Skip to main content

Elastic Fibers and Their Role in Bladder Extracellular Matrix

  • Chapter
Muscle, Matrix, and Bladder Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 385))

Abstract

The elastic properties of many tissues of the vertebrate body are due in large part to elastic fibers in the extracellular matrix. In some tissues, such as the skin, they form a relatively small but important fraction of the dry weight (2–4%), while in other tissues, such as large arteries and certain specialized ligaments, they may comprise greater than 50%. In the electron microscope, elastic fibers are seen to be composed of two components.1–3 An amorphous fraction lacking any apparent regular or repeating structure composes upwards of 90% of the mature fiber. The microfibrillar component consists of 10–12 nm fibrils located primarily around the periphery of the amorphous component, but also to some extent interspersed within it (Fig. 1). In addition to being distinguishable morphologically, the two components are chemically distinct. The amorphous portion of the elastic fiber is composed of a single protein, elastin, which is primarily responsible for the elastic properties. Although the exact composition of the microfibrils remains to be defined, it is likely that they are composed of several glycoproteins.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Fahrenbach, L.B. Sandberg, and C.G. Cleary, Ultrastructural studies on early elastogenesis. Anat Rec. 155:563 (1966).

    Article  Google Scholar 

  2. T.K. Greenlee, Jr., R. Ross, and J.L. Hartman. The fine structure of elastic fibers, J. Cell Biol. 30:59 (1967).

    Article  Google Scholar 

  3. H.E. Karrer, and J. Cox, Electronmicroscope study of developing chick embryo aorta. J. Ultrastruct. Res. 4:420,(1961).

    Article  Google Scholar 

  4. E.G. Cleary, The microfibrillar component of the elastic fibers. Morphology and biochemistry, in “Connective Tissue Disease. Molecular Pathology of the Extracellular Matrix,” U. Uitto and A.J. Perejda, eds., Marcel Dekker, New York (1987).

    Google Scholar 

  5. A.I. Lansing, T.B. Rosenthal, M. Alex, and W.W. Dempsey, The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. J. Anat. Rec. 114:555(1952).

    Article  CAS  Google Scholar 

  6. R. Ross, and P. Bornstein, The elastic fiber. The separation and partial characterization of its macromolecular components. J. Cell Biol. 40:366 (1969).

    Article  PubMed  CAS  Google Scholar 

  7. B.C. Starcher, and M.J. Galione, Purification and comparison of elastins from different animal species. Anal. Biochem 74:441 (1976).

    Article  PubMed  CAS  Google Scholar 

  8. H. Sage, and W.R. Gray, Studies on the evolution of elastin. Comp. Biochem. Physiol. 64B:313 (1979).

    CAS  Google Scholar 

  9. H.M. Kagan, Characterization and regulation of lysyl oxidase. In Regulation of Matrix Accumulation Vol I (R.P. Mecham ed.) Academic Press, Orlando: 321 (1986).

    Google Scholar 

  10. D.W. Smith, N. Weissman, and W.H. Carnes, Cardiovascular studies on copper-deficient swine. XII. Partial purification of a soluble protein resembling elastin. Biochem. Biophys. Res. Commun. 31:309 (1968).

    Article  PubMed  CAS  Google Scholar 

  11. L.B. Sandberg, N. Weissman, and D.W. Smith, The purification and partial characterization of a soluble elastin-like protein from copper-deficient porcine aorta. Biochemistry 8:2940 (1969).

    Article  PubMed  CAS  Google Scholar 

  12. J.A. Foster, E. Bruenger, W.R. Gray, and L.B. Sandberg, Isolation and amino acid sequences of tropoelastin peptides. J. Biol. Chem. 248:2875 (1973).

    Google Scholar 

  13. L.B. Sandberg, N. Weissman, and W.R. Gray, Structural features of tropoelastin related to the sites of cross-links in aortic elastin. Biochemistry 10:52 (1971).

    Article  PubMed  CAS  Google Scholar 

  14. V. Damiano, A.L. Tsang, G. Weinbaum, P. Christner, and J. Rosenbloom, Secretion of elastin in the embryonic chick aorta as visualized by immunoelectron microscopy. Collagen Rel. Res. 4: 153 (1984).

    Article  CAS  Google Scholar 

  15. A.S. Narayanan, and R.C. Page, Demonstration of a precursor-product relationship between soluble and cross-linked elastin, and the biosynthesis of the desmosines. J. Biol. Chem. 251:1125(1976).

    CAS  Google Scholar 

  16. W. Burnett, R. Eichner, and J. Rosenbloom, Correlation of functional elastin messenger ribonucleic acid levels and rate of elastin synthesis in the developing chick aorta. Biochemistry 19: 1106 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. J.A. Foster, Rich, C.B., S. Fletcher, S.R. Karr, and A. Przybyla, Translation of chick aortic elastin messenger ribonucleic acid. Comparison to elastin synthesis in chick aorta organ culture. Biochemistry 19:857 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. W. Burnett, A. Finnigan-Bunick, K. Yoon, and J. Rosenbloom, Analysis of elastin gene expression in the developing chick aorta using cloned elastin cDNA. J. Biol. Chem. 257:1569(1982).

    PubMed  CAS  Google Scholar 

  19. J.M. Davidson, S. Shibahara, C. Boyd, M.L. Mason, P. Tolstoshev, and R.G. Crystal, Elastin mRNA levels during foetal development of sheep nuchal ligament and lung. Hybridization to complementary and cDNA. Biochem. J. 220: 653 (1984).

    PubMed  CAS  Google Scholar 

  20. R.P. Mecham, A. Hinek, R. Entwistle, D.S. Wrenn, G.L. Griffin, and R.M. Senior, Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein. Biochemistry 28:3716 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. A. Hinek, D.S. Wrenn, R.P. Mecham, and S.H. Barondes, The elastin receptor: a galactoside-binding protein. Science 239: 1539 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. Z. Indik, H. Yeh, N. Ornstein-Goldstein, P. Sheppard, N. Anderson, J.C. Rosenbloom, L. Peltanen, and J. Rosenbloom, Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA. Proc. Natl. Acad. Sci. 84:5680 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. M.J. Fazio, D.R. Olsen, E.A. Kauh, B.S. Clinton, C.T. Baldwin, Z. Indik, N.O. Goldstein, H. Yeh, J. Rosenbloom, and J. Uitto, Cloning of full-length elastin cDNAs from a human skin fibroblast recombinant cDNA library: Further elucidation of alternative splicing utilizing exon-specific oligonucleotides. J. Invest. Dermatol. 91:58 (1988).

    Article  Google Scholar 

  24. K. Raju, R.A. Anwar, Primary structures of bovine elastin a, b, and c deduced from the sequences of cDNA clones. J. Biol. Chem. 262:5755 (1987).

    PubMed  CAS  Google Scholar 

  25. H. Yeh, Ornstein-Goldstein, Z. Indik, P. Sheppard, N. Anderson, N. J.C. Rosenbloom, G. Cicila, K. Yoon, and J. Rosenbloom, Sequence variation of bovine elastin messenger mRNA due to alternative splicing. Coll. Rel. Res. 7: 235 (1987).

    Article  CAS  Google Scholar 

  26. R.A. Pierce, S.B. Deak, C.A. Stolle, and C.O. Boyd, Heterogeneity of rat tropoelastin mRNA revealed by cDNA cloning. Biochemistry, 29:9677 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. G.M. Bressan, P. Argos, and Stanley, Repeating structure of chick tropoelastin revealed by complementary DNA cloning. Biochemistry, 26:1497 (1987).

    Article  PubMed  CAS  Google Scholar 

  28. H. Yeh, N. Anderson, N.O. Goldstein, M.O. Bashir, J.C. Rosenbloom, W. Abrams, Z. Indik, K. Yoon, W. Parks, R. Mecham, J. Rosenbloom, Structure of the bovine elastin gene and S1 nuclease analysis of alternative splicing if elastin mRNA in the bovine nuchal ligament. Biochemistry 28:2365 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. M.M. Bashir, Z. Indik, H. Yeh, N.O. Goldstein, J.C Rosenbloom, W. Abrams, F. Fazio, and J. Uitto., Characterization of the complete human elastin gene. Delineation of unusual features in the 5’-flanking region. J. Biol. Chem. 264, 8887 (1989).

    PubMed  CAS  Google Scholar 

  30. C.B. Rich, and J. Foster, Isolation of tropoelastin from lathyritic chick aortae. Biochem. J., 217:581 (1984).

    PubMed  CAS  Google Scholar 

  31. D.S. Wrenn, W.C Parks, L.A. Whitehouse, E.C Crouch, U. Kucich, J. Rosenbloom, and R.P. Mecham, Identification of multiple tropoelastin secreted by bovine cells. J. Biol. Chem. 262: 2244 (1987).

    PubMed  CAS  Google Scholar 

  32. S.D. Chipman, B. Faris, L.M. Barone, C.A. Pratt, and C. Franzblau, Processing of soluble elastin in cultured neonatal rat smooth muscle cells. J. Biol. Chem. 260:12780 (1985).

    PubMed  CAS  Google Scholar 

  33. E. Wingender, Transcription regulating proteins and their recognition sequences. Critical Rev. Eukaryotic Gene Exp. 1:11 (1990).

    CAS  Google Scholar 

  34. R. Eichner, and J. Rosenbloom, Collagen and elastin synthesis in the developing chick aorta. Arch. Biochem. Biophys. 198:414 (1979).

    Article  PubMed  CAS  Google Scholar 

  35. R.P. Mecham, S.L. Morris, B.D. Levy, and D.S. Wrenn, Glucocorticoids stimulat elastin production in differentiated bovine ligament fibroblasts but do not induce elastin synthesis in undifferentiated cells. J. Biol.Chem. 259:12414 (1984).

    PubMed  CAS  Google Scholar 

  36. R.P. Mecham, B.D. Levy, S.L. Morris, J.G. Madaras, and D.S. Wrenn, Increased cyclic GMP levels lead to a stimulation of elastin production in ligament fibroblasts that is reversed by cyclic AMP. J. Biol., Chem. 260:3255 (1985).

    CAS  Google Scholar 

  37. A.H. Wang, G.J. Quigley, F.J. Kolpak, J.L. Crawford, J.H. VanBoom, G. Vandermarel, and A. Rich, Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680 (1979).

    Article  PubMed  CAS  Google Scholar 

  38. V.M. Kahari, M.J. Fazio, Y. Q. Chen, M.M. Bashir, J. Rosenbloom, and J. Uitto, Deletion analyses of 5’-flanking region of the human elastin gene: delineation of functional promoter and regulatory cis-elements. J. Biol. Chem. 265:9485 (1990).

    PubMed  CAS  Google Scholar 

  39. S. Inoue, C.P. Leblond, D.S. Grant, and P. Rico, The microfibrils of connective tissue: II. Immunohistochemical detection of the amyloid P component. Amer. J. Anat. 176:139(1986).

    Article  PubMed  CAS  Google Scholar 

  40. V.P. Werth, I.E. Ivanov, and J. Nussenzweig, Decay-accelerating factor in human skin is associated with elastic fibers. Invest. Dermatol. 91:511 (1988).

    Article  CAS  Google Scholar 

  41. L.Y. Sakai, D.R. Keene and E.J. Engvall, Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. Cell Biol. 103:2499 (1986).

    Article  CAS  Google Scholar 

  42. B. Lee, M. Godfrey, E. Vitale, H. Hori, M.G. Mattei, M. Sarafarazi, P. Tsipouras, F. Ramirez, and D.W. Hollister, Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 352:330 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. D.L. Maslen, G.M. Corson, B.K. Maddox, R.W. Glanville, and L.Y. Sakai, Partial sequence of a candidate gene for the Marfan syndrome. Nature, 352:334 (1991).

    Article  PubMed  CAS  Google Scholar 

  44. G. Carpenter, and S. Cohen, Epidermal growth factor. J. Biol. Chem. 265:7709 (1990).

    PubMed  CAS  Google Scholar 

  45. T. Kanzaki, TGF ßl binding protein: a component of the large latent complex of TGFß-1 with multiple repeat sequences. Cell 61:1051 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. L. Pereira, M. D’Alessio, F. Ramirez, J.R. Lynch, B. Sykes, T. Pangilinan, and J. Bonadio, Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Human Mol. Genetics 2:961 (1993).

    Article  CAS  Google Scholar 

  47. M.A. Gibson, J.S. Kumaratilake, and E.G. Cleary, The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J. Biol. Chem. 264:4590 (1989).

    PubMed  CAS  Google Scholar 

  48. M.A. Gibson, L.B. Sandberg, L.E. Grosso, and E.G. Cleary, Complementary DNA cloning establishes microfibril-associated glycoprotein (MAGP) to be a discrete component of the elastin-associated microfibrils. J. Biol. Chem. 266:7596 (1991).

    PubMed  CAS  Google Scholar 

  49. S.K. Horrigan, C.B. Rich, B.W. Streeten, Z.-Y. Li, and J.A. Foster, Characterization of an associated microfibril protein through recombinant DNA techniques. J. Biol. Chem. 267: 10087 (1992).

    PubMed  CAS  Google Scholar 

  50. K.M. Kim, B.A. Kogan, C.A. Massad, and Y.-C. Huang, Collagen and elastin in the normal fetal bladder. J. Urol. 146: 524 (1991).

    PubMed  CAS  Google Scholar 

  51. K.M. Kim, B.A. Kogan, C.A. Massad, and Y.-C. Huang, Collagen and elastin in the obstructed fetal bladder. J. Urol. 146: (1991).

    Google Scholar 

  52. P. Chomczynski, and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenbloom, J., Koo, H., Howard, P.S., Mecham, R., Macarak, E.J. (1995). Elastic Fibers and Their Role in Bladder Extracellular Matrix. In: Zderic, S.A. (eds) Muscle, Matrix, and Bladder Function. Advances in Experimental Medicine and Biology, vol 385. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1585-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1585-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1587-0

  • Online ISBN: 978-1-4899-1585-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics