Skip to main content

Ultradistributional Boundary Values of Holomorphic Functions

  • Chapter
Generalized Functions and Their Applications

Abstract

Ultradistributions of Beurling type D’(M p ), L s ) and of Roumieu type D’({M p }, Ls) are defined where M p , p = 0,1,2,3,..., is a sequence of positive real numbers which is used to define ultradistributions. A norm growth of the Cauchy integral of elements in D’ (*,L S), where * is either (M p ) or {M p }, is obtained involving the associated function M*(p) corresponding to the sequences M p ; the Cauchy integral is a holomorphic function of zn + iC 2282 n where C is a regular cone in n. We define holomorphic functions in tubes n + iC which are motivated by this norm growth and show that these functions are representable by Fourier-Laplace transforms; certain of these functions obtain ultradistributional boundary values. Problems for future research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Carmichael, Analytic functions related to the distributions of exponential growth, SIAM J. Math. Anal. 10, 1041–1068 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. D. Carmichael, Distributional boundary values in D’ LP . IV, Rend. Sem. Mat. Univ. Padova 63, 203–214 (1980).

    MathSciNet  MATH  Google Scholar 

  3. R. D. Carmichael, Holomorphic functions in tubes which have distributional boundary values and which are H p functions, SIAM J. Math. Anal. 14, 596–621 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. D. Carmichael, Generalization of H p functions in tubes. I, Complex Variables Theory Appl. 2, 79–101 (1983).

    MATH  Google Scholar 

  5. R. D. Carmichael, Boundary values of generalizations of H p functions in tubes, Complex Variables Theory Appl. 8, 83–101 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. D. Carmichael, Extensions of H p functions, Progr. Math. (Varanasi), to appear (1992).

    Google Scholar 

  7. R. D. Carmichael and D. Mitrović, “Distributions and Analytic Functions”, Longman Scientific and Technical, Harlow, Essex, England (1989).

    MATH  Google Scholar 

  8. R. D. Carmichael, R. S. Pathak, and S. Pilipović, Cauchy and Poisson integrals of ultradistributions, Complex Variables Theory Appl. 14, 85–108 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. D. Carmichael, R. S. Pathak, and S. Pilipović, Holomorphic functions in tubes associated with ultradistributions, Complex Variables Theory Appl., to appear (1992).

    Google Scholar 

  10. H. Komatsu, Ultradistributions, I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973).

    MathSciNet  MATH  Google Scholar 

  11. S. Pilipovic, Boundary value representation for a class of Beurling ultradistributions, Portugaliae Math. 45, 201–219 (1988).

    MathSciNet  Google Scholar 

  12. L. Schwartz, “Theorie des distributions”, Hermann, Paris (1966).

    MATH  Google Scholar 

  13. L. Schwartz, “Mathematics for the Physical Sciences”, Addison-Wesley, Reading, Massachusetts (1966).

    MATH  Google Scholar 

  14. E. M. Stein and G. Weiss, “Introduction to Fourier Analysis on Euclidean Spaces”, Princeton University Press, Princeton, New Jersey (1971).

    MATH  Google Scholar 

  15. H. G. Tillmann, Distributionen als Randverteilungen analytischer Funktionen. II, Math. Z. 76, 5–21 (1961).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carmichael, R.D., Pathak, R.S., Pilipović, S. (1993). Ultradistributional Boundary Values of Holomorphic Functions. In: Pathak, R.S. (eds) Generalized Functions and Their Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1591-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1591-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1593-1

  • Online ISBN: 978-1-4899-1591-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics