Skip to main content

Contractile Proteins and Their Response to Bladder Outlet Obstruction

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 385))

Abstract

Urinary outlet obstruction causes rapid increases in bladder mass; the extent of the increase in mass is directly proportional to the severity of the obstruction1–3. Although there may be some species differences, in general, the changes in bladder contractility associated with outlet obstruction are also dependent upon the degree of increase in bladder mass. Bladder strips from animals with “mild” obstruction (less than 3-fold increase in bladder mass) respond to electrical field stimulation or contractile agents with no change or increases in contractile response compared to controls1–5. In contrast, bladder strips from animals with “severe” obstruction, where the bladder mass increases more than 6-fold, respond to contractile stimuli with decreases in contractile responses and an impaired ability of the bladder to empty2,3,6–10. Depending on the duration and severity of obstruction, removal of the obstruction generally causes reversal of the contractile dysfunction11,12. The mechanisms responsible for the changes in bladder contractility associated with bladder outlet obstruction are still unclear, but as described in other chapters in this book, may include alterations in glucose metabolism13–19, in bladder innervation and/or action potential properties20–25, or alterations in the contractile proteins responsible for smooth muscle contraction26–31. The latter mechanism will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Kato, F.C. Monson, P.A. Longhurst, A.J. Wein, N. Haugaard, and R.M. Levin, The functional effects of long-term outlet obstruction on the rabbit urinary bladder, J. Urol. 143:600 (1990).

    PubMed  CAS  Google Scholar 

  2. R.M. Levin, P.A. Longhurst, B. Barasha, E.J. McGuire, A. Elbadawi, and A.J. Wein, Studies on experimental bladder outlet obstruction in the cat: long-term functional effects, J. Urol. 148:939 (1992).

    PubMed  CAS  Google Scholar 

  3. M. Saito, A.J. Wein, and R.M. Levin, Effect of partial outlet obstruction on contractility: comparison between severe and mild obstruction, Neurourol. Urodynam. 12:573 (1993).

    Article  CAS  Google Scholar 

  4. M. Saito, P.A. Longhurst, T.L.J. Tammela, A.J. Wein, and R.M. Levin, Effects of partial outlet obstruction of the rat urinary bladder on micturition characteristics, DNA synthesis and the contractile response to field stimulation and pharmacological agents, J. Urol. 150:1045 (1993).

    PubMed  CAS  Google Scholar 

  5. M. Saito, A.J. Wein, and R.M. Levin, Effect of partial outlet obstruction of the rat urinary bladder on the response to alterations in the concentrations of potassium and calcium, Gen. Pharmacol. 24:1495 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. R.M. Levin, J. High, and A.J. Wein, The effect of short-term obstruction on urinary bladder function in the rabbit, J. Urol. 132:789 (1984).

    PubMed  CAS  Google Scholar 

  7. S.B. Malkowicz, A.J. Wein, A. Elbadawi, K. Van Arsdalen, M.R. Ruggieri, and R.M. Levin, Acute biochemical and functional alterations in the partially obstructed rabbit urinary bladder, J. Urol. 136:1324 (1986).

    PubMed  CAS  Google Scholar 

  8. S. Kitada, A.J. Wein, K. Kato, and R.M. Levin, Effect of acute complete obstruction on the rabbit urinary bladder, J. Urol. 141:166 (1989).

    PubMed  CAS  Google Scholar 

  9. A. Malmgren, K.-E. Andersson, P.O. Andersson, M. Fovaeus, and C. Sjögren, Effects of nifedipine and Bay K8644 on normal and hypertrophied rat bladder, Neurourol. Urodynam. 7:27 (1988).

    Article  CAS  Google Scholar 

  10. A. Malmgren, K.-E. Andersson, P.O. Andersson, M. Fovaeus, and C. Sjögren, Effects of cromakalim (BRL 34915) and pinacidil on normal and hypertrophied rat detrusor in vitro, J. Urol. 143:828 (1990).

    PubMed  CAS  Google Scholar 

  11. A. Malmgren, B. Uvelius, K.-E. Andersson, and P.O. Andersson, On the reversibility of functional bladder changes induced by infravesical outflow obstruction in the rat, J. Urol. 143:1026 (1990).

    PubMed  CAS  Google Scholar 

  12. R.M. Levin, S.B. Malkowicz, A.J. Wein, M.A. Atta, and A. Elbadawi, Recovery from short-term obstruction of the rabbit urinary bladder, J. Urol. 134:388 (1985).

    PubMed  CAS  Google Scholar 

  13. A. Amer, U. Malmqvist, and B. Uvelius, Metabolism and force in hypertrophic smooth muscle from rat urinary bladder, Am. J. Physiol. 258:C923 (1990).

    Google Scholar 

  14. A. Bilgen, A.J. Wein, N. Haugaard, D. Packard, and R.M. Levin, Effect of outlet obstruction on pyruvate metabolism of the rabbit urinary bladder, Molec. Cell. Biochem 117:159 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. N. Haugaard, L. Potter, A.J. Wein, and R.M. Levin, Effect of partial obstruction of the rabbit urinary bladder on malate dehydrogenase and citrate synthase activity, J. Urol. 147:1391 (1992).

    PubMed  CAS  Google Scholar 

  16. N. Haugaard, B.A.W. McKenna, A.J, Wein, and R.M. Levin, Effect of partial urinary outlet obstruction in the rabbit on the incorporation of adenine into adenine nucleotides in bladder smooth muscle, Neurourol. Urodynam. 12:473 (1993).

    Article  CAS  Google Scholar 

  17. K. Kato, A.T.-L. Lin, N. Haugaard, P.A. Longhurst, A.J. Wein, and R.M. Levin, Effects of outlet obstruction on glucose metabolism of the rabbit urinary bladder, J. Urol. 143:844 (1990).

    PubMed  CAS  Google Scholar 

  18. U. Malmqvist, A. Arner, and B. Uvelius, Lactate dehydrogenase activity and isoform distribution in normal and hypertrophic smooth muscle tissue from the rat, Pflüger’s Arch. 419:230 (1991).

    Article  CAS  Google Scholar 

  19. M. Polyanska, A. Arner, U. Malmquist, and B. Uvelius, Lactate dehydrogenase activity and isoform distribution in the rat urinary bladder-effects of outlet obstruction and its removal, J. Urol. 150:543 (1993).

    PubMed  CAS  Google Scholar 

  20. N. Seki, O.M.A. Karim, and J.L. Mostwin, The effect of experimental urethral obstruction and its reversal on changes in passive electrical properties of detrusor muscle, J. Urol. 148:1957 (1992).

    PubMed  CAS  Google Scholar 

  21. N. Seki, O.M.A. Karim, and J.L. Mostwin, Changes in electrical properties of guinea pig smooth muscle membrane by experimental bladder outflow obstruction, Am. J. Physiol. 262:F885 (1992).

    PubMed  CAS  Google Scholar 

  22. N. Seki, O.M.A. Karim, and J.L. Mostwin, Changes in action potential kinetics following experimental bladder outflow obstruction in the guinea pig, Urol. Res. 20:387 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. M.J. Speakman, A.F. Brading, C.J. Gilpin, J.S. Dixon, S.A. Gilpin, and J.A. Gosling, Bladder outflow obstruction. A cause of denervation supersensitivity, J. Urol. 138:1461 (1987).

    PubMed  CAS  Google Scholar 

  24. W.D. Steers, S. Kolbeck, D. Creedon, and J.B. Tuttle, Nerve growth factor in the urinary bladder of the adult regulates neuronal form and function, J. Clin. Invest. 88:1709 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. W.D. Steers, J. Ciambotti, B. Etzel, S. Erdman, and W.C. De Groat, Alterations in afferent pathways from the urinary bladder of the rat in response to partial urethral obstruction, J. Comp. Neurol. 310:401 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. S. Buoro, P. Ferrarese, A. Chiavegato, M. Roelofs, M. Scatena, P. Pauletto, G. Passerini-Glazel, F. Pagano, and S. Sartore, Myofibroblast-derived smooth muscle cells during remodelling of rabbit urinary bladder wall induced by partial outflow obstruction, Lab. Invest. 69:589 (1993).

    PubMed  CAS  Google Scholar 

  27. A. Chiavegato, M. Scatena, M. Roelofs, P. Ferrarese, P. Pauletto, G. Passerini-Glazel, F. Pagano, and S. Sartore, Cytoskeletal and cytocontractile protein composition of smooth muscle cells in developing and obstructed rabbit bladder, Exp. Cell Res. 207:310 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. U. Malmqvist, A. Arner, and B. Uvelius, Contractile and cytoskeletal proteins in smooth muscle during hypertrophy and its reversal, Am. J. Physiol. 260:C1085 (1991).

    PubMed  CAS  Google Scholar 

  29. M. Samuel, Y. Kim, K.Y. Horiuchi, R.M. Levin, and S. Chacko, Smooth muscle myosin isoform distribution and myosin ATPase in hypertrophied urinary bladder, Biochem. Int. 26:645 (1992).

    PubMed  CAS  Google Scholar 

  30. Y.S. Kim, R.M. Levin, and S. Chacko, Alteration of the composition of actin isoforms in urinary bladder hypertrophy, FASEB J. 5:A1738 (1991).

    Google Scholar 

  31. Y.S. Kim, Z. Wang, R.M. Levin, and S. Chacko, Alterations in the expression of the β-cytoplasmic and the γ-smooth muscle actins in hypertrophied urinary bladder smooth muscle, Molec. Cell. Biochem 131:115 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. R.S. Adelstein and E. Eisenberg, Regulation and kinetics of the actin-myosin-ATP interaction, Annu. Rev. Biochem. 49:921 (1980).

    Article  PubMed  CAS  Google Scholar 

  33. Y. Hasegawa and F. Morita, Role of 17-kDa essential light chain isoforms of aorta smooth muscle myosin, J. Biochem. 111:804 (1992).

    PubMed  CAS  Google Scholar 

  34. I. Rayment, H.M. Holden, M. Whittaker, C.B Yohn, et al., Structure of the actin-myosin complex and its implications for muscle contraction, Science 261:58 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. A.S. Rovner, M.M. Thompson, and R.A. Murphy, Two different heavy chains are found in smooth muscle myosin, Am. J. Physiol. 250:C861 (1986).

    PubMed  CAS  Google Scholar 

  36. P. Babij and M. Periasamy, Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing, J. Mol Biol. 210:673 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. S. Kawamoto and R.S. Adelstein, Characterization of myosin heavy chains in cultured aorta smooth muscle cells, J. Biol. Chem. 262:7282 (1987).

    PubMed  CAS  Google Scholar 

  38. S. Sartore, N. DeMarzo, A. Bordone, A. Zanellato, L. Saggin, L. Fabbri, and S. Chiaffino, Myosin heavy chain isoforms in human smooth muscle, Eur. J. Biochem. 179:79 (1989).

    Article  PubMed  CAS  Google Scholar 

  39. M. Mohammod and M.P. Sparrow, The heavy chain stoichiometry of smooth muscle myosin is a characteristic of smooth muscle tissues, Aust. J. Biol. Sci. 41:409 (1988).

    Google Scholar 

  40. N.L. Stephens, A.J. Halayko, and B. Swynghedauw, Myosin heavy chain isoform distribution in normal and hypertrophied rat aortic smooth muscle, Can. J. Physiol. Pharmacol. 69:8 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. T.J. Eddinger and R.A. Murphy, Two smooth muscle myosin heavy chains differ in their light meromyosin fragment, Biochemistry 27:3807 (1988).

    Article  PubMed  CAS  Google Scholar 

  42. C.A. Kelley, J.R. Sellers, P.K. Goldsmith, and R.S. Adelstein, Smooth muscle myosin is composed of homodimeric heavy chains, J. Biol. Chem. 267:2127 (1992).

    PubMed  CAS  Google Scholar 

  43. C.A. Kelley, M. Takahashi, J.H. Yu, and R.S. Adelstein, An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature, J. Biol. Chem. 268:12848 (1993).

    PubMed  CAS  Google Scholar 

  44. D.J. Helper, J.A. Lash, and D.R. Hathaway, Distribution of isoelectric variants of the 17,000-Dalton myosin light chain in mammalian smooth muscle, J. Biol. Chem. 263:15748 (1988).

    PubMed  CAS  Google Scholar 

  45. K.M. Trybus, Regulation of expressed truncated smooth muscle myosins, J. Biol. Chem. 269:20819 (1994).

    PubMed  CAS  Google Scholar 

  46. M. Kuro-o, R. Nagai, H. Tsuchimochi, H. Katoh, Y. Yazaki, A. Ohkubo, and F. Takaku, Developmentally regulated expression of vascular smooth muscle myosin heavy chain isoforms, J. Biol. Chem. 264:18272 (1989).

    PubMed  CAS  Google Scholar 

  47. M. Kuro-o, R. Nagai, K. Nakahara, H. Katoh, R. Tsai, H. Tsuchimochi, Y. Yazaki, A. Ohkubo, and F. Takaku, cDNA cloning of a myosin heavy chain isoform in embryonic smooth muscle and its expression during vascular development and in arteriosclerosis, J. Biol. Chem. 266:3768 (1991).

    PubMed  CAS  Google Scholar 

  48. S. Kawamoto and R.S. Adelstein, Chicken nonmuscle myosin heavy chains: differential expression of two mRNAs and evidence for two different polypeptides, J. Cell Biol. 112:915 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. M.J. Lema, E.D. Pagani, R. Shemin, and F.J. Juli, Myosin isozymes in rabbit and human smooth muscles, Circ. Res. 59:115 (1986).

    Article  PubMed  CAS  Google Scholar 

  50. A. Upadhya, M. Samuel, R.H. Cox, R.J. Bagshaw, and S. Chacko, Characteristics of arterial myosin in experimental renal hypertension in the dog, Hypertension 21:624 (1993).

    Article  PubMed  CAS  Google Scholar 

  51. Z. Wang, R. Levin, and S. Chacko, Expression of myosin isoforms during bladder obstruction and reversal, J. Urol 151:482A (1994).

    Google Scholar 

  52. T.D. Pollard and J.A. Cooper, Actin and actin-binding proteins: critical evaluation of mechanisms and functions, Annu. Rev. Biochem. 55:987 (1986).

    Article  PubMed  CAS  Google Scholar 

  53. J. Vandekerckhove and K. Weber, At least six different actins are expressed in a higher mammal; an analysis based on the amino acid sequence of the amino-terminal tryptic peptide, J. Mol. Biol. 126:783 (1978).

    Article  PubMed  CAS  Google Scholar 

  54. J. Vandekerckhove and K. Weber, Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins, Proc. Natl. Acad. Sci. USA. 75:1106 (1978).

    Article  PubMed  CAS  Google Scholar 

  55. M. Elzinga, J.H. Collins, W.M. Kuehl, and R.S. Adelstein, Complete amino acid sequence of actin of rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 70:2687 (1973).

    Article  PubMed  CAS  Google Scholar 

  56. E.D. Korn, M.-F. Carlier, and D. Pantaloni, Actin polymerization and ATP hydrolysis, Science 238:638 (1982).

    Article  Google Scholar 

  57. G. Gabbiani, O. Kocher, W.S. Bloom, J. Vandekerckhove, and K. Weber, Actin expression in smooth muscle cells of rat aortic intimai thickening, human atheromatous plaque, and cultured rat aortic media, J. Clin. Invest. 73:148 (1984).

    Article  PubMed  CAS  Google Scholar 

  58. V. Fatigati and R.A. Murphy, Actin and tropomyosin variants in smooth muscles. Dependence on tissue type, J. Biol. Chem. 259:14383 (1984).

    PubMed  CAS  Google Scholar 

  59. J. Vandekerckhove and K. Weber, The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle, Differentiation 14:123 (1979).

    Article  PubMed  CAS  Google Scholar 

  60. D. De Nofrio, T.C. Hoock, and I.M. Herman, Functional sorting of actin isoforms in microvascular pericytes, J. Cell Biol. 109:191 (1989).

    Article  Google Scholar 

  61. G. Schevzov, C. Lloyd, and P. Gunning, High level expression of transfected beta-and gammaactin genes differentially impacts on myoblast cytoarchitecture., J. Cell Biol. 117:775 (1992).

    Article  PubMed  CAS  Google Scholar 

  62. G.K. Owens, A. Loeb, D. Gordon, and M.M. Thompson, Expression of smooth muscle α-isoactin in cultured vascular smooth muscle cells: Relationship between growth and cytodifferentiation, J. Cel Biol. 102:343 (1988).

    Article  Google Scholar 

  63. F. Barja, C. Coughlin, D. Berlin, and G. Gabbiani, Actin isoform synthesis and mRNA levels in quiescent and proliferating rat aortic smooth muscle cells in vivo and in vitro, Lab. Invest. 55:226 (1986).

    PubMed  CAS  Google Scholar 

  64. A.R. Strauch, J.D. Offord, R. Chalkley, and P.A. Rubenstein, Characterization of actin mRNA levels during BC3H1 cell differentiation, J. Biol. Chem. 261:849 (1986).

    PubMed  CAS  Google Scholar 

  65. C.-Y.J. Hsu and F.D. Frankel, Effect of estrogen on the expression of mRNAs of different actin isoforms in immature rat uterus: cloning of α-smooth muscle actin message, J. Biol. Chem. 262:9594 (1987).

    PubMed  CAS  Google Scholar 

  66. P.K. Elder, L.J. Schmidt, T. Ono, and M.J. Getz, Specific stimulation of actin gene transcription by epidermal growth factor and cycloheximide, Proc. Natl. Acad. Sci. USA. 81:7476 (1984).

    Article  PubMed  CAS  Google Scholar 

  67. P.R. Bakerman, K.R. Stenmark, and J.H. Fisher, α-skeletal actin messenger RNA increases in acute right ventricular hypertrophy, Am. J. Physiol. 258:L173 (1990).

    PubMed  CAS  Google Scholar 

  68. J. Leavitt, P. Gunning, L. Kedes, and R. Jariwalla, Smooth muscle α-actin is a transformation-sensitive marker for mouse NIH 3T3 and rat-2 cells, Nature 716:840 (1985).

    Article  Google Scholar 

  69. K. Sobue, K. Takahashi, and I. Wakabayashi, Caldesmon150 regulates the tropomyosin-enhanced actin-myosin interaction in gizzard smooth muscle, Biochem. Biophys. Res. Commun. 132:645 (1985).

    Article  PubMed  CAS  Google Scholar 

  70. K.Y. Horiuchi, H. Miyata, and S. Chacko, Modulation of smooth muscle actomyosin ATPase by thin filament associated proteins, Biochem. Biophys. Res. Commun. 136:962 (1986).

    Article  PubMed  CAS  Google Scholar 

  71. J.A. Lash, J.R. Sellers, and D.R. Hathaway, The effects of caldesmon on smooth muscle actoheavy meromyosin ATPase activity and binding of heavy meromyosin to actin, J. Biol. Chem. 261:16155 (1986).

    PubMed  CAS  Google Scholar 

  72. M.E. Hemric and J.M. Chalovich, Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin, J. Biol. Chem. 263:1878 (1988).

    PubMed  CAS  Google Scholar 

  73. S.B. Marston and C.S. Redwood, Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon, J. Biol. Chem. 267:16796 (1992).

    PubMed  CAS  Google Scholar 

  74. A. Bretscher, Thin filament regulatory proteins of smooth-and non-muscle cell, Nature 321:726 (1986).

    Article  PubMed  CAS  Google Scholar 

  75. K.Y. Horiuchi, M. Samuel, and S. Chacko, Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/caldesmon binding domain of caldesmon, Biochemistry 30:712 (1991).

    Article  PubMed  CAS  Google Scholar 

  76. R. Dabrowska, A. Goch, B. Galazkiewicz, and H. Osinska, The influence of caldesmon on ATPase activity of the skeletal muscle actomyosin and bundling of actin filaments, Biochim. Biophys. Acta 842:70 (1985).

    Article  PubMed  CAS  Google Scholar 

  77. J. Bryan, M. Imai, R. Lee, P. Moore, R.G. Cook, and W.G. Lin, Cloning and expression of a smooth muscle caldesmon, J. Biol. Chem. 264:13873 (1989).

    PubMed  CAS  Google Scholar 

  78. R.E. Novy, J.L.-C. Lin, and J.J.-C. Nin, Characterization of cDNA clones encoding a human fibroblast caldesmon isoform and analysis of caldesmon expression in normal and transformed cells, J. Biol. Chem. 266:16917 (1991).

    PubMed  CAS  Google Scholar 

  79. A.C.-L. Wang, Photocrosslinking of calmodulin and/or actin to chicken gizzard caldesmon, Biochem. Biophys. Res. Commun. 156:1033 (1988).

    Article  PubMed  CAS  Google Scholar 

  80. C. Southerland and M.P. Walsh, Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin, J. Biol. Chem. 264:578 (1989).

    Google Scholar 

  81. K. Hayashi, Y. Fujio, I. Kato, and K. Sobue, Structural and functional relationships between h-and l-caldesmon, J. Biol. Chem. 266:355 (1991).

    PubMed  CAS  Google Scholar 

  82. A. Bretscher and W. Lynch, Identification and localization of immunoreactive forms of caldesmoon in smooth and nonmuscle cells: a comparison with the distribution of tropomyosin and α-actinin, J. Cell Biol. 100:1656 (1985).

    Article  PubMed  CAS  Google Scholar 

  83. V.K. Lin, I.L. Lee, and J.D. McConnell, Expression of non-muscle caldesmon in obstructioninduced detrusor hypertrophy is regulated at mRNA level, J. Urol. 147:314A (1992).

    Google Scholar 

  84. N. Ueki, K. Sobue, K. Kanda, and T. Hada, Expression of high and low molecular weight caldesmons during phenotypic modulation of smooth muscle cells, Proc. Natl. Acad. Sci. USA. 84:9049 (1987).

    Article  PubMed  CAS  Google Scholar 

  85. K.Y. Horiuchi and S. Chacko, Interaction between caldesmon and tropomyosin in the presence and absence of smooth muscle actin, Biochemistry 27:8388 (1988).

    Article  PubMed  CAS  Google Scholar 

  86. P. Graceffa, Evidence for interaction between smooth muscle tropomyosin and caldesmon, FEBS. Lett. 218:139 (1987).

    Article  PubMed  CAS  Google Scholar 

  87. T. Fujii, J. Ozawa, Y. Ogoma, and Y. Kondo, Interaction between chicken gizzard caldesmon and tropomyosin, J. Biol. Chem. 262:2757 (1988).

    Google Scholar 

  88. M. Ikebe and S. Reardon, Binding of caldesmon to smooth muscle myosin, J. Biol. Chem. 263:3055 (1988).

    PubMed  CAS  Google Scholar 

  89. T. Fujii, M. Imai, G.C. Rosenfeld, and J. Bryan, Domain mapping of chicken gizzard caldesmon, J. Biol. Chem. 262:2151 (1987).

    Google Scholar 

  90. E.H. Ball and T. Kovala, Mapping of caldesmon: relationship between the high and low molecular weight forms, Biochemistry 27:6093 (1988).

    Article  PubMed  CAS  Google Scholar 

  91. A. Bertegi, A. Fattoum, and R. Kassab, Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal actin, J. Biol. Chem. 265:2231 (1990).

    Google Scholar 

  92. A.C.-L. Wang, L.-W.C. Wang, S. Xu, R.C. Lu, V. Saavedra-Alanis, and J. Bryan, Localization of the calmodulin-and the actin-binding sites of caldesmon, J. Biol. Chem. 266:9166 (1991).

    PubMed  CAS  Google Scholar 

  93. P.F. Dillon, M.O. Aksoy, S.P. Driska, and R.A. Murphy, Myosin phosphorylation and crossbridge cycle in arterial smooth muscle, Science 211:495 (1981).

    Article  PubMed  CAS  Google Scholar 

  94. T.M. Butler, M.J. Siegman, and S.U. Mooers, Chemical energy usage during shortening and work production in mammalian smooth muscle, Am. J. Physiol. 244:C234 (1983).

    PubMed  CAS  Google Scholar 

  95. K. Horiuchi and S. Chacko, Effect of unphosphorylated smooth muscle myosin on caldesmon-mediated regulation of actin filament velocity, J. Muscle Res. Cell. Motil. in press: (1994).

    Google Scholar 

  96. T.D. Pollard, S.K. Doberstein, and H.G. Zot, Myosin-I, Annu. Rev. Physiol. 53:653 (1991).

    Article  PubMed  CAS  Google Scholar 

  97. R.E. Cheney and M.S. Mooseker, Unconventional myosins, Curr. Opin. Cell Biol. 4:27 (1992).

    Article  PubMed  CAS  Google Scholar 

  98. B. Barylko, M.C. Wagner, R. Offer, and J.P. Albanesi, Purification and characterization of a mammalian myosin I, Proc. Natl. Acad. Sci. USA. 89:490 (1992).

    Article  PubMed  CAS  Google Scholar 

  99. Y. Lin, H. Takano-Ohmuro, and K. Kohama, Myosin I-like protein in gizzard smooth muscle, Proc. Jap. Acad. 65:203 (1989).

    CAS  Google Scholar 

  100. J.H. Collins and C.W. Borysenko, The 110,000-dalton actin-binding and calmodulin-binding protein from intestinal brush border is a myosin-like ATPase, J. Biol. Chem. 259:14128 (1984).

    PubMed  CAS  Google Scholar 

  101. K.A. Conzelman and M.S. Mooseker, The 110-KD protein calmodulin complex of intestinal microvillus is an actin-activated MgATPase, J. Cell Biol. 105:313 (1987).

    Article  PubMed  CAS  Google Scholar 

  102. L.M. Coluccio and A. Bretscher, Calcium-regulated cooperative binding of microvillar 110K-calmodulin complex to F-actin-formation of decorated filaments, J. Cell Biol. 105:313 (1987).

    Article  Google Scholar 

  103. S. Chacko, S. Jacob, and K.Y. Horiuchi, Myosin I in mammalian smooth muscle is regulated by caldesmon-calmodulin, Biophys. J. 64:A145 (1992).

    Google Scholar 

  104. K. Collins, J.R. Sellers, and P. Matsudaira, Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro, J. Cell Biol. 110:1137 (1990).

    Article  PubMed  CAS  Google Scholar 

  105. H. Swanljung-Collins and J.H. Collins, Ca2+ stimulates the Mg2+-ATPase activity of brush border myosin I with three or four calmodulin light chains but inhibits with less than two bound, J. Biol. Chem. 266:1312 (1991).

    PubMed  CAS  Google Scholar 

  106. M.S. Mooseker, K.A. Conzelman, T.R. Coleman, J.E. Heuser, and M.P. Sheetz, Characterization of intestinal microvillar membrane discs: detergent-resistant membrane sheets enriched in associated brush border myosin I (110K-caldesmon), J. Biol. Chem. 109:1153 (1989).

    CAS  Google Scholar 

  107. J.S. Wolenski, S.M. Hayden, P. Forscher, and M.S. Mooseker, Calcium-calmodulin and regulation of brush border myosin-I Mg ATPase and mechanochemistry, J. Cell Biol. 122:613 (1993).

    Article  PubMed  CAS  Google Scholar 

  108. S. Chacko, S.S. Jacob, and K.Y. Horiuchi, Myosin I from mammalian smooth muscle is regulated by caldesmon-calmodulin, J. Biol. Chem. 269:15803 (1994).

    PubMed  CAS  Google Scholar 

  109. S.B. Marston, W. Lehman, C.J. Moody, and C.W.J. Smith, Ca2+-dependent regulation of smooth muscle thin filaments by caldesmon, in: “Advances in Protein Phosphatases II,” W. Merlevede and J. DiSalvo, eds., Leuven University Press, Leuven (1985).

    Google Scholar 

  110. R.M. Levin, S.A. Zderic, J.-Y. Yoon, U. Sillen, and A.J. Wein, Effect of ryanodine on the contractile response of the normal and hypertrophied rabbit urinary bladder to field stimulation, Pharmacology 47:244 (1993).

    Article  PubMed  CAS  Google Scholar 

  111. R.M. Levin, S.S. Levin, S.A. Zderic, M. Saito, J.Y. Yoon, and A.J. Wein, Effect of partial outlet obstruction of the rabbit urinary bladder on ryanodine binding to microsomal membranes, Gen. Pharmacol. 25:421 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chacko, S., Longhurst, P.A. (1995). Contractile Proteins and Their Response to Bladder Outlet Obstruction. In: Zderic, S.A. (eds) Muscle, Matrix, and Bladder Function. Advances in Experimental Medicine and Biology, vol 385. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1585-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1585-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1587-0

  • Online ISBN: 978-1-4899-1585-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics