Skip to main content

Regulation of Matrix Metalloproteinases during Extracellular Matrix Turnover

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 385))

Abstract

Extracellular matrix (ECM) turnover is a critical step in the tissue remodeling that accompanies many physiologic as well as pathologic processes. Normal remodeling events, such as wound healing and trophoblast implantation, require coordinated synthesis and removal of ECM components. These physiologic processes are strictly regulated in a spatial and temporal fashion, and are usually limited in extent. They result in a functionally intact matrix and preservation of tissue boundaries. Pathologic events may result in the extensive and uncontrolled ECM destruction that is often seen in the inflammatory collagen vascular diseases. Such processes cause the loss of normal matrix boundaries and matrix functions. Alternately, inactivation of the matrix degradative machinery may result in excessive ECM accumulation that disrupts normal tissue structure and function. Proteases responsible for matrix turnover have been identified in all four classes of proteases (seryl-, cystyl-, aspartyl- and metalloproteinases). However, the matrix metalloproteinase (MMP) family of enzymes appears to be primarily responsible for much of the coordinate or discoordinate degradation of the ECM that occurs during physiological and pathological events, respectively. Comprehending the precise points of regulation for MMP activity may facilitate therapeutic intervention in pathologic situations that characteristically favor either unregulated ECM destruction or excessive deposition of matrix components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel, P., M. Imagawa, R. Chiu, B. Stein, R. J. Imbra, H. J. Rhamsdorf, C. Jonat, P. Herrlich and M. Karin, 1987, Phorbol Ester-Inducible Genes Contain a Common Cis Element Recognized by a TPA-Modulater Trans-Acting Factor, Cell 49:729–739.

    Article  PubMed  CAS  Google Scholar 

  • Birkedal-Hansen, H., W. G. I. Moore, M. K. Bodden, L. J. Windsor, B. Birkedal-Hansen, A. DeCarlo and J. A. Engler, 1993, Matrix Metalloproteinases: A Review, Crit. Rev. Oral Biol. Med. 4:197–250.

    PubMed  CAS  Google Scholar 

  • Brenner, D. A., M. O’Hara, P. Angel, M. Chojkier and K. Michael, 1989, Prolonged Activation of Jun and Collagenase Genes by Other Oncogenes and Phorbol Esters, Nature 337:661–663.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P. D., D. E. Kleiner, E. J. Unsworth and W. G. Stetler-Stevenson, 1993, Cellular activation of the 72 kDa type IV procollagenase/TIMP-2 complex, Kidney Int. 43:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P. D., A. T. Levy, I. M. Margulies, L. A. Liotta and W. G. Stetler-Stevenson, 1990, Independent expression and cellular processing of Mr 72,0t00 type IV collagenase and interstitial collagenase in human tumorigenic cell lines, Cancer Res 50:6184–91.

    PubMed  CAS  Google Scholar 

  • Conca, W., P. E. Auron, W. M. Aoun, N. Bennett, P. Seckinger, H. G. Welgus, S. R. Goldring, S. P. Eisenberg, J. M. Dayer, S. M. Krane and a. 1. et, 1991, An interleukin 1 beta point mutant demonstrates that jun/fos expression is not sufficient for fibroblast metalloproteinase expression, J. Biol. Chem 266:16265–16268.

    PubMed  CAS  Google Scholar 

  • Corcoran, M. L., W. G. Stetler-Stevenson, P. D. Brown and L. M. Wahl, 1992, Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes, J. Biol. Chem 267:515–9.

    PubMed  CAS  Google Scholar 

  • DeClerck, Y. A., T.-D. Yean, B. J. Ratzkin, H. S. Lu and K. E. Langley, 1989, Purification and Characterization of Two Related but Distinct Metalloproteinase Inhibitors Secreted by Bovine Aortic Endothelial Cells, J. Biol. Chem. 264:17445–17453.

    CAS  Google Scholar 

  • DeClerck, Y. A., T. D. Yean, Y. Lee, J. M. Tomich and K. E. Langley, 1993, Characterization of the Functional Domain of Tissue Inhibitor of Metalloproteinases-2 (TIMP-2), Biochem J 289:65–69.

    PubMed  CAS  Google Scholar 

  • Delany, A. M. C. E. B., 1992, Post-transcriptional regulation of collagenase and stromelysin gene expression by epidermal growth factor and dexamethasone in cultured human fibroblasts, J. Cell Biochem 50:400–410.

    Article  PubMed  CAS  Google Scholar 

  • Docherty, A. J. P., A. Lyons, B. J. Smith, E. M. Wright, P. E. Stephens, T. J. R. Harris, G. Murphy and J. J. Reynolds, 1985, Sequence of Human Tissue Inhibitor of Metalloproteinases and Its Identity to Erythroid-Potentiating Activity, Nature 318:66–69.

    Article  PubMed  CAS  Google Scholar 

  • Fridman, R., T. R. Fuerst, R. E. Bird, M. Hoyhtya, M. Oelkuct, S. Kraus, D. Komarek, L. A. Liotta, M. L. Berman and W. G. Stetler-Stevenson, 1992, Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions, J Biol. Chem 267:15398–405.

    PubMed  CAS  Google Scholar 

  • Frisch, S. J. H. M., 1990, Positive and negative transcriptional elements of the human type IV collagenase gene, Mol Cell Biol. 10:6524–6532.

    PubMed  CAS  Google Scholar 

  • Gasson, J. C., D. W. Golde, S. E. Kaufman, C. A. Westbrook, R. M. Hewick, R. J. Kaufman, G. G. Wong, P. A. Temple, A. C. Leary, E. L. Brown, E. C. Orr and S. C. Clark, 1985, Molecular characterization and expression of the gene encoding human erythroid-potentiating activity, Nature 315:768–771.

    Article  PubMed  CAS  Google Scholar 

  • He, C., S. M. Wilhelm, A. P. Pentland, B. L. Marmer, G. A. Grant, A. Z. Eisen and G. I. Goldberg, 1989, Tissue cooperation in a proteolytic cascade activating human interstitial collagenase, Proc. Natl. Acad. Sci. 86:2632–2636.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, L. D., J. T. Holt and L. M. Matrisian, 1988, Growth Factors Regulate Transin Gene Expression by c-fos-Dependent and c-fos-Independent Pathways, Science 242:1424–1427.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, L. D., D. B. Miller and L. Matrisian, 1990, TGF-beta Inhibition of Transin/Stromelysin Gene Expression Is Mediated Through a Fos Binding Sequence, Cell 61:267–278.

    Article  PubMed  CAS  Google Scholar 

  • Keskioja, J., J. Lohi, A. Tuuttila, K. Tryggvason and T. Vartio, 1992, Proteolytic Processing of the 72,000-Da Type-IV Collagenase by Urokinase Plasminogen Activator, Exp Cell Res 202:471–476.

    Article  CAS  Google Scholar 

  • Kleiner, D., Jr., A. Tuuttila, K. Tryggvason and W. G. Stetler-Stevenson, 1993, Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2), Biochemistry 32:1583–92.

    Article  PubMed  CAS  Google Scholar 

  • Kleiner, D., Jr., E. J. Unsworth, H. C. Krutzsch and W. G. Stetler-Stevenson, 1992, Higher-order complex formation between the 72-kilodalton type IV collagenase and tissue inhibitor of metalloproteinases-2, Biochemistry 31:1665–72.

    Article  PubMed  CAS  Google Scholar 

  • Leco, K. J., L. J. Hayden, R. R. Sharma, H. Rocheleau, A. H. Greenberg and D. R. Edwards, 1992, Differential Regulation of TIMP-1 and TIMP-2 messenger RNA Expression in Normal and Ha-ras-Transformed Murine Fibroblasts, Gene 117:209–217.

    Article  PubMed  CAS  Google Scholar 

  • Leco, K. J., R. Khokha, N. Pavloff, S. P. Hawkes and D. R. Edwards, 1994, Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) Is an Extracellular Matrix-associated Protein with a Distinctinve Pattern of Expression in Mouse Cells and Tissues, J. Biol. Chem. 269:9352–9360.

    PubMed  CAS  Google Scholar 

  • Lovejoy, B., A. Cleasby, A. M. Hassell, K. Longley, M. A. Luther, D. Weigl, G. McGeehan, A. B. McElroy, D. Dewry, M. H. Lambert and S. R. Jordan, 1994, Structure of the Catalytic Domain of Fibroblst Collagenase Complexed with and Inhibitor, Science 263:375–377.

    Article  PubMed  CAS  Google Scholar 

  • Mauviel, A., 1993, Cytokine Regulation of Metalloproteinase Gene Expression, J. Cell. Biol. 53:288–295.

    CAS  Google Scholar 

  • Melchiori, A., A. Albini, J. M. Ray and W. G. Stetler-Stevenson, 1992, Inhibition of tumor cell invasion by a highly conserved peptide sequence from the matrix metalloproteinase enzyme prosegment, Cancer Res 52:2353–6.

    PubMed  CAS  Google Scholar 

  • Muir, D., 1994, Metalloproteinase-Dependent Neurite outgrowth within a synthetic extracellular matrix is induced by nerve growth factor, Exp Cell Res 210:243–252.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, A. N., E. J. Unsworth and W. G. Stetler-Stevenson, 1993, Tissue Inhibitor of Metalloproteinases-2 Inhibits bFGF-Induced Human Microvascular Endothelial Cell Proliferation, J. Cell Phys 157:351–358.

    Article  CAS  Google Scholar 

  • Murphy, G., A. Houbrechts, M. I. Cockett, R. A. Williamson, M. O’Shea and A. J. Docherty, 1991, The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity, Biochemistry 30:8097–102.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., F. Willenbrock, R. V. Ward, M. I. Cockett, D. Eaton and A. J. Docherty, 1992, The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases, Biochem J 283:637–641.

    PubMed  CAS  Google Scholar 

  • Nagase, H., A. J. Barrett and J. F. Woessner 1992, Nomenclature and Glossary of the Matrix Metalloproteinases, In Matrix Metalloproteinases and Inhibitors. Proceedings of the Matrix Metalloproteinase Conference Held at Sandestin Beach, FL, September 11–15, 1989, ed. H. Birkedal-Hansen, Z. Werb, H. G. Welgus and H. E. Van Wart, H. Birkedal-Hansen, Z. Werb, H. G. Welgus and H. E. Van Warts. Gustav Fischer Verlag, New York, 421–424.

    Google Scholar 

  • Nomura, K. and N. Suzuki, 1993, Stereo-specific inhibition of sea urchin envelysin (hatching enzyme) by a synthetic autoinhibitor peptide with a cysteine-switch consensus sequence., FEBS Lett. 321:84–88.

    Article  PubMed  CAS  Google Scholar 

  • O’Shea, M., F. Willenbrock, R. A. Williamson, M. I. Cockett, R. B. Freedman, J. J. Reynolds, A. J. Docherty and G. Murphy, 1992, Site-Directed Mutations That Alter the Inhibitory Activity of the Tissue Inhibitor of Metalloproteinases-1: Importance of the N-Terminal Region Between Cysteine 3 and Cysteine 13, Biochemistry 31:10146–10152.

    Article  PubMed  Google Scholar 

  • Okada, Y., T. Morodomi, J. J. Enghild, K. Suzuki, A. Yasui, I. Nakanishi, G. Salvesen and H. Nagase, 1990, Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties, Eur. J. Biochem. 194:721–730.

    Article  PubMed  CAS  Google Scholar 

  • Overall, C. M., J. L. Wrana and J. Sodek, 1991, Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression, J. Biol. Chem 266:14064–14071.

    PubMed  CAS  Google Scholar 

  • Park, A. J., L. M. Matrisian, A. F. Kells, R. Pearson, Z. Y. Yuan and M. Navre, 1991, Mutational Analysis of the transin (rat stromelysin) autoinhibitor region demonstrates a role for residues surrounding the “cysteine switch”, J. Biol. Chem. 266:1584–1590.

    PubMed  CAS  Google Scholar 

  • Pavloff, N., P. W. Staskus, N. S. Kishnani and S. P. Hawkes, 1992, A New Inhibitor of Metalloproteinases from Chicken: ChIMP-3. A Third Member of the TIMP Family, J Biol. Chem 267:17321–17326.

    PubMed  CAS  Google Scholar 

  • Salo, T., L. A. Liotta, J. Keski-Oja, T. Turpeennieme-Hujanen and K. Tryggvason, 1982, Secretion of a Basement Membrane Collagen Degrading Enzyme and Plasminogen Activator by Transformed Cells-Role in Metastasis, Int. J. Cancer 30:669–673.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Lopez, R., C. M. Alexander, O. Behrendtsen, R. Breathnach and Z. Werb, 1993, Role of zinc-binding-and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins, J. Biol. Chem 268:7238–47.

    PubMed  CAS  Google Scholar 

  • Sanchez-Lopez, R., R. Nicholson, M.-C. Gesnel, L. M. Matrisian and R. Breathnach, 1988, Structure-Function Relationships in the Collagenase Gene Family Member Transin, J. Biol. Chem. 263:11892–11899.

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi, P., L. J. Ransone and I. M. Verma, 1989, Cross-talk in Signal Transduction: TPA-inducible Factor jun/AP-1 Activates cAMP-Responsive Enhancer Elements, Oncogene 5:427–431.

    Google Scholar 

  • Stetler-Stevenson, W. G., N. Bersch and D. W. Golde, 1992, Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity, Febs Lett 296:231–4.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., H. C. Krutzsch and L. A. Liotta, 1989, Tissue Inhibitor of Metalloproteinase (TIMP-2), J. Biol. Chem. 264:17374–17378.

    PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., J. A. Talano, M. E. Gallagher, H. C. Krutzsch and L. A. Liotta, 1991, Inhibition of human type IV collagenase by a highly conserved peptide sequence derived from its prosegment, Am J Med Sci 302:163–70.

    Article  PubMed  CAS  Google Scholar 

  • Strongin, A. Y., I. E. Collier, P. A. Krasnov, L. T. Genrich, B. L. Manner and G. I. Goldberg, 1993, Human 92 kDa Type-IV Collagenase-Functional Analysis of Fibronectin and Carboxyl-End Domains, Kidney Int 43:158–162.

    Article  PubMed  CAS  Google Scholar 

  • Strongin, A. Y., B. L. Manner, G. A. Grant and G. I. Goldberg, 1993, Plasma Membrane-Dependent Activation of the 72-kDa Type-IV Collagenase Is Prevented by Complex Formation with TIMP-2, J Biol. Chem 268:14033–14039.

    PubMed  CAS  Google Scholar 

  • Templeton, N. S. and W. G. Stetler-Stevenson, 1991, Identification of a basal promoter for the human Mr 72,000 type IV collagenase gene and enhanced expression in a highly metastatic cell line, Cancer Res 51:6190–3.

    PubMed  CAS  Google Scholar 

  • Van Wart, H. and H. Birkedal-Hansen, 1990, The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc Natl. Acad Sci USA 87:5578–5582.

    Article  PubMed  Google Scholar 

  • Vassalli, J.-D., Sappino, A-P, Belin, D., 1991, The plasminogen activator/plasmin system, J. Clin Invest. 88:1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Ward, R. V., S. J. Atkinson, P. M. Slocombe, A. J. Docherty, J. J. Reynolds and G. Murphy, 1991, Tissue inhibitor of metalloproteinases-2 inhibits 1he activation of 72 kDa progelatinase by fibroblast membranes, Biochim Biophys Acta 1079:242–6.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., C. L. Mainardi, C. Vater and E. D. Harris, 1977, Endogenous Activation Of Latent Collagenase By Rheumatoid Synovial Cells. Evidence for a Role of Plasminogen Activator, New Engl. J. Med. 296:1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, S. M., I. E. Collier, A. Kronberger, A. Z. Eisen, B. L. Marmer, G. A. Grant, E. A. Bauer and G. I. Goldberg, 1987, Human skin fibroblast stromelysin: Structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells, Proc. Natl. Acad. Sci. (USA) 84:6725–6729.

    Article  CAS  Google Scholar 

  • Wilhelm, S. M., A. Z. Eisen, M. Teter, S. D. Clark, A. Kronenberger and G. Goldberg, 1986, Human fibroblast collagenase: Glycosylation and tissue-specific level of enzyme synthesis, Proc. Natl. Acad. Sci. (USA) 83:3756–3760.

    Article  CAS  Google Scholar 

  • Williamson, R., F. Marston, S. Angal, P. Koklitis, M. Panico, H. Morris, A. Carne, B. Smith, T. Harris and R. Freedman, 1990, Disulphide bond assignment in human tissue inhibitor of metalloproteinases (TIMP), Biochem. J. 268:267–274.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corcoran, M.L., Kleiner, D.E., Stetler-Stevenson, W.G. (1995). Regulation of Matrix Metalloproteinases during Extracellular Matrix Turnover. In: Zderic, S.A. (eds) Muscle, Matrix, and Bladder Function. Advances in Experimental Medicine and Biology, vol 385. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1585-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1585-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1587-0

  • Online ISBN: 978-1-4899-1585-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics