Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 327))

Abstract

The current interest in laser plasmas originated many years ago in the general effort for solving the world-wide need for an abundant and everlasting energy source. That effort has focussed on the use of the hydrogen thermonuclear fusion. The experimental devices adequate for generating locally the very high temperatures necessary for fusion ignition distribute into two types: those using magnetic confinement, e.g., the tokamaks, and those using inertial confinement, namely the plasmas produced by high-power laser impacts on targets. The laser-produced plasmas are cheaper, which is the reason why so many groups in the world have developed them. They are usually called hot plasmas when the average kinetic energy of the electrons and atomic ions which they contain exceeds 100 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audebert, P., Gauthier, J.-C, Geindre, J.-R, Monier, P., Bauche-Arnoult, C., Bauche, J., Luc-Koenig, E., Pain, D., Wyart, J.-F., Busquet, M., and Chenais-Popovics, C., 1984, Rapport GRECO-ILM (unpublished).

    Google Scholar 

  • Audebert, P., Gauthier, J.-C, Geindre, J.-P., Chenais-Popovics, C., Bauche-Arnoult, C., Bauche, J., Klapisch, M., Luc-Koenig, E., and Wyart, J.-F., 1985, Analysis of the 3d-5f subarrays in the spectrum of highly ionized tantalum, Phys. Rev. A 32:409.

    Article  Google Scholar 

  • Bancewicz, M., and Karwowski, J., 1984, A study on atomic energy level distribution, Acta Phys.Polon. A 65:279.

    Google Scholar 

  • Bancewicz, M., and Karwowski, J., 1986, Statistical behaviour of energy levels in (d+s)8 spectra of Fe I, Co II and Ru I atoms, Acta Phys. Polon. A 69:665.

    Google Scholar 

  • Bar-Shalom, A., Klapisch, M., and Oreg, J., 1988, Electron collision excitations in complex spectra of ionized heavy atoms, Phys. Rev. A 38:1773.

    MathSciNet  Google Scholar 

  • Bar-Shalom, A., Oreg, J., Goldstein, W. H., Shvarts, D., and Zigler, A., 1989, Super-transition array: A model for the spectral analysis of hot, dense plasma, Phys. Rev. A 40:3183.

    Article  Google Scholar 

  • Bauche, J., and Bauche-Arnoult, C., 1987, Level and line statistics in atomic spectra, J. Phys. B: At. Mol. Phys. 20:1659.

    Article  Google Scholar 

  • Bauche, J., and Bauche-Arnoult, C., 1989, Mixing of Many Transition Arrays in Atomic Spectra, J. Phys. B:At. Mol. Opt. Phys. 22:2503.

    Article  Google Scholar 

  • Bauche, J., and Bauche-Arnoult, C., 1990, Statistical properties of atomic spectra, Comput. Phys. Rep. 12:1.

    Article  Google Scholar 

  • Bauche, J., and Bauche-Arnoult, C., 1992, Scars of Symmetries in Complex Atomic Spectra, Phys. Rev. Letters, 69:1038.

    Article  Google Scholar 

  • Bauche, J., Bauche-Arnoult, C., Luc-Koenig, E., Wyart, J.-F., and Klapisch, M., 1983, Emissive zones of complex atomic configurations in highly ionized atoms, Phys. Rev. A 28:829.

    Article  Google Scholar 

  • Bauche, J., Bauche-Arnoult, C., and Klapisch, M., 1987a, Transition arrays in the spectra of ionized atoms, Advances in Atomic and Molecular Physics, 23:131.

    Article  Google Scholar 

  • Bauche, J., Bauche-Arnoult, C., Klapisch, M., Mandelbaum, P., and Schwob, J.-L., 1987b, Quenching of transition arrays through configuration mixing, J. Phys. B: At. Mol. Phys. 20:1443.

    Article  Google Scholar 

  • Bauche, J., Bauche-Arnoult, C., and Klapisch, M., 1991a, Breakdown of jj coupling in spin-orbit-split atomic transition arrays, J. Phys. B:At. Mol. Opt. Phys. 24:1.

    Article  Google Scholar 

  • Bauche, J., Bauche-Arnoult, C., Wyart, J.-F., Duffy, P., and Klapisch, M.,1991b, Simulation of atomic transition arrays for opacity calculations, Phys. Rev. A 44:5707.

    Article  Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., and Klapisch, M., 1979, Variance of the distributions of energy levels and of the transition arrays in atomic spectra, Phys. Rev. A 20:2424.

    Article  Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., and Ekberg, J.O., 1982a, Some properties of the J-file intensity sums in ionic spectra, J. Phys. B:At. Mol. Phys. 15:701.

    Article  Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., and Klapisch, M., 1982b, Variance of the distributions of energy levels and of the transition arrays in atomic spectra. II Configurations with more than two open subshells., Phys. Rev. A 25:2641.

    Article  Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., and Klapisch, M., 1984, Asymmetry of the transition-array patterns in ionic spectra, Phys. Rev. A 30:3026.

    Article  Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., and Klapisch, M.,1985, Variance of the distributions of energy levels and of the transition arrays in atomic spectra. Ill Case of spin-orbit- split arrays, Phys. Rev. A 31:2248.

    Article  Google Scholar 

  • Bauche-Arnoult, C., Luc-Koenig, E., Wyart, J.-F., Geindre, J.-P., Audebert, P., Monier, P., Gauthier, J.-C, and Chenais-Popovics, C., 1986, Interpretation of the spectra of a laser-irradiated Au plasma in the 3.0–4.0 A range, Phys. Rev. A 33:791.

    Article  Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., Luc-Koenig, E., Wyart, J.-F., More, R.M., Chenais-Popovics, C., Gauthier, J.-C, Geindre, J.-P., and Tragin, N., 1989, Dielectronic recombination process in laser-produced tantalum plasmas, Phys. Rev. A 39:1053.

    Article  Google Scholar 

  • Bohigas, O., and Giannoni, M.-J., 1984, in “Lecture Notes in Physics,” Vol. 209, Springer, Berlin.

    Google Scholar 

  • Condon, E.U., and Shortley, G.H., 1935, “The Theory of Atomic Spectra,” Cambridge University Press, Cambridge.

    Google Scholar 

  • Cowan, R.D., 1981, “The Theory of Atomic Structure,” Univ. California Press, Berkeley.

    Google Scholar 

  • Delande, D., and Gay, J.-C, 1987, Scars of Symmetries in Quantum Chaos, Phys. Rev. Letters 59:1809.

    Article  Google Scholar 

  • Ekberg, J.O., 1975, Term Analysis of Fe V, Phys. Scripta 12:42.

    Article  Google Scholar 

  • Gauthier, J.-C, Geindre, J.-P., Chenais-Popovics, C., Louis-Jacquet, M., Bruneau, J., Desenne, D., Naccache, D., Bauche-Arnoult, C., and Bauche, J., 1991, Measurement of absorption coefficients of 2p-3d transition arrays in germanium laser-produced plasmas, in “Radiative Properties of Hot Dense Matter,” Ed. Goldstein, W., Hooper, C., Gauthier, J.-C, Seely, J., and Lee, R., World Scientific, Singapore.

    Google Scholar 

  • Ginocchio, J.N., 1973, Angular-momentum dependence of the density of states, Phys. Rev. Letters 31:1260.

    Article  Google Scholar 

  • Judd, B. R., 1963, “Operator Techniques in Atomic Spectroscopy,” McGraw-Hill, New York.

    Google Scholar 

  • Judd, B. R., 1967, “Second Quantization in Atomic Spectroscopy,” Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Karazija, R., 1989, On the determination of closed-form expressions for the mean quantities of atomic spectra, Lietuvos Fizikos Rinkinys 29:131.

    Google Scholar 

  • Karazija, R., and Rudzikaite, L., 1988, Summation of the matrix elements of the hamiltonian and the transition operators. Variance of the emission spectrum, Lietuvos Fizikos Rinkinys 28:294.

    Google Scholar 

  • Karwowski, J., and Bancewicz, M., 1987, The first two moments of energy level distributions in N-electron spin-adapted model spaces, J. Phys. A: Math. Gen. 20:6309.

    Article  Google Scholar 

  • Kendall, M.G., and Stuart, A., 1963, “The Advanced Theory of Statistics,” Griffin, London.

    Google Scholar 

  • Klapisch, M., Meroz, E., Mandelbaum, P., Zigler, A., Bauche-Arnoult, C., and Bauche, J., 1982, Interpretation of unresolved transition arrays in soft-x-ray spectra of highly ionized molybdenum and palladium, Phys. Rev. A 25:2391.

    Article  Google Scholar 

  • Klapisch, M., 1993, A UTA Approach to the Collisional Radiative Model for Ionization Balance, “Proceedings of The Tenth International Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas” Berkeley, February 1992, to be published.

    Google Scholar 

  • Layzer, D., 1959, On the screening theory of atomic spectra, Annals of Physics, N.Y. , 8:271.

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbaum, P., Finkenthal, M., Schwob, J.-L., and Klapisch, M., 1987, Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100 Å range, Phys. Rev. A 35:5051.

    Article  Google Scholar 

  • Porter, C.E., and Thomas, R.G., 1956, Fluctuations of Nuclear Reactions Widths, Phys. Rev. 104:483.

    Article  Google Scholar 

  • Porter, C.E., 1965, “Statistical Theories of Spectra: Fluctuations,” Academic Press, New York.

    Google Scholar 

  • Slater, J.C., 1960, “Quantum Theory of Atomic Structure,” McGraw-Hill, New York.

    MATH  Google Scholar 

  • Tragin, N., Geindre, J.-P., Monier, P., Gauthier, J.-C, Chenais-Popovics, C., Wyart, J.-F., and Bauche-Arnoult, C., 1988, Extended analysis of the X-ray Spectra of Laser- Irradiated Elements in the Sequence from Tantalum to Lead, Phys. Scripta 37:72.

    Article  Google Scholar 

  • von Neumann, J., and Wigner, E., 1929, Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physik. Zeitschr. 30:467.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauche, J., Bauche-Arnoult, C. (1994). Theory of Complex Spectra from Laser Plasmas. In: More, R.M. (eds) Laser Interactions with Atoms, Solids and Plasmas. NATO ASI Series, vol 327. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1576-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1576-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1578-8

  • Online ISBN: 978-1-4899-1576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics