Skip to main content

Schwinger-Dyson Equation in Three-Dimensional Simplicial Quantum Gravity

  • Chapter
Book cover Low-Dimensional Topology and Quantum Field Theory

Part of the book series: NATO ASI Series ((NSSB,volume 315))

  • 302 Accesses

Abstract

We study simplicial quantum gravity in three dimensions. Motivated by Boulatov’s model which generates a sum over simplicial complexes weighted with the Turaev-Viro invariant, we introduce boundary operators in the simplicial gravity associated to compact orientable surfaces. An amplitude of the boundary operator is given by a sum over triangulations in the interior of the boundary surface. It turns out that the amplitude solves the Schwinger-Dyson equation even if we restrict the topology in the interior of the surface, so long as the surface is non-degenerate. We propose a set of factorization conditions on the amplitudes which singles out a solution associated to triangulations of S 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Regge, Nuovo Cimento 19 (1961) 558.

    Article  MathSciNet  Google Scholar 

  2. For a review on recent numerical results in this approach, see H. Hamber, Nucl. Phys. (Proc. Suppl.) 25A (1992) 150.

    Google Scholar 

  3. W.T. Tutte, Can. J. Math. 14 (1962) 21.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Brézin, C. Itzykson, G. Parisi and J.-B. Zuber, Commun. Math. Phys. 59 (1978) 35.

    Article  ADS  MATH  Google Scholar 

  5. T. Eguchi and H. Kawai, Phys. Lett. 114B (1982) 247.

    MathSciNet  ADS  Google Scholar 

  6. F. David, Nucl. Phys. B257 (1985) 45.

    Article  ADS  Google Scholar 

  7. V.A. Kazakov, Phys. Lett. 150B (1985) 282.

    MathSciNet  ADS  Google Scholar 

  8. D. Bessis, C. Itzykson and J.-B. Zuber, Adv. Appl. Math. 1 (1980) 109.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Rostov and M.L. Metha, Phys. Lett. 189B (1987) 118.

    ADS  Google Scholar 

  10. V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Mod. Phys. Lett. A3 (1988) 819.

    MathSciNet  ADS  Google Scholar 

  11. F. David, Mod. Phys. Lett. A3 (1988) 1651.

    ADS  Google Scholar 

  12. J. Distler and H. Kawai, Nucl. Phys B321 (1989) 509.

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Douglas and S. Shenker, Nucl. Phys. B335 (1990) 635.

    Article  MathSciNet  ADS  Google Scholar 

  14. D.J. Gross and A.A. Migdal, Phys. Rev. Lett. 64 (1990) 127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. E. Brezin and V.A. Kazakov, Phys. Lett. B236 (1990) 144.

    MathSciNet  ADS  Google Scholar 

  16. E. Witten, Nucl. Phys. B340 (1990) 281.

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Dijkgraaf and E. Witten, Nucl. Phys. B342 (1990) 342.

    MathSciNet  Google Scholar 

  18. R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B348 (1991) 435.

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Verlinde and H. Verlinde, Nucl. Phys. B348 (1991) 457.

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Fukuma, H. Kawai and R. Nakayama, Int. J. Mod. Phys. A6 (1991) 1385.

    MathSciNet  ADS  Google Scholar 

  21. G. Moore, N. Seiberg and M. Staudacher, Nucl. Phys. B362 (1991) 665.

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Moore and N. Seiberg, Int. J. Mod. Phys. A7 (1991) 190.

    Google Scholar 

  23. J. Ambjørn and S. Varsted, Phys. Lett. 266B (1991) 285.

    ADS  Google Scholar 

  24. M.E. Agishtein and A.A. Migdal, Mod. Phys. Lett. A6 (1991) 1863.

    MathSciNet  ADS  Google Scholar 

  25. D.V. Boulatov and A. Krywicki Mod. Phys. Lett. A6 (1991) 3005.

    ADS  Google Scholar 

  26. J. Ambjørn and S. Varsted, Nucl. Phys. B373 (1992) 557.

    Article  ADS  Google Scholar 

  27. J. Ambjørn, D.V. Boulatov, A. Krywicki and S. Varsted, Phys. Lett. 276B (1992) 432.

    ADS  Google Scholar 

  28. J. Ambjørn, B. Durhuus and T. Jonsson, Mod. Phys. Lett. A6 (1991) 1133.

    ADS  Google Scholar 

  29. N. Sasakura, Mod. Phys. Lett. A6 (1991) 2613.

    MathSciNet  ADS  Google Scholar 

  30. M. Godfrey and M. Gross, Phys. Rev. D43 (1992) R1749.

    MathSciNet  ADS  Google Scholar 

  31. D.V. Boulatov, Mod. Phys. Lett. A7 (1992) 1629.

    MathSciNet  ADS  Google Scholar 

  32. V.G. Turaev and O.Y. Viro, Toplogy 31 (1992) 865.

    Article  MathSciNet  MATH  Google Scholar 

  33. S.R. Wadia, Phys. Rev. D24 (1981) 970.

    ADS  Google Scholar 

  34. A.A. Migdal, Phys. Rep. 102 (1983) 199.

    Article  ADS  Google Scholar 

  35. A.N. Kirillov and N.Yu. Reshetikhin, in Infinite Dimensional Lie Algebras and Groups, edited by V.G. Kac (World Scientific, 1989).

    Google Scholar 

  36. V.G. Turaev, C. R. Acad. Sci. Paris, t. 313, Série I (1991) 395; “Topology of Shadow”, preprint (1991).

    Google Scholar 

  37. K. Walker, “On Witten’s 3-Manifold Invariants”, preprint (1990).

    Google Scholar 

  38. E. Witten, Commun. Math. Phys. 121 (1989) 3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. N.Y. Reshetikhin and V.G. Turaev, Invent. Math. 103 (1991) 547.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. H. Ooguri and N. Sasakura, Mod. Phys. Lett. A6 (1991) 3591.

    MathSciNet  ADS  Google Scholar 

  41. H. Ooguri, Nucl. Phys. B382 (1992) 276.

    Article  MathSciNet  ADS  Google Scholar 

  42. F. Archer and R. Williams, Phys. Lett. B273 (1991) 438.

    MathSciNet  ADS  Google Scholar 

  43. S. Mizoguchi and T. Tada, Phys. Rev. Lett. 68 (1992) 1795.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. T. Kohno, Topology 31 (1992) 203.

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Waldhausen, Topology 7 (1968) 195.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ooguri, H. (1993). Schwinger-Dyson Equation in Three-Dimensional Simplicial Quantum Gravity. In: Osborn, H. (eds) Low-Dimensional Topology and Quantum Field Theory. NATO ASI Series, vol 315. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1612-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1612-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1614-3

  • Online ISBN: 978-1-4899-1612-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics