Skip to main content

Self-Association of Asphaltenes

Structure and Molecular Packing

  • Chapter
Structures and Dynamics of Asphaltenes

Abstract

Asphaltene represents the most refractory fraction of petroleum liquids. It is defined by the solubility in alkyl solvents, such as pentane or heptane [1,2]. For example, heptane asphaltene is defined as the fraction in the petroleum liquid that is insoluble in heptane but soluble in toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Speight, The chemistry and Technology of Petroleum. Marcel Dekker, New York, (1980).

    Google Scholar 

  2. J. G. Speight, Fuel Science and Technology Handbook. Marcel Dekker, New York 1193 pp (1990).

    Google Scholar 

  3. T.F. Yen, “The role of asphaltene in heavy crude and tar sands.” In: R.F. Meyer and C.T. Steele (Editors), The Future of Heavy Crude and Tar Sands, McGral-Hill, New York, pp 174–179 (1980).

    Google Scholar 

  4. R. S. Sanders, R. S. Chow and J. H. Masliyah, J. Coll. Int. Sci., 174, 230 (1995).

    Article  CAS  Google Scholar 

  5. J. Escobedo and G. A. Mansoori, SPE 23696, paper presented at the Second Latin American Petroleum Engineering Conference, II LAPEC of the SPE held in Caracas, Venezuela, March 8-11 (1992).

    Google Scholar 

  6. G. A. Mansoori, T. S. Jiang, and S. Kawanaka, Arabian J. Sci. & Eng., 13, 17 (1988).

    CAS  Google Scholar 

  7. J. H. Pfeiffer, The Properties of Asphaltic Bitumen. Elsevier, Amsterdam, 285 pp. (1950).

    Google Scholar 

  8. J.W. Bunger and N.C. Li, Chemistry of Asphaltenes. Advances in Chemistry Series 195. American Chemical Society, Washington D.C. (1981).

    Google Scholar 

  9. T.F. Yen and G.V. Chilingarian (editor) Asphaltenes and Asphaltes, 1, Eiservier, Amsterdam (1994).

    Google Scholar 

  10. M.K. Sharma and T.F. Yen (editors) Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refining, and Production Processes, Plenum Press, New York (1994).

    Google Scholar 

  11. E. Y. Sheu and D. A. Storm, “Colloidal Properties of Asphaltenes in Organic Solvents” In Asphaltenes — Fundamentals and Applications, edited by E. Y. Sheu and O. C. Mullins, Plenum Press, New York (1995).

    Google Scholar 

  12. Marusk H. P., and Rao, B. M. L., Fuel Sci. & Tech. Int., 5(2) 119 (1987).

    Article  Google Scholar 

  13. B. Shiffert, J. Kuczinski, and E. J. Papirer, J. Coll. Int. Sci., 135, 107 (1990).

    Article  Google Scholar 

  14. Eric Y. Sheu and D. A. Storm, Energy & Fuel, 8, 552 (1994).

    Article  CAS  Google Scholar 

  15. B. Tissor, Rev. Inst. Fr. Pet., 36(4), 429 (1981)

    Google Scholar 

  16. B. Tissot, D. H. Weite, Petroleum Formation and Occurrence; 2nd Ed., Spring Verlag, Berlin, pp 538 (1984).

    Google Scholar 

  17. F. J. Nellensteyn, Oxfor Univ. Press, London, 4, 2760 (1938).

    Google Scholar 

  18. J. P. Dickie and T. F. Yen, Analy. Chem., 39,(14)1847 (1967).

    Article  CAS  Google Scholar 

  19. S. S. Pollack, and T. F. Yen, Analytical Chemistry, 42(6) 23 (1970).

    Article  Google Scholar 

  20. T. F. Yen, Am. Chem. Soc, Div. Petrol. Chem. Preprint, 17(1): 102–104 (1972).

    Google Scholar 

  21. I. A. Eldib, H. N. Dunning and R. J. Bolen, J. Chemical & Eng. Data, 5(4) 550, 1960.

    Article  CAS  Google Scholar 

  22. B. R. Ray, P. A. Witherspoon and R. E. Grim, J. Phys. Chem., 61, 1296 (1957).

    Article  CAS  Google Scholar 

  23. T.F. Yen, Energy Source, 1(4): 447–463 (1974).

    Article  CAS  Google Scholar 

  24. E.Y. Sheu, K.S. Liang, S.K. Sinha, and R.E. Overfield, J. Coll. Int. Sci., 153, 399 (1992).

    Article  CAS  Google Scholar 

  25. F.J. Nellensteyn, Chem. Weekblad, 28, 313 (1931).

    Google Scholar 

  26. F. J. Nellensteyn and N. M. Roodenburg, Chem.-Zeiyung, 545, 819(1930).

    Google Scholar 

  27. C. Mack, Phys. Chem., 36, 2901 (1932).

    Article  CAS  Google Scholar 

  28. J. P. Pfeiffer and R. N. J. Saal, J. Phys. Chem., 44, 139 (1940).

    Article  CAS  Google Scholar 

  29. H. Eiler, Kolloid-ZZ. Polym., 97, 313 (1941).

    Article  Google Scholar 

  30. E.Y. Sheu, D.A. Storm and M.M. De Tar, J. Non-crystal Sloids, 131-133, 347 (1991).

    Google Scholar 

  31. Xu, Yingnian; Koga, Yoshikata; Strausz, Otto P., Fuel, 74(7), 960–4 (1995).

    Article  Google Scholar 

  32. L. Schramm, R. G. Smith, and J. A. Stone, Colloids and Surfaces, 11, 247 (1984).

    Article  CAS  Google Scholar 

  33. S. Acevedo, M. A. Ranaudo, G. Escobar, L. Gutierrez and P. Ortega, Fuel, 74(4) 595 (1995).

    Article  CAS  Google Scholar 

  34. E.M. Trujillo, Soc. Petro. Eng AIME, 645, Aug. (1983).

    Google Scholar 

  35. Y. Xu, Energy & Fuel, 9, 148 (1995).

    Article  CAS  Google Scholar 

  36. K. C. Khulbe, G. H. Neale, and V Hornof, Fuel Proc. Tech., 19, 61 (1988).

    Article  CAS  Google Scholar 

  37. H. A. Nasr-El-Din and K. C. Taylor, Colloid and Surfaces, A: 75, 169 (1993).

    Article  CAS  Google Scholar 

  38. G. Gonzalez and A. Middea, Golloids and Surfaces, 33, 217(1988).

    Article  CAS  Google Scholar 

  39. O. V. Rogacheva, R. N. Rimaev, V. Z. Gubaidullin, and D. K. Khakimov, Kolloidnyi Zhurnal, 42(3) 586 (1980).

    CAS  Google Scholar 

  40. E. Y Sheu, M. M. De Tar, D. A. Storm, and S. J. DeCanio, Fuel, 71, 299 (1992).

    Article  CAS  Google Scholar 

  41. E.Y. Sheu, M.M. De Tar and D.A. Storm, “Surface Activity and Dynamics of Asphaltenes.” In: M.K. Sharma and T.F. Yen (editors) Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refining, and Production Processes, 115 pp Plenum Press, New York (1994).

    Chapter  Google Scholar 

  42. S.E. Taylor, Fuel, 71, 1338 (1992).

    Article  CAS  Google Scholar 

  43. E.Y. Sheu and D.A. Storm, Fuel, 73, 1368 (1994).

    Article  CAS  Google Scholar 

  44. K. C. Kyriacou, R. E. Baltus and P. Rahimi, Fuel, 67, 109 (1988).

    Article  CAS  Google Scholar 

  45. R. E. Baltus, K. C. Kyriacou, V. V. Sivaramakrishna, and P. Rahimi, AICheE Symposium Series, No. 266, Vol. 84, 50(1988).

    CAS  Google Scholar 

  46. D. A. Storm and E. Y Sheu, Energy & Fuel, 9, 168 (1995).

    Article  CAS  Google Scholar 

  47. C. W. Dwiggins Jr., J. Phys. Chem. 69, 3500, (1965).

    Article  CAS  Google Scholar 

  48. C. W. Dwiggins Jr., J. Appl. Cryst. 11, 615,(1978).

    Article  CAS  Google Scholar 

  49. S. I. Anderson and K. S. Birdi, J. Coll. Int. Sci., 142, 497 (1991).

    Article  Google Scholar 

  50. P. Herzog, D. Tchoubar, and D. Espinat, Fuel, 67, 245 (1988).

    Article  CAS  Google Scholar 

  51. J. C. Ravey, G. Ducouret, and D. Espinat, Fuel, 67, 1560 (1988).

    Article  CAS  Google Scholar 

  52. Thiyagarajan, P.; Hunt, Jerry E.; Winans, Randall E.; Anderson, Ken B.; Miller, Jeffrey T., Energy & Fuels, 9(5), 829–33(1995).

    Article  CAS  Google Scholar 

  53. I. Kowalewski, M. Vandenbroucke, A. Y Huc, M. J. Taylor, and J. L. Faulon, Energy & Fuel, 10, 97–107 (1996).

    Article  CAS  Google Scholar 

  54. J. Murgich, J. Rodriguez, and Y Aray, Energy & Fuel, 10, 68–76 (1996).

    Article  CAS  Google Scholar 

  55. L. A. Feigin and D. I. Svergun, Structure Analysis By Small Angle X-ray and Neutron Scattering, Plenum Press, New York (1987).

    Book  Google Scholar 

  56. E.Y. Sheu, Phys. Rev. A., 45, 2428(1992).

    Article  Google Scholar 

  57. G. Porod, “General Theory”, in O. Glatter and O. Kratky edited Small Angle X-ray Scattering, Academic Press, New York (1982).

    Google Scholar 

  58. P. Debye, Ann. Physik, 46, 809 (1915).

    Article  CAS  Google Scholar 

  59. M. Borkovec, J. Chem. Phys., 91(19) 6268 (1989).

    Article  CAS  Google Scholar 

  60. G. S. Grest, I. Webman, S. A. Safran and A. L. R. Bug, Phys. Rev. A 33, 2842 (1986).

    Article  CAS  Google Scholar 

  61. H. E. Stanley and N. Ostrowsky eds, On Growth and Form, Martinus Nijhoff Publisher, New York (1986).

    Google Scholar 

  62. D. P. Landau and F. Family, Eds., Kinetics of Aggregation and Gelation, North Holland, Amsterdam, (1984).

    Google Scholar 

  63. R. Pynn and A. Skeltorp, Eds. Scaling Phenomena in Disordered System, Plenum New York (1986).

    Google Scholar 

  64. J. Feder, Fractal, Plenum, New York (1988).

    Google Scholar 

  65. T. Jøssang, J. Feder, and E. Rosenqvist, J. Chem. Phys. 120, 1–30, 1984.

    Google Scholar 

  66. J. Feder, T. Jossang, and E. Rosenqvist, Phys. Rev. Lett. 53, 1403, 1984.

    Article  CAS  Google Scholar 

  67. D. Stauffer, in On Growth and Form, edited by H. E. Stanley and N. Ostrowsky, Martinus Nijhoff Publisher, New York (1986).

    Google Scholar 

  68. C. Y Ralston, S. Mitra-Kirtley and O. C. Mullins, Energy & Fuels, 10, 623 (1996).

    Article  CAS  Google Scholar 

  69. Cerius2 is marketed by BIOSYM/Molecular Simulations Inc., 9685 Scarnton Road, San Diego, California, USA.

    Google Scholar 

  70. Mayo, S. L.; Olafson, B. D.; Goddard III, W. A. J. Phys. Chem. 1990, 94, 8897.

    Article  CAS  Google Scholar 

  71. MOPAC6 is a semi empirical package available from Quantum Chemistry Program Exchange (QCPE), Indiana University.

    Google Scholar 

  72. CHARMm (Brooks, B. R.; Bruccoleri, R. E; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., J. Comput. Chem., 1983, 4, 187).

    Google Scholar 

  73. J. Peyerelasse and C. Boned, Phys. Rev. A 41, 938 (1990).

    Article  Google Scholar 

  74. M. Lagure, J. Phys. Lett., 40, L331 (1979).

    Article  Google Scholar 

  75. M. I. Clarkson, Phys. Rev. A. 37, 2079(1988).

    Article  CAS  Google Scholar 

  76. S. K. Mehta et al., Phys. Rev. E., 50, 4759 (1994).

    Article  CAS  Google Scholar 

  77. J. P. Straley, Phys. Rev. B 15, 5733 (1977).

    Article  CAS  Google Scholar 

  78. I. Webman et al., Phys. Rev. B 16, 2593 (1977).

    Article  Google Scholar 

  79. Y C. Liu, E. Y Sheu, S. H. Chen, and D. A. Storm, Fuel, 74, 1352 (1995).

    Article  CAS  Google Scholar 

  80. Kusaka, I.; Wang, Z.-G.; Seinfeld, J. H., J. Chem. Phys., 103(20), 8993–9009, (1995).

    Article  CAS  Google Scholar 

  81. V. E. Galtsev, I. M. Ametov and O. Y Grinberg, Fuel, 74(5) 670 (1995).

    Article  CAS  Google Scholar 

  82. B. A. Watson and M. A. Barteau, Ind. Eng. Chem. Res., 33, 2358 (1994).

    Article  CAS  Google Scholar 

  83. M. A. Anisimov, I. K. Yudin, V. Nikitin, G. Nikolaenko, A. Chernoutsan, H. Touhoat, D. Frot, and Y Briolant, J. Phys. Chem., 99, 9577 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheu, E.Y. (1998). Self-Association of Asphaltenes. In: Mullins, O.C., Sheu, E.Y. (eds) Structures and Dynamics of Asphaltenes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1615-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1615-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1617-4

  • Online ISBN: 978-1-4899-1615-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics