scholar 

  158. J. E. Martin, J. Appl. Cryst. 19, 25 (1986).

    CAS  Google Scholar 

  159. T. Nicolai, D. Durand and J.C. Gimel, Phys. Rev. B 50, 16357 (1994).

    Google Scholar 

  160. S. H. Chen, J. Rouch and P. Tartaglia, Croat. Chem. Acta 65, 533 (1992).

    Google Scholar 

  161. J. Bastide and S.J. Candau, in Physical properties of Polymeric gels, Ed. J.P. Cohen Addad, Wiley, 159 (1996).

    Google Scholar 

  162. A. W. Robards and U. B. Sleytr, Low temperature methods in biological electron microscopy, Elsevier, (1985).

    Google Scholar 

  163. L. Loeber, « Etude de la structure des cakes d’argile formés sur les parois des puis au cours duforag », PhD Thesis — University of Paris VI, (1992).

    Google Scholar 

  164. O. Fassi, « Caractérisation à l’échelle du pore de la mouillabilité des roches réservoirs », PhD Thesis — University of Paris VI, (1992).

    Google Scholar 

  165. O. Mack, J. Phys. Chem. 36, 2901 (1932).

    CAS  Google Scholar 

  166. P.J. Flory and T.G. Fox, J. Am. Chem. Soc. 73, 1951 (1951).

    Google Scholar 

  167. J. Murgich, J. Rodriguez and M. Yosslen Aray, Energy and Fuels, 10, 68 (1996).

    CAS  Google Scholar 

  168. B. Cabane, “Growth: a brief guide for the use of scattering techniques”, in Neutron, X-ray and Light Scattering: Introduction to an Investigate Tool for Colloidal and Polymeric Systems, Edited by P. Lindner and Th. Zemb, Elsevier Science Publishers, 247 (1991).

    Google Scholar 

  169. J. Bastide and S.J. Candau in The Physical Properties of Polymeric Gels, Edited by J.P. Cohen Addad, John Wiley and Sons, 87(1996).

    Google Scholar 

  170. D. Fenistein, L. Barre, D. Broseta, D. Espinat, A. Livet and M. Scarsella, accepted to Langmuir.

    Google Scholar 

  171. H. F. van Garderen, W. H. Dokter, T. P. M. Beelen, R. A. Van Santen, E. Pantos, M. A. J. Michels and P. A. J. Hilbers, J. Chem. Phys., 102(1), 480 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Espinat, D., Rosenberg, E., Scarsella, M., Barre, L., Fenistein, D., Broseta, D. (1998). Colloidal Structural Evolution from Stable to Flocculated State of Asphaltene Solutions and Heavy Crudes. In: Mullins, O.C., Sheu, E.Y. (eds) Structures and Dynamics of Asphaltenes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1615-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1615-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1617-4

  • Online ISBN: 978-1-4899-1615-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics