Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 327))

  • 250 Accesses

Abstract

Solids, liquids and gases have been studied for centuries and the boundaries between these states of matter are clearly defined and well understood. Low density plasmas have also been extensively studied in the laboratory and although the boundary between an “ideal classical plasma” and a gas is less clearly defined, the properties of plasmas are such that they are very different from either solids, liquids or gases. Plasmas have often been considered as a fourth state of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nellis W J, High Pressure Measurement Techniques, e. G N Peggs, London, Applied Science Publishers pp 68–89, 1983.

    Google Scholar 

  2. Graham R A and Asay J R, High Temp.-High Pressure, 10, 55–90,1978.

    Google Scholar 

  3. Ragan C E m, Silbert C E and Diven B C., J. Appl. Phys. 48, 860–70,1977.

    Google Scholar 

  4. Egelstaff P A. An Introduction to the Liquid State. chapter 2, Academic Press, London, 1967

    Google Scholar 

  5. Dharma-Wardana C., Density functional methods in hot dense plasmas. In Strongly coupled plasma physics. Ed. Rogers F. J. and Dewitt H. E., Plenum, 1987.

    Google Scholar 

  6. Cox J P and Giuli R T, Principles of Stellar Structure. Vol 1, p 346, Gordon and Breach, New York, 1968.

    Google Scholar 

  7. Brush S G, Sahlin H L and Teller E, J. Chem. Phys. 45, 2102, 1966.

    Article  Google Scholar 

  8. Hansen J P, Pollock E L, McDonald I R and Vieillefosse P, Phys, Rev. A, 11, 1025, 1973.

    Article  Google Scholar 

  9. DeWitt H E, Phys. Rev. A, 14, 1290, 1976.

    Article  Google Scholar 

  10. Feynman R. P., Metropolis N. and Teller E., Phys. Rev. 75, 10, 1561–1573, 1949.

    Article  MATH  Google Scholar 

  11. March N M, Advances in Physics, 6, 21, 1–101,1957.

    Article  Google Scholar 

  12. More R M, Atomic Physics in Inertial Confinement Fusion, UCRL report-84991, Lawrence Livermore National Laboratory, 1982.

    Google Scholar 

  13. Cowan R D and Ashkin J, Phys. Rev. 105, 1106, 1960.

    MathSciNet  Google Scholar 

  14. Kirzhnits D A, Sov. Phys. JETP, 8, 1081, 1959.

    MathSciNet  Google Scholar 

  15. Kalitkin N H, Sov. Phys. JETP, 11, 1106, 1960.

    MathSciNet  Google Scholar 

  16. More R M, Phys. Rev., A, 19, 1234, 1979.

    Article  Google Scholar 

  17. Ross M, Rep. Prog. Phys., 48, 1–52, 1985.

    Article  Google Scholar 

  18. Laughlin R B, Phys. Rev. A, 33, 1, 510–518, 1986.

    Article  Google Scholar 

  19. Ziman J M, Principles of the Theory of Solids, chapter 3, Cambridge Univ. Press, 1972.

    Book  Google Scholar 

  20. Egelstaff P A, ibid, chapter 4.

    Google Scholar 

  21. Anderson O K, Phys. Rev. B, 12, 3060, 1975.

    Article  Google Scholar 

  22. Skriver H L, The LMTO Method, Muffin Tin Orbitals and Electron Structure, Springer, Berlin, 1984.

    Google Scholar 

  23. Albers R C., McMahan and Müller J E, Phys. Rev. B, 31, 6, 3435–3450, 1985.

    Article  Google Scholar 

  24. Béni G and Platzman P M, Phys. Rev. B, 14, 4, 1514–1518, 1976.

    Article  Google Scholar 

  25. Born M and Huang K, Dynamical Theory of Crystal Lattices, Oxford Univ. Press,1954.

    MATH  Google Scholar 

  26. Cowan R D, unpublished work but discussed in More R M, Phys, Fluids, 37, 10,3059,1988.

    Google Scholar 

  27. Moriaty J A, Young D A and Ross M, Phys. Rev. B, 30, 2, 578–589, 1984.

    Article  Google Scholar 

  28. Zel’dovich Ya B and Raiser Yu P, Elements of Gas Dynamics and Shock Waves, Academic Press, New York, 1966.

    Google Scholar 

  29. Motz H, The Physics of Laser Fusion, chapter 9, Academic Press, London,1979.

    Google Scholar 

  30. Christiansen J P et al. Comput. Phys Comm., 7, 27, 1974. also see Rogers P A et al., Med101 User Guide, Rutheford Appleton Laboratory Report, RAL-89–127,1989.

    Google Scholar 

  31. Holian K S, Los Alamos National Laboratory Report LA-10160-MS, 1984.

    Google Scholar 

  32. Kormer S B, Sov. Phys. Usp., 11, 229–54, 1968.

    Article  Google Scholar 

  33. Key M H, The Physics of the Superdense Region, in Laser Plasma Interactions, Eds Cairns R A and Sanderson J J, Scottish Universities Summer School, 1980.

    Google Scholar 

  34. Key M H, The Physics of Laser Compression of Plasmas, in Laser Plasma Interactions 2, Ed. Cairns R A, Scottish Universities Summer School, 1983.

    Google Scholar 

  35. Wark J S, Woolsey N C and Whitlock R R, Rutherford Appleton Laboratory Annual Report, RAL-92–020, p58, 1992.

    Google Scholar 

  36. Rose S J, Rutherford Appleton Laboratory Annual Report, RAL-85–047, A3.3, pA3.3-A3.10, 1985.

    Google Scholar 

  37. Grant I P et al. Comput. Phys. Comm., 21, 207, 1980.

    Article  Google Scholar 

  38. McKenzie B J. Comput. Phys. Comm., 21, 233, 1980.

    Article  Google Scholar 

  39. Stewart J C and Pyatt K D Jr, Astrophys. J., 144, 1203–1211, 1966.

    Article  Google Scholar 

  40. Crowley B. J. B. Phys. Rev. A, 41, 4, 2179–2191, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hall, T.A. (1994). Absorption Spectroscopy of Compressed Matter. In: More, R.M. (eds) Laser Interactions with Atoms, Solids and Plasmas. NATO ASI Series, vol 327. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1576-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1576-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1578-8

  • Online ISBN: 978-1-4899-1576-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics